ПРАВИЛА

ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ ЗА ПОСТРОЙКОЙ СУДОВ И ИЗГОТОВЛЕНИЕМ МАТЕРИАЛОВ И ИЗДЕЛИЙ ДЛЯ СУДОВ

Tom 2

Часть III ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ МАТЕРИАЛОВ

Часть IV ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ ИЗДЕЛИЙ

Санкт-Петербург

2010

ЛИСТ УЧЕТА ЦИРКУЛЯРНЫХ ПИСЕМ, ИЗМЕНЯЮЩИХ / ДОПОЛНЯЮЩИХ НОРМАТИВНЫЙ ДОКУМЕНТ

(номер и название нормативного документа)

п/п дата утверждения дополненных пунктов	Nº	Номер циркулярного письма,	Перечень измененных и
	п/п	дата утверждения	дополненных пунктов

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов утверждены в соответствии с действующим положением и вступают в силу с 1 июля 2010 года.

Настоящее издание Правил подготовлено на основе Правил технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов издания 2009 года с учетом изменений и дополнений, подготовленных непосредственно к моменту переиздания Правил.

Правила изданы в трех томах, в которые включены следующие части:

Том 1: Часть I «Общие положения по техническому наблюдению»;

Часть II «Техническая документация».

Том 2: Часть III «Техническое наблюдение за изготовлением материалов»;

Часть IV «Техническое наблюдение за изготовлением изделий».

Том 3: Часть V «Техническое наблюдение за постройкой судов».

С вступлением в силу данных Правил теряют силу Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов издания 2009 года.

Настоящее издание Правил, по сравнению с предыдущим изданием (2009 г.), содержит следующие изменения и дополнения.

ЧАСТЬ III. ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ МАТЕРИАЛОВ

- 1. Пункты 2.1.4.2 и 2.2.4: внесены изменения редакционного характера.
- 2. Главы 2.1 и 2.3: термин «переоформление» заменен на «возобновление».
- **3.** Пункт 3.1.2.2.5: внесены изменения, учитывающие положения циркуляра ИМО MSC.1/1330 «Инструкция по обслуживанию и ремонту защитных покрытий».
- **4.** Глава 3.2: внесены новые пункты 3.2.3.1.5 3.2.3.1.7, учитывающие редакцию процедурного требования MAKO PR34 (Rev.4 Apr 2009);
 - в пункт 3.2.10 внесены изменения редакционного характера.
- 5. Раздел 4: внесены изменения, соответствующие нормативным предложениям подразделений Регистра. Текст раздела переработан в связи с практической необходимостью унификации требований Правил с требованиями последних изданий стандартов EN 282-1:2004 и ISO/TR 15608:2000, применяемых европейскими классификационными обществами-членами МАКО при выполнении технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов.
- **6.** Раздел 5: внесены изменения редакционного характера, учитывающие предложения подразделений Регистра и уточняющие отдельные процедурные требования (уточнены перекрестные ссылки на часть XIV «Сварка» Правил классификации и постройки морских судов).

ЧАСТЬ IV. ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ ИЗДЕЛИЙ

- 1. Раздел 4 «Материалы, конструкции и оборудование противопожарной защиты»:
- пункт 4.3.9 дополнен требованием о необходимости проверки кратности пенообразования при испытании головных образцов лафетных стволов;

исключено приложение «Указания по испытанию порошков».

- **2.** Раздел 5 «Механизмы»:
- пункт 5.2.2 дополнен требованиями к опорным рамам дизельных агрегатов;
- пункт 5.2.3 переработан в соответствии с Унифицированным требованием MAKO M10 (Rev.3 Sept 2008); таблица 5.3.1 дополнена требованиями к опорным рамам дизельных агрегатов.
- 3. Раздел 7 «Движители»:
- пункт 7.1.11 дополнен ссылкой на часть XIII «Материалы» Правил классификации и постройки морских судов;
- глава 7.5 и приложение 2: дополнены требованиями по объему стендовых испытаний движительных колонок.
 - 4. Раздел 9 «Котлы, теплообменные аппараты и сосуды под давлением»:
 - в пункте 9.7.1.4 уточнены требования к манометрам, применяемым при гидравлических испытаниях.
 - **5.** Раздел 10 «Электрическое оборудование»:
 - в главе 10.5 уточнены требования в соответствии с Унифицированным требованием МАКО Е10; внесены изменения редакционного характера.
 - **6.** Раздел 12 «Оборудование автоматизации»:
- в пункте 12.4.1.1.8 исключено требование об испытаниях серийных образцов изделия на виброустойчивость;
 - в приложении уточнены требования в соответствии с Унифицированным требованием МАКО Е10.
 - 7. Раздел 17 «Оборудование по предотвращению загрязнения с судов»:
 - Внесены изменения редакционного характера.

СОДЕРЖАНИЕ

	ЧАСТЬ III. ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ МАТЕРИАЛОВ		Оформление, условия деиствия и продления СДС	
		Прі	иложение 1. Типы проб сварных соеди-	
			нений, применяемые при практических	
1	Общие положения		испытаниях по допуску сварщиков	. 80
1.1	Область распространения		иложение 2. Унифицированные	
1.2	Термины, определения и пояснения 8		пространственные положения сварки	
1.3	Техническое наблюдение		согласно Стандарту ИСО 6947	. 86
2	Металлические материалы 9	Прі	иложение 3. Протокол заседания	
2.1	Свидетельство о признании изготовителя		аттестационной комиссии	. 89
2.2	(СПИ)		иложение 4. Практические рекомен-	
2.2	1		дации по заполнению формы 7.1.30 «Свиде-	0.1
2.3	Перечень признанных изготовителей	п.	тельство о допуске сварщика»	. 91
2.4	материалов	11 p 1	иложение 5. Положение о центрах по аттестации сварщиков (аттестационных	
	при изготовлении материалов		центрах)	. 94
2.5	Неразрушающий контроль стальных поковок	Прі	иложение 6. Разделы и вопросы для	
	и отливок деталей корпуса и механизмов. 34		проведения экзамена по проверке профес-	
3	Неметаллические материалы 45		сиональных знаний сварщика	. 97
3.1	Процедура одобрения защитных покрытий	Прі	иложение 7. Описание типов наполнителя	
	конструкций корпуса		порошковой сварочной проволоки	
3.2	Процедура применения Стандарта качества	5	Сварочные материалы. Требования к	
	защитных покрытий (резолюция ИМО MSC. 215(82))		качеству изготовления, проведению	
	для судов, спроектированных в соответствии		испытаний и процедуре одобрения	100
	с Общими правилами МАКО по конструкции	5.1	Требования к системе качества изгото-	
	и прочности нефтеналивных судов с двойными	0.1	вителей сварочных материалов	100
	бортами и Общими правилами МАКО по конст-	5.2	Освидетельствование изготовителей	100
	рукции и прочности навалочных судов 47		сварочных материалов	103
3.3	Применение Стандарта качества защитных	5.3	Технические требования к качеству	100
	покрытий, специально предназначенных	0.0	изготовления и поставки сварочных	
	для забортной воды балластных танков		материалов при их одобрении Регистром	106
	на судах всех типов и помещений двойного	5.4	Порядок проверки и испытаний сварочных	
	борта на навалочных судах, в соответствии	Э. Т	материалов при их одобрении	113
	с правилом II-1/3-2 СОЛАС-74 (резолюция		материалов при их одоорении	113
	ИМО MSC.215(82)) 53			
3.4	Процедура применения Стандарта качества		ЧАСТЬ IV. ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ	
	защитных покрытий пустых помещений		ЗА ИЗГОТОВЛЕНИЕМ ИЗДЕЛИЙ	
	навалочных судов и нефтеналивных судов			
	(резолюция ИМО MSC.244(83)) 54		Общие положения	128
4	Сварка. Правила аттестации сварщиков 55		Область распространения	128
4.1	Общие положения	1.2	Термины, определения, сокращения	128
4.2	Требования к порядку проведения и	1.3	Объем технического наблюдения	128
	организации аттестации сварщиков 55		Техническая документация	128
4.3	Термины, определения и условные	1.5	Опытный образец изделия	130
	обозначения, применяемые при допуске	1.6	Головной образец изделия	131
	сварщиков	1.7	Серийные изделия установившегося	
4.4	Процедура испытаний по допуску		производства	131
	сварщиков 63	1.8	Эксплуатационные испытания изделий .	132
4.5	Область одобрения по результатам	1.9	Техническое наблюдение за изготовлением	
	испытаний		двигателей внутреннего сгорания массового	
			производства	133

Содержание 5

2	Корпус	134	5.7	Передачи и разобщительные муфты главны	IX
2.1	Общие положения	134		и вспомогательных механизмов	167
3	Устройства, оборудование и снабжение.	134	5.8	Вспомогательные механизмы	170
3.1	Общие положения	134	5.9	Детали механизмов, перечисленных	
3.2	Техническое наблюдение Регистра	135		в таблице 5.8.1	172
3.3	Документация	137	5.10	Палубные механизмы	176
3.4	Рулевые устройства	137		Телеграфы механические	180
3.5	Якорные устройства	138		Стендовые испытания	180
3.6	Швартовные устройства	141		Документы Регистра	183
3.7	Буксирные устройства	141		пложение 1. Программа типовых испы-	
3.8	Сигнальные мачты	141	•	таний ДВС для оформления СТО	183
3.9	Устройства и закрытия отверстий в корпусе,		При	пложение 2. Процедура типового испы-	
	надстройках и рубках	141	1	тания для предохранительных клапанов	
3.10	Устройство и оборудование помещений,			картеров	185
	различные устройства и оборудование,		При	пложение 3. Процедура типовых испы-	
	аварийное снабжение	144	Г	таний приборов обнаружения и сигна-	
3.11	Цепи без распорок, применяемые в судовы			лизации масляного тумана в картере	190
	устройствах, кроме якорных	144	6	Детали валопроводов	193
3.12	Стальные тросы	144	6.1	Общие положения	193
	Растительные тросы и тросы из синтетичес-		6.2	Упорные, промежуточные и гребные валы	194
	кого волокна (канаты)	145	6.3	Облицовки гребных валов	196
Ппи	пложение 1. Допустимые величины	1.0	6.4	Соединительные болты и муфты валов .	197
P	пороков на литых деталях якорей	145	6.5	Упорные и опорные подшипники	197
Ппи	пожение 2. Испытание якорей	1.0	6.6	Дейдвудные устройства	197
F	и их деталей бросанием	145	6.7	Уплотнения и сальники дейдвудных	
Ппи	пложение 3. Испытание на растяжение	1.0	0.,	устройств	197
p .		146	7	Движители	198
Ппъ	ложение 4. Испытания буксирных гаков		7.1	Общие положения	198
	пложение 5. Испытания головных	110	7.2	Гребные винты фиксированного шага	199
прт	образцов иллюминаторов, дверей надстройки		7.3	Гребные винты регулируемого шага и	1))
	и рубки, люков сходных, световых		7.5	обслуживающие их системы	200
	и вентиляционных	149	7.4	Крыльчатые движители	201
Ппъ	пложение 6. Испытания растительных	177	7.5	Движительные колонки	202
при	тросов и тросов из синтетического волокна.	149		ложение 1. Инструкция по устранению	
4	Материалы, конструкции и изделия	11)	при	дефектов гребных винтов из медных	,
•	противопожарной защиты	151		сплавов	202
4.1	Общие положения	151	Ппи	пложение 2. Требования к объему	202
4.2	Материалы, конструкции и изделия	131	при	стендовых испытаний движительных	
7.2	конструктивной противопожарной защиты .	151		колонок	204
4.3	Изделия систем пожаротушения, противо-	131	8	Системы и трубопроводы	205
т.Э	пожарного снабжения и огнетушащие		8.1	Общие положения	205
	вещества	152	8.2	Арматура трубопроводов I и II классов,	203
5	Механизмы	153	0.2	а также донная, бортовая, устанавливаемая	
5.1	Общие положения	153		на форпиковой переборке и дистанцион-	
5.2	Главные и вспомогательные двигатели	133		но управляемая	206
3.2	внутреннего сгорания мощностью		8.3	Арматура трубопроводов III класса	206
	55 кВт и более	154	8.4	Арматура газоотводной системы и воздуш-	
5.3	Вспомогательные двигатели внутреннего	134	0.7	ных труб	206
5.5	сгорания мощностью менее 55 кВт	160	8.5	Механические, гибкие соединения	200
5.4	Главные паровые турбины и турбины	100	0.5	и компенсаторы	206
J. ⊣	электрогенераторов	160	8.6	Искрогасители газовыпускных систем и	200
5.5	Вспомогательные паровые турбины	163	0.0	дымоходов котлов	210
5.5 5.6	Главные газотурбинные двигатели (ГТД) и	103	8.7	Трубы	210
5.0	газовые турбины (ГТ) для привода		8.8	Судовые шланги	210
	электрогенераторов.	163	0.0	Судовые шлапін	414
	CHERTICAL CHERTICAL CONTRACTOR CO	102			

9	Котлы, теплообменные аппараты и		При	ложение 13. Климатическое исполнение	
	сосуды под давлением	212		изделий, допускаемых к установке	
9.1	Общие положения	212		на морских судах	279
9.2	Техническая документация	212	При	ложение 14. Принятые в России	
9.3	Материалы	212		обозначения изделий по климатическим	
9.4	Обработка материалов	213		категориям размещения и размещение этих	
9.5	Сварочные работы	214		изделий на судах	279
9.6	Проверка изготовления деталей и узлов		При	ложение 15. Испытание электрических	
	изделий. Сборка	214		изоляционных материалов на	
9.7	Гидравлические испытания	217		воспламеняемость	280
9.8	Особенности технического наблюдения		При	ложение 16. Требования к испытанию	
	за изготовлением головных образцов	218		системы сигнализации поступления воды	
10	Электрическое оборудование	219		в грузовые трюмы навалочных судов	
10.1	Общие положения	219		и однотрюмных грузовых судов, не являю-	
10.2	Объем и порядок освидетельствования			щихся навалочными	281
	электрического оборудования	219	11	Холодильное оборудование	282
10.3	Последовательность проведения испытаний		11.1	Общие положения	282
	и проверок	222	11.2	Виды испытаний	286
10.4	Основные указания по проведению испы-		11.3	Техническое наблюдение за изготовлением	
	таний и проверок	222		компрессоров	286
10.5	Испытания оборудования на соответствие		11.4	Техническое наблюдение за изготовле-	
	условиям работы на судне	228		нием насосов холодильного агента	287
10.6	Электрические испытания	237	11.5	Техническое наблюдение за изготовле-	
	Электрические испытания отдельных			нием насосов холодоносителя и охлаж-	
	видов оборудования	239		дающей воды	287
10.8	Освидетельствование изделий при		11.6	Техническое наблюдение за изготовлением	
	установившемся производстве на			вентиляторов	287
	предприятии (изготовителе)	260	11.7	Техническое наблюдение за изготовле-	
При	ложение 1. Допустимые значения			нием теплообменных аппаратов и сосудов	
_	сопротивления изоляции электрического			под давлением холодильного агента,	
	оборудования	264		холодоносителя и/или охлаждающей воды	287
При	ложение 2. Допустимые температуры	265	11.8	Техническое наблюдение за изготовле-	
При	пложение 3. Степень неравномерности			нием арматуры холодильных установок .	288
	хода электрических агрегатов	267	11.9	Техническое наблюдение за изготовле-	
При	ложение 4. Рекомендации по проверке			нием приборов холодильной автоматики.	288
	механической прочности электрических		11.10	Техническое наблюдение за изготовлением	[
	аппаратов и электромагнитных тормозов.	267		теплоизоляционных материалов	288
При	пожение 5. Рекомендации по проверке		11.11	Гидравлические испытания на прочность	288
	коммутационной прочности, нормальной и		11.12	? Пневматические испытания на плотность	289
	кратковременной коммутационной		11.13	В Испытания на герметичность	
	способности аппаратов	268		вакуумированием	289
При	ложение 6. Рекомендации по проверке		12	Оборудование автоматизации	289
	разрывной способности автоматических		12.1	Общие положения	289
	выключателей	270	12.2	Техническая документация	290
При	ложение 7. Оценка степени искрения		12.3	Объем и порядок освидетельствования	
	коллекторов электрических машин	271		оборудования автоматизации	290
При	ложение 8. Изоляционные расстояния	271	12.4	Указания по отдельным видам испытаний	293
При	ложение 9. Степени защиты электри-		При	ложение. Нормы и методы испытаний	
	ческого оборудования	272		оборудования автоматизации	295
При	пложение 10. Рекомендации по проверк	e	13	Спасательные средства	304
	конструкции и физических свойств		13.1	Общие положения	304
	кабелей	274	13.2	Техническое наблюдение за головным	
	ложение 11. Испытательный щуп	278		образцом	304
При	ложение 12. Допустимые отклонения			Виды испытаний	304
	параметров при механических		13.4	Техническое наблюдение на предприятии	
	и климатических испытаниях	278		(изготовителе)	304

Содержание 7

13.5	Требования к предприятиям (изготовителям	1)	15.6	Объем освидетельствований головных	
	и контроль производства	308		и/или опытных образцов	331
13.6	Маркировка и клеймение спасательных		15.7	Общие указания по освидетельствованию	
	средств	309		головных и/или опытных образцов	331
14	Сигнальные средства	309	15.8	Освидетельствование головных и/или	
14.1	Общие положения	309		опытных образцов отдельных видов	
14.2	Техническая документация	309		изделий	333
14.3	Техническое наблюдение за изготов-		15.9	Отдельные виды испытаний головных	
	лением сигнальных средств	310		и/или опытных образцов	334
14.4	Сигнально-отличительные и сигнально-		15.10	Документация Регистра	334
	проблесковые фонари	310		ложение 1. Нормы и методы испыта-	
14.5	Звуковые сигнальные средства	310	•	ния радиооборудования	336
	Пиротехнические сигнальные средства	311	Πри	ложение 2. Стандартные условия для	
	Сигнальные фигуры	311	Г	определения отклонения частоты передат-	
	Испытательные лаборатории, стендовые			чика или приемника	353
	испытания	312	16	Навигационное оборудование	353
Ппи	ложение 1. Испытания головных	U 1 <u>-</u>		Общие положения	353
	образцов фонарей (типовые испытания) .	313		Техническая документация	354
Ппи	пожение 2. Стендовые испытания	515		Объем испытаний и порядок проведения	55.
11 p 1.	головных образцов звуковых сигнальных		10.5	освидетельствования навигационного	
	средств	314		оборудования	354
Пъи	ложение 3. Стендовые испытания	317	16.4	Дополнительные указания по	337
при	головных образцов пиротехнических		10.4	освидетельствованию отдельных видов	
	сигнальных средств	316		навигационных приборов	355
Пл	пложение 4. Натурные морские	310	16.5		362
при		217		Документы Регистра	
Пол	испытания головных образцов фонарей .	317	при	ложение 1. Нормы и методы испытани	
при	ложение 5. Натурные морские		П	навигационного оборудования	363
	испытания головных образцов звуковых	217	при	ложение 2. Дополнительная техническа	ая
п	сигнальных средств	317		документация по навигационному	270
при	ложение 6. Натурные испытания		1.7	оборудованию морских судов	379
	головных образцов пиротехнических	210	17	Оборудование по предотвращению	200
	сигнальных средств	318	17.1	загрязнения с судов	380
При	ложение 7. Освидетельствования			Общие положения	380
	и испытания фонарей при установившемся	210		Техническая документация	381
	производстве	319	17.3	Техническое наблюдение за изготов-	
При	ложение 8. Освидетельствования			лением оборудования по предотвращению	
	и стендовые испытания звуковых			загрязнения при установившемся произ-	• • •
	сигнальных средств при установившемся			водстве	381
	производстве	319	При	ложение 1. Технические требования	
15	Радиооборудование	320		к испытаниям оборудования по предот-	
	Общие положения	320		вращению загрязнения с судов	385
	Техническая документация	320	При	ложение 2. Свидетельство о типовом	
15.3	Объем освидетельствований при			одобрении (испытании) оборудования	
	установившемся производстве	320		по предотвращению загрязнения	387
15.4	Общие указания по освидетельствованию		При	ложение 3. Инструкция о порядке	
	при установившемся производстве	321		оформления и выдачи Свидетельств о	
15.5	Освидетельствование отдельных видов			типовом одобрении (испытании) обору-	
	радиооборудования при установившемся			дования по предотвращению загрязнения	388
	производстве	323	Алфа	витно-предметный указатель	389

ЧАСТЬ III. ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ МАТЕРИАЛОВ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

- 1.1.1 Положения настоящей части Правил технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов применяются при осуществлении технического наблюдения Российским морским регистром судоходства за изготовлением и применением материалов для судов.
- 1.1.2 Техническое наблюдение за изготовлением и применением материалов, предназначенных для противопожарной защиты судов, производится в соответствии с положениями разд. 4 «Оборудование противопожарной защиты» части IV «Техническое наблюдение за изготовлением изделий».

1.2 ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

- 1.2.1 Термины и их определения и пояснения, относящиеся к общей терминологии, приведены в части XIII «Материалы» Правил классификации и постройки морских судов и части I «Общие положения по техническому наблюдению» Правил.
- **1.2.2** В настоящей части приняты также следующие определения:

Вторая сторона — внешняя участвующая сторона, заинтересованная в деятельности предприятия, например, потребитель или организация/лицо, выступающие от его имени.

Клеймо Регистра — клеймо, штемпель или пломбир определенного, регламентированного Регистром вида, которые наносятся на продукцию в конечном ее виде или в процессе изготовления с целью подтверждения осуществленного Регистром технического наблюдения и идентификации продукции выданным на нее документам.

Образец — изготовленное из пробы изделие определенной формы и размеров, на котором непосредственно производится определение механических, технологических или иных свойств материала при испытаниях.

Партия – ограниченное количество полуфабрикатов, на которые распространяются результаты проведенных в установленном порядке испытаний.

Первоначальные испытания — определенный объем контрольных испытаний, регламентированный специальной, одобренной Регистром программой и выполняемый во время освидетельствования предприятия Регистром с целью выдачи ему Свидетельства о признании изготовителя (СПИ).

 Π о л у п р о д у к т — слиток, сляб, блюм, заготовка, в дальнейшем подвергающиеся переделу, технологической обработке.

Полуфабрикат – лист, поковка, отливка, труба и т. п., в дальнейшем, при использовании по назначению, подвергающиеся механической или технологической обработке.

 Π р о б а — часть полуфабриката или специально изготовленная заготовка, предназначенная для изготовления образцов для испытаний.

C даточные испытания — определенный правилами Регистра или согласованной с ним документацией объем испытаний поставляемой с техническим наблюдением Регистра продукции, по результатам которых могут быть оформлены Свидетельства о соответствии.

Серийный образец – образец партии материала или изделий, изготовленный по принятой предприятием (изготовителем) технологии для серийного производства, на котором путем испытаний проверяется его соответствие головному образцу (прототипу) согласно одобренной Регистром технической документации.

Сертификат предприятия (сертификат качества) — документ предприятия (изготовителя), удостоверяющий соответствие определенного объема конкретного вида продукции требованиям заказа и подтверждающий изготовление продукции в полном соответствии с существующей на предприятии (изготовителе) технологией.

Сертификат выдается предприятием (изготовителем) и должен быть удостоверен подписью ответственного лица от контролирующего качество продукции органа предприятия.

Третья сторона — внешняя сторона, признаваемая независимой от участвующих сторон в процессе определения соответствия материала или изделия каким-либо известным требованиям, таким как требования национальных или международных стандартов, правил Регистра, ИСО 9001 и т. д.

В дальнейшем – Правила.

² В дальнейшем – Регистр.

1.3 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ

1.3.1 Техническое наблюдение осуществляется на основании издаваемых Регистром правил и имеет целью определить, отвечают ли правилам и дополнительным требованиям, если это оговорено особо, материалы и изделия, предназначенные для постройки и ремонта судов и их оборудования.

Дополнительными являются:

требования, которые Регистр может предъявить в процессе осуществления технического наблюдения для получения дополнительных данных о качестве продукции (изменение объема и методик испытаний, мест отбора проб, размеров образцов и т. п.);

требования, которые потребитель материала может внести в заказ на поставку материала, сверх регламентированного правилами.

Документом, удостоверяющим признание Регистром предприятия как изготовителя материалов, удовлетворяющих требованиям правил, является СПИ.

Указанный документ подтверждает соответствие поставляемой изготовителем продукции и условий ее производства требованиям правил Регистра и удостоверяет внесение изготовителя в издаваемый Регистром Перечень одобренных материалов и признанных изготовителей. 1

Документами, подтверждающими соответствие поставляемого материала требованиям правил и содержащими сведения, позволяющие идентифицировать поставляемую продукцию, являются:

Свидетельство о соответствии (см. 1.2.2);

Сертификат предприятия (изготовителя) (см. 1.2.2) согласованной с Регистром формы, заверенный представителем Регистра.

Техническое наблюдение Регистра на предприятиях изготавливающих материалы, не заменяет деятельности органов технического контроля, выполняющих свои функции на этих предприятиях.

Спорные вопросы, возникающие в процессе технического наблюдения, могут быть представлены предприятиями (изготовителями) непосредственно в вышестоящее подразделение Регистра. Решения Главного управления Регистра (ГУР) являются окончательными.

Толкование положений настоящей части Правил является компетенцией Регистра.

- **1.3.2** При рассмотрении проектной и технической рабочей документации подразделениям Регистра необходимо руководствоваться следующим:
 - .1 требованиями соответствующих частей правил;
- .2 Номенклатурой РС (см. приложение 1 к части I «Общие положения по техническому наблюдению»);
 - .3 специальными указаниями ГУР.

2 МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

2.1 СВИДЕТЕЛЬСТВО О ПРИЗНАНИИ ИЗГОТОВИТЕЛЯ (СПИ)

2.1.1 Общие положения.

2.1.1.1 Область распространения.

СПИ выдается изготовителям изделий и материалов указанных в 1.1.4 части XIII «Материалы» Правил классификации и постройки морских судов, а именно:

прокат судостроительной стали;

прокат стали для котлов и сосудов под давлением;

стальные тубы для котлов, теплообменных аппаратов, сосудов под давлением и судовых систем и трубопроводов;

стальные поковки и отливки;

отливки из чугуна;

отливки из легких и цветных сплавов;

полуфабрикаты из цветных и легких сплавов; цепи и тросы;

сталь для цепей;

слябы, блюмы и заготовки для проката судостроительной и котельной стали, если они изготавливаются на отдельном от прокатного производства предприятии.

Приведенные выше изделия и материалы, в соответствии с правилами Регистра подлежащие техническому наблюдению при изготовлении, могут поставляться изготовителями, имеющими СПИ.

Для получения СПИ изготовитель должен быть признан Регистром в соответствии с требованиями разд. 10 части I «Общие положения по техническому наблюдению» и 2.1 настоящей части.

2.1.1.2 Срок действия.

СПИ выдается на срок до 5 лет и подлежит подтверждению не реже чем один раз в 2,5 года.

¹ В дальнейшем — Перечень материалов.

При изменении условий оформления СПИ (см. 2.1.1.3) действие документа прерывается и должно быть возобновлено.

Если по производственным причинам необходимые для возобновления действия СПИ работы не могут быть проведены в установленные сроки, то для сохранения СПИ и изготовителя в Перечне материалов сроки выполнения этих работ должны быть согласованы в период действия СПИ. (Как правило, основной причиной для переноса проверки является отсутствие соответствующих заказов, т. е. материалов, необходимых для выполнения требуемых испытаний.)

При положительных результатах работ срок действия СПИ и дата его следующего возобновления остаются неизменными. Действие СПИ не прерывается.

Соответствующее решение принимается подразделением Регистра, осуществляющим техническое наблюдение у изготовителя, на основании обращения изготовителя, мотивирующего перенос сроков.

Схема поддержания Перечня материалов в надлежащем виде изложена в 2.2.4.

2.1.1.3 Условия, необходимые для оформления СПИ.

Все работы, связанные с оформлением, подтверждением или возобновлением действия СПИ, по согласованию с ГУР выполняются подразделениями Регистра, в зоне действия которых находятся изготовители.

СПИ оформляется и выдается изготовителю при выполнении определенных Регистром требований и формальностей (см. 2.1.2) и на основании положительных результатов первоначальных освидетельствований (см. 2.1.3) или освидетельствований при возобновлении СПИ.

Освидетельствование изготовителя проводится на основании обращения/заявки (см. 2.1.2) и, в общем, требует выполнения следующих действий:

рассмотрения представленной заявки и сопровождающей необходимой документации (см. 2.1.2);

анализа заявки изготовителя, определения финансовых, трудовых, временных ресурсов и согласования плана работ;

ознакомления с технологией производства и существующей системой контроля качества (см. 2.2); проведения испытаний (см. 2.2);

анализа результатов освидетельствования производства, существующей системы контроля качества, испытаний и сопоставления с представленной изготовителем и рассмотренной ранее документацией.

Информация, полученная Регистром при выполнении работ, связанных с оформлением, подтверждением или возобновлением действия СПИ,

рассматривается как строго конфиденциальная и не может быть передана третьей стороне без согласия предприятия (изготовителя), предоставившего эту информацию, а также предприятия (изготовителя), на которое эта информация распространяется.

2.1.1.4 Освидетельствование производства

2.1.1.4.1 При освидетельствовании подтверждаются представленная предприятием (изготовителем) в заявке и приложении к ней информация о возможностях производства, заявленной продукции и ее фактическое соответствие требованиям Правил.

Одновременно, если имеется необходимость, вызванная выполнением определенных заказов, может быть подтверждено соответствие продукции дополнительным требованиям контракта (стандартам, спецификациям и другой оговоренной документации).

Освидетельствование включает ознакомление с реальным производством (от шихтового двора до склада готовой продукции и участка отбракованной продукции) и практическое сопоставление данных предоставленной согласно 2.2.2.2 документации о цехах, участках, лабораториях и офисах изготовителя (производства).

2.1.1.4.2 Первоначальное освидетельствование проводится на производстве изготовителя, впервые обратившегося к Регистру, или на производстве изготовителя, имеющего признание Регистра и представляющего материал/материалы, не указанные в выданном СПИ.

Освидетельствование в объеме, приравненном к первоначальному, может быть осуществлено в следующих случаях:

при изменении технологии, относящейся к любому из упомянутых правилами процессов производства материалов (плавка, разливка, прокатка и/или термообработка, ковка, прессование и т. п.);

при изменении максимальной толщины (размеров) поставляемых материалов;

при изменении химического состава (корректировке состава, введении микролегирования и т. п.);

при использовании другого оборудования и средств производства, применяемых в одобренном Регистром ранее технологическом процессе (станов, термического или иного оборудования);

при использовании для производства заготовок (слябов, блюмов и т. п.), получаемых изготовителем от неизвестных и не признанных Регистром предприятий (производств).

При первоначальном одобрении объем документации, представляемой Регистру, должен соответствовать указанному в 2.1.2.

Объем освидетельствований и испытаний при первоначальном одобрении является базовым и в максимальной степени должен учитывать осо-

бенности производства продукции на конкретном предприятии (изготовителе).

- **2.1.1.4.3** Освидетельствование при подтверждении и возобновлении СПИ осуществляется в соответствии с 2.1.4 2.1.5.
- 2.1.1.4.4 При внесении изменений в реквизиты изготовителя в Регистр представляется соответствующий комплект измененной документации, а переоформление СПИ при этом осуществляется в установленном порядке, без изменения указанных в первоначальном документе сроков. Освидетельствование производства может не осуществляться.
- 2.1.1.4.5 Освидетельствование испытательной лаборатории, входящей в состав металлургических или иных изготовителей, рассматривается как неотьемлемая часть процесса производства материалов, поэтому оформления для нее отдельного документа Регистра (Свидетельства о признании испытательной лаборатории) не требуется.

СПЛ может быть выдано испытательной лаборатории по отдельному ее обращению, как правило, в случае выполнения ею заказов сторонних предприятий (изготовителей).

Если проведение испытаний заявленной продукции невозможно у изготовителя, необходимые испытания должны выполняться в признанной Регистром испытательной лаборатории.

Основные положения об освидетельствовании испытательной лабораторий изложены в 1.5 части XIII «Материалы» Правил классификации и постройки морских судов.

2.1.1.4.6 При освидетельствовании испытательной лаборатории и ознакомлении с документацией необходимо обратить внимание на следующее:

порядок поступления и оформления заявок на проведение испытательной лабораторией работ;

квалификацию персонала;

порядок отбора проб, идентификацию при изготовлении образцов и испытаниях;

наличие сведений об аккредитации испытательной лаборатории компетентными национальными или международными организациями.

2.1.1.4.7 Паспорт испытательной лаборатории должен содержать все необходимые сведения о данной испытательной лаборатории, включая реквизиты, номенклатуру продукции, видов и методик испытаний, а также сведения об оснащенности данной испытательной лаборатории (технические характеристики, данные о состоянии, сроках поверок оборудования), перечень нормативных документов о состоянии помещений и об обслуживающем персонале.

Следует также обратить внимание на форму и оформление протоколов испытаний. Содержание протокола по отдельным видам испытаний может разниться, но общая форма должна быть

стандартизована. Исправления и дополнения к протоколу после его оформления могут осуществляться только в виде отдельного документа. Каждый протокол должен иметь идентификационный номер. В нем должны быть указаны наименование испытательной лаборатории, ее принадлежность (если испытательная лаборатория относится к изготовителю, должно присутствовать его наименование), место расположения и дата выполнения испытаний.

Протоколы испытательной лаборатории должны быть подписаны лицом, ответственным за проведение данного вида испытаний, и руководителем испытательной лаборатории.

- 2.1.1.4.8 Проводимые у изготовителя контрольные испытания материалов, представляемых согласно заявке, должны быть засвидетельствованы представителем Регистра в процессе освидетельствования им производства. Протоколы этих испытаний должны быть заверены представителем Регистра.
- **2.1.1.4.9** При освидетельствовании существующей у изготовителя системы контроля качества и ознакомлении с документацией необходимо обратить внимание на присутствие и формализацию следующих процедур:

входного контроля;

объема и характера проверки;

системы идентификации материалов или поступающих полуфабрикатов во время их хранения и всего процесса производства. Необходимо удостоверится в том, что все сырье или материалы не используются и не подвергаются дальнейшей переработке без соответствующей проверки, зафиксированной в документации изготовителя. Определяется объем контроля поставщика;

технологического процесса, влияющего на качество конечного продукта, стадии которого должны быть управляемы (инструкции, определяющие методы контроля и управления, документально установленные критерии качества выполняемых работ, корректирующие действия, маркировка, система сбора, использования и хранения производственных параметров);

контроля отбракованных материалов, ремонта; обработки, повторной проверки.

2.1.1.4.10 Испытания должны выполняться в соответствии с согласованной программой.

Выбор полуфабрикатов, вырезка проб, изготовление образцов должны выполняться под непосредственным наблюдением представителя Регистра.

Размеры представляемых для испытаний полуфабрикатов должны соответствовать размерам полуфабрикатов в предполагаемых поставках (по крайней мере, один из полуфабрикатов должен

иметь максимальные ширину, толщину или диаметр).

Образцы для испытаний должны иметь клеймение, необходимое для их идентификации с представленным для испытаний полуфабрикатом. Технология резки и изготовления, промежуточное клеймение, равно как и схемы расположения образцов и вырезки проб, должны быть согласованы заранее.

Все результаты испытаний должны быть зафиксированы в протоколах, подписанных представителем системы контроля качества, действующей на предприятии (изготовителе), и заверены представителем Регистра, осуществляющим техническое наблюдение за испытаниями.

Упомянутые протоколы являются частью комплекта документов (отчета), представляемого предприятием (изготовителем) Регистру в качестве основания для выдачи СПИ.

2.1.1.4.11 Регистру на одобрение, в виде отчета, представляется комплект документов, содержащий всю информацию об изготовлении и испытаниях всех представленных для испытаний полуфабрикатов.

Отчет составляется в произвольной форме, но должен включать разделы, соответствующие 2.1.2.

Отчет должен содержать копии программы и заверенных Регистром протоколов испытаний; также должны быть представлены данные по режимам выплавки, разливке, прокатке, термической обработке и т. п., микрофотографии и результаты неразрушающего контроля, если они требовались.

Содержание отчета должно отвечать требованиям правил Регистра и представленной в приложении к заявке документации. При удовлетворительных результатах испытаний, освидетельствования производства и рассмотрения представленного отчета подразделением Регистра, осуществившим освидетельствование, оформляется Акт освидетельствования предприятия (форма 6.3.19), который служит основанием для выдачи изготовителю СПИ.

Отчеты и данные о результатах испытаний, освидетельствований и рассмотрения технической документации, как и сама документация, должны сохраняться в подразделении, осуществляющем техническое наблюдение за изготовителем, в течение установленного этим подразделением срока. Копии упомянутых здесь отчетов и данных, если это оговорено, представляются в ГУР.

В ГУР представляется вся информация о принятых в процессе одобрения принципиальных решениях, результатах рассмотрения технической документации, а также:

Извещение (форма 25.П.01/01) — в электронном виде; Первичный информационный документ (ПИД) фирмы (форма 71.П.01), при изменении наименования изготовителя — в электронном виде;

проект СПИ (при первоначальном освидетельствовании) и копии возобновленных СПИ (при возобновлении СПИ);

копии согласованной документации на поставку продукции (если имеются).

Выданные ранее СПИ у изготовителя утрачивают силу, о чем также сообщается в ГУР.

Обо всех принятых решениях по результатам рассмотрения представлений подразделениями Регистра ГУР информирует эти подразделения и предприятия (изготовителей).

2.1.2 Оформление заявки на признание изготовителя (получение СПИ).

2.1.2.1 Заявка предприятия (изготовителя) представляет собой официальное обращение предприятия (изготовителя) на официальном бланке этого предприятия (изготовителя) и, если не оговорено иное, оформляется предприятием (изготовителем) в произвольной форме.

Кроме указания цели выполнения работ заявка/ обращение должны содержать финансовые гарантии и перечень необходимой для рассмотрения заявки документации (см. 2.1.2.2). Заявка/обращение представляются в подразделение Регистра, в зоне действия которого располагается предприятие (изготовитель), но может быть направлена непосредственно в ГУР.

При этом в ГУР направляются:

сведения о результате выполненных подразделением Регистра действий и о произошедших изменениях (или их отсутствии) при переоформлении (возобновлении) СПИ;

копия заявки при первоначальном обращении предприятия (изготовителя) или при возобновлении технического наблюдения Регистра на предприятии (изготовителе), ранее имевшем, но утратившем СПИ.

2.1.2.2 Приложение к заявке.

Одновременно с заявкой Регистру представляются краткие сведения о изготовителе и производстве (см. 2.2.1.2).

Как правило, изложенное в 2.2.1.2 приемлемо для всех изготовителей, предполагающих изготавливать или уже изготавливающих материалы под техническим наблюдением Регистра и обращающихся в Регистр с соответствующими заявками.

2.1.3 Оформление СПИ.

2.1.3.1 СПИ (форма 7.1.4.1), если не оговорено иное (см. 2.1.1.3), оформляется подразделением, выполнившим освидетельствование изготовителя.

2.1.3.2 Оформленное СПИ должно содержать в приложении информацию о способе и особенностях изготовления материала, размерах поставляемых полуфабрикатов, документации, в соответствии с которой осуществляется поставка, и, если требуется, особенности маркировки продукции

(см. 1.4.1.2 части XIII «Материалы» Правил классификации и постройки морских судов).

Наличие у СПИ приложения обязательно. Для каждого материала на бланке СПИ в соответствии с Номенклатурой РС (см. приложение 1 к части I «Общие положения по техническому наблюдению») должен определяться и указываться соответствующий код.

2.1.4 Подтверждение СПИ.

- **2.1.4.1** Подтверждение СПИ осуществляется в сроки, указанные на бланке СПИ, в соответствии с 2.1.1.2.
- **2.1.4.2** Внеочередное освидетельствование изготовителя, имеющего СПИ, в период его действия должно осуществляться в случаях:

дефектации при применении продукции или при ее эксплуатации, выявления причин, повлиявших на качество продукции;

отказа от предъявления продукции при ее производстве и применении;

неудовлетворительной работы системы контроля качества:

внесения изменений в условия одобрения без предварительного согласования с Регистром;

многочисленных отрицательных результатов при проведении испытаний;

неоднократно повторяющихся отклонений от технологии производства или контроля и отмеченного снижения стабильности качества продукции (даже при представлении результатов анализа произошедших отклонений и восстановлении доверия Регистра к уровню качества).

Подтверждение СПИ может распространяться на отдельные виды продукции или на все материалы, указанные в СПИ.

- В приведенных выше случаях решение о необходимости подтверждения СПИ принимается ГУР и/или подразделением Регистра, осуществляющим техническое наблюдение у изготовителя.
- **2.1.4.3** Все перечисленное в 2.1.4.2 может рассматриваться Регистром как ставящее под сомнение сохранение действия СПИ конкретного изготовителя, поэтому может трактоваться сторонами как «внеочередное возобновление» СПИ с соответствующим оформлением заявки предприятия (изготовителя) и т. п.
- **2.1.4.4** Кроме перечисленного в 2.1.4.2, подтверждение может быть потребовано при отсутствии поставок материалов с техническим наблюдением Регистра в истекший с момента выдачи, возобновления или предыдущего подтверждения СПИ срок, превышающий 2 года.
- **2.1.4.5** Объем испытаний и освидетельствований при подтверждении СПИ определяется в каждом случае и может быть приравнен к объему первоначального освидетельствования (см. 2.1.1.4.2).

2.1.4.6 При официальном предоставлении предприятием (изготовителем) подтверждения неизменности условий выдачи СПИ и соответствующих статистических данных, свидетельствующих о стабильности уровня качества продукции, подтверждение СПИ может осуществляться по сокращенной программе или даже носить формальный характер (без проведения дополнительных испытаний и освидетельствований).

По усмотрению подразделения Регистра, осуществляющего техническое наблюдение у изготовителя, испытания могут не проводиться в следующих случаях:

при постоянных поставках указанной в СПИ продукции под техническим наблюдением Регистра или другого классификационного общества и предоставлении изготовителем соответствующей информации в статистически обработанном виде;

при непостоянных поставках под техническим наблюдением Регистра или другого классификационного общества продукции, указанной в СПИ, но предоставлении изготовителем соответствующей информации о поставках материалов, близких по своим параметрам к представляемым и изготавливаемым по аналогичным технологиям. Данные по химическому анализу должны включать все элементы, указанные для представляемых предприятием материалов, включая микролегирующие.

В дополнение к приведенному выше, подразделением Регистра могут быть востребованы данные по отбраковке продукции, внутренним дефектам, состоянию поверхности и размерам.

При недостатке необходимых сведений по материалам, указанным в СПИ, статистические данные могут быть дополнены сведениями по сходным материалам, изготовленным по той же технологии.

2.1.4.7 В случае, если на предприятии производства отсутствует упомянутая в СПИ или сходная с ней продукция, подтверждение может быть осуществлено при получении соответствующих заказов. Объем освидетельствований и испытаний в данном случае также может быть приравнен к первоначальному, но должен быть скоординирован с объемом заказа и со сроками действия СПИ.

Если подразделение Регистра приняло решение о необходимости подтверждения СПИ, в ГУР направляется соответствующее представление.

2.1.5 Возобновление действия СПИ.

- **2.1.5.1** Возобновление действия СПИ осуществляется в сроки, указанные на бланке СПИ, в соответствии с 2.1.1.2.
- 2.1.5.2 Возобновление действия СПИ на конкретном, известном изготовителе осуществляется на основании результатов очередного освидетельствования изготовителя. Решение о порядке, объеме и условиях выполнения

освидетельствования изготовителя, если не оговорено иное, принимается подразделением Регистра, осуществляющим техническое наблюдение на изготовителе, с учетом результатов выполнения прежних освидетельствований (см. 2.1.4).

Изложенное в 2.1.4.2 и 2.1.4.3 в полной мере распространяется на условия возобновления действия СПИ.

2.1.5.3 Объем испытаний и освидетельствований при подтверждении СПИ определяется в каждом случае и может быть приравнен к объему первоначального освидетельствования. Как правило, объем испытаний определяется, исходя из положений 2.1.4.5 — 2.1.4.7.

Освидетельствование в объеме первоначальных испытаний, кроме указанного, может быть востребовано при формальном характере предыдущей проверки (см. 2.1.4.6).

Необходимость выполнения работ и объемы одобрения, приравненные к первоначальному, могут быть согласованы с ГУР.

2.1.6 Утрата силы СПИ.

СПИ может утратить силу в следующих общих случаях:

по желанию изготовителя;

при подтвержденном несоответствии поставляемой изготовителем продукции положениям выданного предприятию (изготовителю) СПИ (требованиям Правил и документации, признанной Регистром и внесенной в СПИ);

при нарушении условий осуществления технического наблюдения у изготовителя, перечисленных в договоре;

по окончании срока действия СПИ, если соответствующая заявка предприятия (изготовителя) не была подана в установленные сроки.

Как правило конкретные условия, при которых СПИ утрачивает силу, регламентируются договором о техническом наблюдении, заключаемым Регистром с предприятием (изготовителем).

2.2 СХЕМЫ ПРИЗНАНИЯ ИЗГОТОВИТЕЛЕЙ

2.2.1 Схема признания изготовителей полупродукта для судостроительной стали.

2.2.1.1 Общие указания.

Настоящие положения определяют схему признания (первоначальное освидетельствование) Регистром процесса производства исходного полупродукта, такого как, слиток, сляб, блюм, заготовка для судостроительной стали.

Порядок осуществления работ по признанию изготовителя, оформлению, подтверждению и переоформлению СПИ изложен в 2.1.

- **2.2.1.2** Область распространения признания. Документация.
- **2.2.1.2.1** Первоначально представляемая документация.

С целью получения признания предприятие (изготовитель) должно представить Регистру программу контрольных испытаний и следующую основную информацию, характеризующую изготовителя и его продукцию:

- .1 название и адрес предприятия (изготовителя), месторасположение производств (план расположения цехов), используемые в плане обозначения, размеры цехов, виды и годовые объемы продукции, поставляемой для судостроения и другого назначения (если применимо);
- .2 сведения об организации производства и системе качества:

схему организации производства;

штат рабочих;

штат служащих и сведения об организации подразделения контроля качества;

сведения о квалификации персонала, вовлеченного в работы, обеспечивающие требуемое качество продукции, сертификат соответствия ИСО серии 9001 или 9002 (если имеется);

сертификаты об одобрении производства другими классификационными обществами (если имеются);

.3 сведения о средствах производства:

краткое описание производственного процесса;

происхождение и складирование шихты (исходных материалов);

складирование и хранение изготовленной продукции;

оборудование и приборы периодического контроля, используемые в процессе изготовления продукции;

.4 сведения о системе контроля качества и оборудовании:

описание системы идентификации материалов, используемой на различных стадиях производства;

оборудование для проведения химического анализа и процедуры для соответствующей калибровки (поверки);

перечень процедур по обеспечению контроля качества продукции;

.5 сведения о видах исходного полупродукта, категории стали, толщины, основные механические характеристики материала:

допустимое содержание химических элементов, включая содержание раскисляющих элементов и измельчающих зерно микролегирующих добавок, а также примесей в зависимости от категории стали (если содержание химических элементов зависит от толщины проката и состояния его поставки, соответствующие отклонения должны быть регламентированы документально);

допустимый максимальный углеродный эквивалент, определяемый в соответствии с формулой, указанной в 3.2.2 части XIII «Материалы» Правил классификации и постройки морских судов;

максимальные значения $P_{\scriptscriptstyle CM}$, если не оговорено иное, определяемые для стали высокой прочности с содержанием углерода менее 0,13 %;

статистические данные по химическому составу и, если имеются данные со сталепрокатного производства, статистические данные по механическим свойствам (R_{eH} , R_m , A, %, KV), которые должны продемонстрировать способности изготовителя производить продукцию в соответствии с установленными требованиями;

.6 сведения о производстве стали:

процесс производства стали и мощность печей и/или конвертора;

используемые шихтовые материалы;

раскисление и легирование;

десульфация (если необходимо) и вакуумная обработка;

метод разливки: слиток или непрерывная разливка. В случае применения непрерывной разливки стали представляется информация о типе разливочной машины, практике разливки, методах, препятствующих окислению, ликвационном контроле и контроле неметаллических включений, электромагнитном перемешивании расплава, мягком обжатии и т. п.;

размеры и масса слитка или сляба;

поверхностная обработка слитков или слябов: обрезка головной части слитка и удаление поверхностных дефектов с использованием огневой чистки;

- .7 документацию, свидетельствующую об уже выполненных другими классификационными обществами работах по одобрению производства.
- **2.2.1.2.2** Документация, представляемая при изменении условий признания.
- В перечисленных ниже случаях предприятие (изготовитель) должно представить в Регистр заявку (2.1.2) с указанием изменений условий оформленного ранее признания:
- .1 при изменении технологии сталеплавильного производства, разливки (изменении агрегатов, цехов);
- **.2** при изменении максимальной толщины (размера) полупродукта;
- **.3** при изменении химического состава (корректировке состава, введении микролегирования и т. п.);

К заявке должна прилагаться документация, представляемая ранее (см. 2.2.1.1.1) и претерпевшая соответствующие изменения. В отношении остальной документации, представляемой ранее, при предыдущем признании или подтверждении в заявке должна быть сделана запись о ее неизменности.

Программа испытаний представляется в любом случае (см. 2.2.3.1).

2.2.1.3 Испытания при признании производства и качества изготавливаемых полуфабрикатов.

2.2.1.3.1 Объем испытаний.

- В общем виде объем испытаний изложен в 2.2.1.3.6; типы и число испытаний могут уточняться Регистром на основании представленной предприятием (изготовителем) в соответствии с 2.2.1.2.1 и 2.2.1.2.2 предварительной информации. В частности, может быть уменьшено число представляемых для испытаний плавок, полуфабрикатов определенной толщины и категорий стали или, по усмотрению Регистра, испытания вообще могут не проводиться. Решения принимаются с учетом следующего:
- .1 производство уже признано другим классификационным обществом, и существует документация, подтверждающая проведение соответствующих испытаний и их результаты;
- .2 для категорий стали, на признание производства которых в Регистр поступила заявка, имеются статистические данные, подтверждающие стабильность результатов химического анализа и механических свойств (полученных на готовом прокате) стали;
- .3 изменение условий признания изготовителя Регистром:

Число представляемых для испытаний плавок и полупродуктов различной толщины может быть увеличено в случае наличия новых технологий производства или типов стали.

2.2.1.3.2 Одобрение программы испытаний.

Если число испытаний заведомо отличается от указанного в 2.2.1.3.6, программа должна представляться для согласования в Регистр до начала проведения испытаний вместе с документацией, указанной в 2.2.1.2.1 и 2.2.1.2.2.

2.2.1.3.3 Наблюдение.

Проведение испытаний на предприятии (изготовителе) должно выполняться с учетом требований 2.1.1.4.5 - 2.1.1.4.10.

При невозможности проведения испытаний заявленной продукции у изготовителя необходимые испытания должны быть проведены в признанной Регистром испытательной лаборатории.

2.2.1.3.4 Объем представляемого для испытаний металла.

Как правило, для каждой категории стали, каждого вида полупродукта и каждого соответствующего технологического процесса (производство стали, разливка) испытания должны проводиться на одном полупродукте максимальной толщины и одном полупродукте минимальной толщины.

При первоначальном одобрении производства Регистр может дополнительно потребовать проведения испытаний на полупродукте средней толщиВыбор плавок, от которых отбираются полупродукты для испытаний, должен основываться на регламентируемом, типичном для данного производства химическом составе, значении $C_{\text{экв}}$ или $P_{\text{см}}$ и содержании используемых раскисляющих и измельчающих зерно микролегирующих элементов.

2.2.1.3.5 Отбор проб.

Если не оговорено иное, пробы для вырезки образцов от полупродукта должны отбираться таким образом, чтобы металл проб соответствовал верхней части слитка или, в случае непрерывной разливки, производится случайная выборка проб.

2.2.1.3.6 Испытания.

2.2.1.3.6.1 Виды испытаний.

Представляемые полуфабрикаты должны подвергаться следующим испытаниям:

анализ химического состава. Анализ должен показать присутствие как основных, так и микролегирующих элементов;

сегрегация серы.

При первоначальном одобрении производства или расширении области признания Регистр дополнительно требует проведения полного объема испытаний в соответствии с требованиями 2.2.2, выполненных на прокате для полупродукта минимальной толщины.

При этом следует учитывать, что в случае многоручьевой непрерывной разливки полный объем испытаний проката должен проводиться только для металла одного ручья, на металле других ручьев проводится сокращенный объем (химический анализ, сегрегация серы) испытаний.

Выбор ручья должен основываться на технических характеристиках разливочной машины, определяющих получение проката из полупродукта минимальной толщины.

2.2.1.3.6.2 Образцы и методики испытаний.

В общем случае образцы и методики испытаний должны отвечать требованиям 2.2 части XIII «Материалы» Правил классификации и постройки морских судов.

При этом необходимо учитывать следующие особенности проведения нижеперечисленных испытаний:

.1 химический анализ:

химический анализ должен выполняться по ковшовой пробе и на прокате, представленном для испытаний. Материалом для химического анализа от проката служат образцы на растяжение. Как правило, при этом определяется содержание следующих элементов: C, Mn, Si, P, S, Ni, Cr, Mo, Al, N, Nb, V, Cu, As, Sn, Ti. Для стали, выплавленной в электропечах или мартеновских печах, дополнительно определяется содержание Sb и B;

.2 сегрегация серы:

сегрегация должна определяться на пробах, отобранных от краев листа, соответственно,

перпендикулярно осям слитка или сляба. Серные отпечатки должны быть длиной примерно 600 мм, отбираться из центра, т. е. захватывать центральную линию слитка, и должны включать полную толщину листа.

2.2.1.4 Результаты.

Все результаты испытаний и условия их проведения должны отвечать требованиям правил и быть одобрены Регистром: в документах, представленных на одобрение, должны быть указаны результаты испытаний (регламентированные и не регламентированные правилами) и соответствующие условия их проведения.

Кроме того, предприятием (изготовителем) должен быть собран комплект документов, содержащий полную информацию, требуемую 2.2.1.2, распространяющуюся на полуфабрикаты, представляемые для испытаний. Комплект документов должен включать все результаты испытаний и анализов, операционные записи процессов выплавки, разливки и, если применимо, прокатки и термической обработки представляемого для испытаний материала. Этот комплект документов также может быть затребован Регистром для рассмотрения.

2.2.1.5 Признание.

2.2.1.5.1 Результаты освидетельствования.

При удовлетворительном завершении освидетельствования производства и испытаний изготовителю выдается СПИ, в котором следует указать следующее:

тип полуфабриката;

процесс выплавки и разливки;

размеры полуфабрикатов, на которые распространяется действие документа Регистра;

категорию стали.

Кроме приведенного выше, в СПИ должна иметься запись о том, что каждый отдельный потребитель указанных в документе полуфабрикатов должен быть признан Регистром в качестве изготовителя проката, конкретных категорий судостроительной стали.

2.2.1.5.2 Возобновление признания.

Максимальный срок действия выданного Регистром СПИ составляет пять лет.

Возобновление действия СПИ может быть осуществлено на основе проверки и анализа результатов освидетельствования в течение срока действия данного СПИ.

Если по производственным причинам проверка для возобновления признания (возобновления действия СПИ) проводится вне сроков действия этого признания, то изготовитель может рассматриваться в качестве признанного Регистром только в случае согласования даты этой проверки в период действия признания.

При положительном результате проверки срок действия признания и дата его возобновления будут соответствовать установленным первоначально.

Изготовители, которые не производили и не поставляли признанные Регистром категории/марки стали в период действия СПИ, для его возобновления должны провести все необходимые испытания. По усмотрению Регистра возобновление признания для этих категорий стали (сохранение их в СПИ) может быть осуществлено на основании результатов производства аналогичных марок стали и видов полупродуктов.

2.2.1.5.3 Пересмотр условий признания.

Условия признания в период действия СПИ могут быть пересмотрены в указанных в 2.2.4.2 случаях.

2.2.2 Схема признания изготовителей судостроительной стали.

2.2.2.1 Общие указания.

Настоящие положения определяют схему признания Регистром процесса производства стального проката нормальной и повышенной прочности, требуемого в соответствии с 1.3 части XIII «Материалы» Правил классификации и постройки морских судов.

Схема признания является основанием для удостоверения Регистром способности изготовителя обеспечивать стабильное удовлетворительное качество продукции, в свою очередь обеспечиваемое технологией производства, включая программируемые режимы прокатки, и существующей на предприятии системой качества в соответствии с требованиями 3.2.1.3 и 3.2.1.4 части XIII «Материалы» Правил классификации и постройки морских судов.

Как правило, признание по предложенной схеме процесса производства определенной категории стали означает признание поставляемого предприятием (изготовителем) определенного вида продукции из этой категории стали, отвечающей требованиям правил Регистра.

2.2.2.2 Область распространения признания. Документация.

2.2.2.2.1 Первоначально представляемая документация.

С целью получения признания изготовитель должен представить Регистру программу контрольных испытаний и основную, характеризующую изготовителя и его продукцию информацию:

.1 название и адрес изготовителя, месторасположение производств (план расположения цехов), используемые в плане обозначения, размеры цехов, виды и годовые объемы продукции, поставляемой для судостроения и другого назначения (если это приемлемо);

.2 организация и качество: схему организации производства; штат рабочих;

штат служащих и организацию подразделения контроля качества;

квалификацию персонала, вовлеченного в работы, обеспечивающие требуемое качество продукции, сертификат соответствия ИСО серии 9001 или 9002 (если имеется);

сертификаты об одобрении производства другими классификационными обществами (если имеются);

.3 средства производства:

краткое описание производственного процесса; происхождение и складирование шихты (исходных материалов);

складирование и хранение изготовленной продукции;

оборудование и приборы периодического контроля, используемые в процессе изготовления продукции;

.4 система контроля качества и оборудование:

описание системы идентификации материалов, используемой на различных стадиях производства;

оборудование для проведения химического анализа, механических испытаний, металлографии и приборы для соответствующей калибровки (поверки) упомянутого оборудования;

оборудование для осуществления неразрушающего контроля;

перечень процедур по обеспечению контроля качества продукции;

.5 виды полуфабрикатов (лист, профиль, рулонный прокат), категории стали, толщины, основные механические характеристики материала:

допускаемое содержание химических элементов, включая содержание раскисляющих элементов и измельчающих зерно микролегирующих добавок, а также примесей в зависимости от категории стали (если содержание химических элементов зависит от толщины проката и состояния его поставки, соответствующие отклонения должны быть регламентированы документально);

допускаемый максимальный углеродный эквивалент, определяемый в соответствии с формулой, указанной в 3.2.2 части XIII «Материалы» Правил классификации и постройки морских судов;

максимальные значения $P_{\rm cm}$, если не оговорено иное, определяемые для стали высокой прочности с содержанием углерода менее 0,13 %;

статистические данные по химическому составу и механическим свойствам (R_{eH} , R_m , A, %, KV), которые должны продемонстрировать способности изготовителя производить продукцию в соответствии с установленными требованиями;

.6 производство стали:

процесс производства стали и мощность печей и/или конвертора;

используемые шихтовые материалы; раскисление и легирование;

десульфацию (при необходимости) и вакуумную обработку;

метод разливки: слиток или непрерывная разливка. В случае применения непрерывной разливки стали представляется информация о типе разливочной машины, практике разливки, методах, препятствующих окислению, ликвационном контроле и контроле неметаллических включений, электромагнитном перемешивании расплава, мягком обжатии и т. п.;

размеры и массу слитка или сляба;

поверхностную обработку слитков или слябов: обрезку головной части слитка и удаление поверхностных дефектов с использованием огневой чистки;

.7 обработка и прокатка:

тип печи и режимы нагрева;

прокатка: соотношение размеров сляба/блюма/ заготовки к толщине конечного продукта, соотношение температуры прокатки и времени окончания прокатки;

удаление окалины в процессе прокатки; мощность стана;

.8 термическая обработка:

тип печей, их температурные возможности, регистрацию параметров при проведении термической обработки стали;

точность и калибровку приборов контроля и поддержания температуры;

.9 режимы прокатки:

для полуфабрикатов, поставляемых в состоянии после контролируемой прокатки (CR) или термомеханической обработки (TM), необходимо представить следующую информацию:

описание процесса прокатки;

температуры нормализации, рекристаллизации и (A_{13}) стали и методы, применяемые при ее обработке;

нормативы параметров, контролируемых при прокатке стали, в зависимости от категории и толщины стали (температура и толщина в начале и конце проходов, интервал между проходами, степень обжатия, температурная область и скорость при ускоренном охлаждении металла (если применяется) и существующие методы контроля упомянутых выше параметров;

поверку измерительного и регистрирующего оборудования;

.10 рекомендации по проведению гибки и сварки стали в состоянии поставки CR или TM:

по горячей и холодной гибке (если они необходимы), в дополнение к обычной практике работы со сталью на верфях или производствах;

минимальные и максимальные значения погонной энергии, если имеются отличия от обычных для верфей и производств (15 — 20 кДж/см);

- .11 дополнительную информацию о передаче части технологического процесса на другое производство или другому изготовителю, если такое возможно, которая должна в обязательном порядке представляться в Регистр;
- .12 сведения об одобрении производства другими классификационными обществами и документальное подтверждение проведенных испытаний.
- **2.2.2.2.** Документация, представляемая при изменении условий признания.

Изготовитель должен представить в Регистр заявку (см. 2.1.2) с указанием изменений условий оформленного ранее признания в следующих случаях:

- .1 при изменении технологии, относящейся к любому из перечисленных процессов: сталеплавильному производству, разливке, прокатке и/или термообработке;
- **.2** при изменении максимальной толщины (размера) проката;
- .3 при изменении химического состава (корректировке состава, введении микролегирования и т. п.);
- .4 при использовании иных станов, термического или иного оборудования, нежели указано ранее, при признании Регистром технологии производства проката;
- .5 при использовании для прокатки исходных полупродуктов других, не включенных в СПИ и не прошедших соответствующие испытания полуфабрикатов.
- **2.2.2.3** Испытания при признании производства и качества изготавливаемого проката.

2.2.2.3.1 Объем испытаний.

В общем виде объем испытаний изложен в 2.2.1.3.4, 2.2.1.3.6 и 2.2.1.3.7.

Типы и число испытаний могут уточняться Регистром на основании представленной изготовителем в соответствии с 2.2.1.2.1 и 2.2.1.2.2 предварительной информации. В частности, может быть уменьшено число представляемых для испытаний плавок, полуфабрикатов определенной толщины и категорий стали или, по усмотрению Регистра, испытания вообще могут не проводиться.

Решения принимаются с учетом следующих положений:

- .1 производство уже признано другим классификационным обществом, и существует документация, подтверждающая выполнение соответствующих испытаний и их результаты;
- .2 для категорий стали, на признание производства которых в Регистр поступила заявка, имеются статистические данные, подтверждающие стабильность результатов химического анализа и механических свойств стали;
- .3 признание производства любой категории стали может быть распространено на любую

низшую категорию стали того же уровня прочности при условии подтверждения неизменности технологии производства, состояния поставки и методик контроля и испытаний;

- .4 признание производства стали повышенной прочности одного уровня может быть распространено на сталь с уровнем прочности ниже при условии ее изготовления по тому же технологическому процессу, включая раскисление и измельчение зерна, а также метод разливки и состояние поставки;
- **.5** изменения условий признания изготовителя Регистром.

При использовании полуфабрикатов от разных производителей и/или при их сменяемости, изготовитель проката должен обеспечить одобрение производства проката для полуфабрикатов от каждого производителя полуфабриката.

Испытания следует выполнять в соответствии с 2.2.2.3.6 и 2.2.2.4.

Принимая во внимание результаты испытаний при предыдущем признании изготовителя, по усмотрению Регистра, новые испытания могут вовсе не проводиться или их объем может быть сокращен в следующих случаях:

производство проката на данном изготовителе уже признано Регистром с использованием полуфабрикатов таких же размеров, из стали тех же категорий, того же способа выплавки (раскисление, микролегирование) и разливки, но для другого изготовителя исходных полупродуктов;

изготовитель полупродуктов признан Регистром для стали тех же категорий, того же способа выплавки, разливки и предназначенной для проката, получаемого на тех же режимах прокатки с теми же видами термообработки.

2.2.2.3.2 Одобрение программы испытаний.

Если число испытаний заведомо отличается от приведенного в 2.2.1.3.6 и 2.2.1.3.7, программа должна представляться для согласования в Регистр до начала проведения испытаний вместе с документацией, указанной в 2.2.1.2.1 и 2.2.1.2.2.

2.2.2.3.3 Техническое наблюдение.

Проводимые предприятием (изготовителем) испытания должны выполняться с учетом требований 2.1.1.4.5 - 2.1.1.4.10.

Если проведение испытаний заявленной продукции невозможно у изготовителя, необходимые испытания должны быть выполнены в признанной Регистром испытательной лаборатории.

2.2.2.3.4 Объем представляемого к испытаниям металла.

Как правило, для каждой категории стали, для каждого вида полуфабриката и для каждого соответствующего технологического процесса (включающего весь комплекс: производство стали, разливку, прокатку и состояние поставки) испытания

должны проводиться на одном полуфабрикате максимальной толщины.

При первоначальном одобрении производства Регистр может дополнительно потребовать проведения испытаний на полуфабрикате средней толщины.

Выбор плавок, от которых отбираются полуфабрикаты для испытаний, должен основываться на регламентируемом, типичном для данного производства химическом составе, значении $C_{\rm экв}$ или $P_{\rm cm}$ и содержании используемых раскисляющих и измельчающих зерно микролегирующих элементов.

2.2.2.3.5 Отбор проб.

Если не оговорено иное, пробы для вырезки образцов от полуфабриката (лист, полосовой прокат, профиль, пруток) должны отбираться таким образом, чтобы металл проб соответствовал верхней части слитка, или, в случае непрерывной разливки, производится случайная выборка проб.

В соответствии с требованиями табл. 2.2.1.3.6.1 пробы отбираются от «верха» или «низа», по длине раската, при этом расположение проб по ширине проката должно отвечать требованиям 3.2.5.

2.2.2.3.6 Испытания.

2.2.2.3.6.1 Виды испытаний.

Испытания должны выполняться в соответствии с указаниями табл. 2.2.1.3.6.1.

2.2.2.3.6.2 Образцы и методики испытаний.

В общем случае образцы и методики испытаний должны отвечать требованиям 2.2 части XIII «Материалы» Правил классификации и постройки морских судов.

При этом необходимо учитывать следующие особенности проведения нижеперечисленных испытаний и других видов проверок:

.1 испытания на растяжение:

для листов, изготавливаемых из горячекатаной рулонной стали, дополнительно отбирается один образец из середины рулона;

для листов толщиной более 40 мм, если мощность существующих машин недостаточна для проведения испытаний на образцах полной толщины, испытания должны выполняться на нескольких образцах, общая толщина которых будет соответствовать толщине металла. В качестве альтернативы допускается отбирать два круглых образца, оси которых расположены на 1/4 и 1/2 толщины листа;

испытания на образцах полной толщины должны выполняться на нескольких образцах, общая толщина которых будет соответствовать толщине металла. В качестве альтернативы допускается отбирать два круглых образца, оси которых расположены на 1/4 и 1/2 толщины листа;

.2 испытания на ударный изгиб:

для листов, изготавливаемых из горячекатаной рулонной стали, дополнительно отбирается комплект образцов из середины рулона;

Таблица 2.2.2.3.6.1

			Т	аблица	2.2.2.3.6.1
Вид испытаний	Расположение проб, направление вырезки ¹ образцов		Прим	ечания	
Испытание на растяжение	Верх и низ, поперек ²	Опреде.	ляются R_e	H , R_m , A_5 ,	%, R, %
Испытание на растяжение (со снятием напряжений) только для ТМ стали	Верх и низ, поперек ²			ений при 6 течение 1	
Испытания на ударный изгиб ³ для стали категорий:	Верх и низ, вдоль	Тем	пература	испытаний	i, °C
A, B, A32, A36, A40 D, D32, D36, D40 E, E32, E36, E40 F32, F36, F40		+ 20 0 0 - 20	0 -20 -20 -40	-20 -40 -40 -60	 -60 -80
A, B, A32, A36, A40 D, D32, D36, D40 E, E32, E36, E40 F32, F36, F40	Верх, поперек ⁴	+ 20 0 - 20 - 40	0 -20 -40 -60	-20 -40 -60 -80	
Испытания на ударный изгиб 3,5 после старения для стали категорий:	Верх, вдоль	Тем	пература	испытаний	i, °C
A32, A36, A40 D, D32, D36, D40 E, E32, E36, E40 F32, F36, F40		+ 20 0 - 20 - 40	0 -20 -40 -60	-20 -40 -60 -80	
Химический анализ ⁶	Верх			из, включ ощие элем	
Сегрегация серы	Верх		-		
Микроструктура	Верх		-	_	
Размер зерна	Верх	Только для стали, обработанной измельчающими зерно элементами			
Испытания падающим грузом ⁴	Верх	Только дл		тегорий Е, , F36, F40	E32, E36,
Испытания на растяжение в направлении толщины	Верх и низ	улуч	ншенными	егорий ста свойства ни толщин	ми в

¹ Для горячекатаной рулонной стали — см. 1.3.5.3.6.2.1.

для листов толщиной более 40 мм дополнительно отбирается комплект образцов, оси которых должны располагаться на 1/2 толщины листа;

при проведении испытаний на ударный изгиб, кроме определения величины энергии, затрачиваемой на разрушение образца, дополнительно должен определяться процент вязкой (хрупкой) составляющей;

испытания на чувствительность к механическому старению, если не оговорено иное, должны выполняться в соответствии с 2.2.3.4 части XIII «Материалы» Правил классификации и постройки морских судов. При

толщине проката более 40 мм Регистр может дополнительно потребовать проведения испытаний на образцах, вырезанных из середины проката. Нормы результатов испытаний — в соответствии с табл. 3.2.2-1 и 3.2.3 части XIII «Материалы» Правил классификации и постройки морских судов, в зависимости от категории представляемой стали);

.3 химический состав:

химический анализ должен выполняться по ковшовой пробе и на прокате, представленном к испытаниям. Материалом для химического анализа

 $^{^{2}}$ Для профиля, прутка и полосовой стали шириной менее 600 мм — вдоль.

³ Каждое испытание выполняется на трех образцах с V-образным надрезом в соответствии с 2.2.3.4 части XIII «Материалы» Правил классификации и постройки морских судов.

⁴ Не требуется для профиля, прутков и полосовой стали шириной менее 600 мм.

⁵ Деформация — 5 % + 1 ч при 250 °C.

⁶ Химический анализ ковшовой пробы также необходим.

от проката служат образцы на растяжение. Как правило, при этом определяется содержание следующих элементов: C, Mn, Si, P, S, Ni, Cr, Mo, Al, N, Nb, V, Cu, As, Sn, Ti. Для стали, выплавленной в электропечах или мартеновских печах, дополнительно определяется содержание Sb и B;

.4 сегрегация серы:

сегрегация должна определяться на пробах, отобранных от краев листа, соответственно, перпендикулярно осям слитка или сляба. Серные отпечатки должны быть продолжительностью примерно 600 мм и отбираться из центра, т. е. захватывать центральную линию слитка, и должны включать полную толщину листа;

.5 микрографический анализ:

микрофотографии должны представлять структуру листа по всей толщине. Для проката большой толщины обычно делаются три контрольные фотографии структуры, соответственно, от центра, 1/4 и поверхности.

Все микрофотографии должны быть сделаны при увеличении X100, а если ферритное зерно превосходит по требованиям ASTM 10, то дополнительно и при увеличении X500. Размер ферритного зерна должен определяться для каждой из представленных микрофотографий;

.6 испытание падающим грузом:

испытание должно выполняться в соответствии с требованиями стандарта ASTM E208. В результате испытания представляются полученные значения температуры нулевой пластичности (NDT) и фотографии испытанных образцов;

.7 испытания на растяжение в направлении толщины:

испытания должны выполняться в соответствии с 2.2.2.5 части XIII «Материалы» Правил классификации и постройки морских судов. Результаты испытаний должны отвечать требованиям 3.2 вышеуказанной части для соответствующих категорий стали.

2.2.2.3.6.3 Другие виды испытаний.

Дополнительные испытания, такие как СТОD, определение вязкой (хрупкой) составляющей на образцах полной толщины проката или другие, могут быть потребованы в случае предоставления новых типов стали, отличающихся от приведенных в 3.2 части XIII «Материалы» Правил классификации и постройки морских судов, или когда Регистр сочтет это необходимым.

2.2.2.4 Испытания на свариваемость.

2.2.2.4.1 Основные положения.

Выполнение испытаний требуется для стали нормальной прочности категории Е и для стали повышенной прочности.

Требуемые испытания на свариваемость для листовой стали должны выполняться на образцах максимальной, полной толщины листа.

2.2.2.4.2 Подготовка и сварка сварных проб.

Как правило, требуется выполнение сварки для двух проб стыкового сварного соединения с погонной энергией, примерно равной 15 кДж/см и 50 кДж/см.

Сварной шов проб должен быть перпендикулярен к направлению последней прокатки используемых для приготовления пробы стальных планок. Таким образом, вырезанные из пробы образцы на ударный изгиб будут располагаться в направлении прокатки.

Скос кромки предпочтительно должен соответствовать 1/2V или K.

Процедура сварки, насколько это возможно, должна максимально соответствовать типовой, используемой на верфях для представленного типа стали.

Должны предоставляться сведения о параметрах сварки, таких как марка сварочных электродов, их диаметр, температура подогрева, межпроходные температуры, погонная энергия, число проходов и т. п.

2.2.2.4.3 Виды испытаний.

Из проб должны быть вырезаны следующие образцы:

- .1 один поперечный образец для испытания на растяжение;
- .2 четыре комплекта из трех образцов каждый для испытаний на ударный изгиб (KV).

Надрез в этом случае делается следующим образом: на одном комплекте — по линии сплавления, на других двух комплектах — соответственно, на расстоянии 2 и 5 мм от линии сплавления, а на четвертом комплекте — как минимум, на расстоянии 20 мм от линии сплавления (см. рис. 6.4.5 части XIV «Сварка» Правил классификации и постройки морских судов). Граница линии сплавления определяется после травления. Температура испытаний должна соответствовать предписанной для испытаний данной категории стали;

.3 образцы определения твердости HV5 в поперечном сечении сварного узла:

определение твердости должно производиться по линии, расположенной поперек шва, под поверхностью листа, как с лицевой стороны шва, так и со стороны корня шва, на расстоянии 1 мм:

от линии сплавления;

от зоны термического влияния: через каждые 0.7 мм от линии сплавления вплоть до основного металла, свободного от воздействия термического влияния сварки (как минимум, 6 — 7 замеров для каждой зоны термического влияния).

Максимальная величина твердости не должна превышать значения 350 HV.

Результаты испытания должны быть представлены с приложением эскиза сварного соединения, приведением размеров разделки, числа проходов и обозначением мест замеров, а также макрофотографий поперечного шлифа соединения.

2.2.2.4.4 Другие виды испытаний.

Дополнительные испытания, такие как испытания на определение распространения холодных трещин (СТЅ), СТОО или другие виды испытаний, могут быть востребованы в случае представления новых типов стали, не подпадающих под действие 3.2 части XIII «Материалы» Правил классификации и постройки морских судов, или в случаях, указанных в разд. З части XII «Материалы» Правил классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ, или если Регистр сочтет это необходимым.

2.2.2.5 Результаты.

Все результаты испытаний и условия их проведения должны отвечать требованиям Правил и быть одобрены Регистром: в документах, представляемых для одобрения, должны быть зафиксированы результаты испытаний (регламентированные и не регламентированные Правилами) и соответствующие условия их проведения.

Кроме того, изготовителем должен быть собран комплект документов, содержащий полную информацию, требуемую 2.2.1.2, распространяющуюся на полуфабрикаты, представленные для испытаний. Комплект документов должен включать все результаты испытаний и анализов, операционные записи процессов выплавки, разливки, прокатки, термической или термомеханической обработки представленного к испытаниям материала. Этот комплект документов также может быть затребован Регистром для рассмотрения.

2.2.2.6 Признание.

2.2.2.6.1 Результаты освидетельствования.

При удовлетворительном завершении освидетельствования производства и испытаний изготовителю выдается СПИ.

2.2.2.6.2 Перечень признанных изготовителей.

Изготовители, имеющие СПИ, включаются Регистром в перечень признанных им изготовителей. Перечень, кроме наименований изготовителей, содержит сведения о производимой ими и признанной Регистром продукции: категориях и/или марках стали и основных условиях, при которых Регистр формализовал признание изготовителя.

2.2.2.6.3 Возобновление признания.

Возобновление действия СПИ может быть осуществлено на основе освидетельствования и анализа его результатов в течение срока действия данного СПИ.

Если по производственным причинам освидетельствование для возобновления признания (возобновления действия СПИ) проводится вне сроков действия этого признания, то изготовитель может рассматриваться в качестве признанного

Регистром только в случае согласования даты этого освидетельствования в период действия признания.

При положительном результате освидетельствования срок действия признания и дата его возобновления будут соответствовать установленным первоначально.

Предприятия (изготовители), которые не производили и не поставляли признанные Регистром категории/марки стали и виды проката в период действия СПИ должны, для его возобновления, выполнить все необходимые испытания. По усмотрению Регистра возобновление признания для этих категорий стали и видов проката (сохранение их в СПИ) может быть осуществлено на основании результатов производства аналогичных марок стали и видов проката.

2.2.2.6.4 Пересмотр условий признания.

Условия признания в период действия СПИ изготовителя могут быть пересмотрены в приведенных в 2.1.4.2 случаях.

2.2.3 Схема признания изготовителей судостроительной стали, предназначенной для сварки на высоких погонных энергиях.

2.2.3.1 Общие указания.

Настоящие положения определяют схему подтверждения свариваемости стального проката нормальной и повышенной прочности, предназначенного для сварки корпусных конструкций с применением погонных энергий свыше 50 кДж, при признании Регистром изготовителя стали в соответствии с 2.2.1.

Подтверждение свариваемости стали по предложенной ниже схеме выполняется, как правило, по усмотрению изготовителя проката. На основании и в пределах выполненных испытаний Регистром оформляется соответствующий документ, удостоверяющий свариваемость представляемой стали на высокой погонной энергии.

Действие документа распространяется на конкретного изготовителя стального проката конкретной категории (марки) с фиксированным химическим составом, способом выплавки, присущей изготовителю технологии прокатки, термообработки и контроля. Предложенная ниже схема не распространяется на квалификационные технологические испытания процессов сварки, за которые несут ответственность верфи.

2.2.3.2 Область распространения признания. Документация.

При обращении в Регистр, кроме изложенного в 2.2.1.2.1, должны быть приведены сведения:

о мерах, которые осуществляет изготовитель (на стадиях выплавки, разливки, прокатки, термообработки и т. п.) по предотвращению снижения

величины работы удара в зоне термического влияния при сварке стали с высокой погонной энергией;

о методах управления процессом сварки, способствующих улучшению свойств сварного соединения, его прочностных и вязкостных параметров.

2.2.3.3 Испытания.

2.2.3.3.1 Объем испытаний.

Если иное не согласовано отдельно, объем испытаний и соответствующая программа определяются, исходя из приведенных ниже положений:

- .1 при выполнении испытаний для стали низшей и высшей категорий (исходя из значений и температуры испытаний на ударный изгиб) не требуется выполнения испытаний для стали промежуточных категорий (например, результаты испытаний для стали категорий РСА36 и РСЕ36 распространяются на сталь категории РСD36);
- **.2** результаты испытаний стали нормальной прочности могут быть распространены только на сталь нормальной прочности;
- **.3** результаты испытаний стали более высокого уровня прочности могут быть распространены на сталь повышенной прочности низшего уровня;
- .4 испытания для каждого технологического процесса производства стали (отличия в методе выплавки, и/или разливке, и/или в режимах прокатки, и/или термической обработки) выполняются отдельно;
- .5 результаты освидетельствований и испытаний, выполненные под техническим наблюдением одного из классификационных обществ, и одобренная им соответствующая документация могут быть признаны и одобрены Регистром без проведения дополнительных испытаний.

2.2.3.3.2 Программа испытаний.

Программа испытаний составляется в соответствии с 2.2.1.4.3.

Однако, в зависимости от локальных условий и новых задач, программа может корректироваться. В частности, дополнительные пробы или виды испытаний могут быть потребованы в случае представления нового типа стали, применения новых сварочных материалов и способов сварки или, когда это обосновано, по требованию Регистра.

Программа должна быть согласована с Регистром до начала проведения испытаний.

2.2.3.3.3 Требования к представляемому для испытаний прокату.

К испытаниям по упомянутой выше программе должен представляться прокат, изготовленный по признанному в соответствии с 2.1.1.4 процессу. Для каждого технологического процесса изготовителем к испытаниям представляется два проката (равных по толщине или не более чем с двукратной разницей по толщине).

Незначительными изменениями в технологических процессах изготовления проката (напри-

мер, в рамках ТМСР), по согласованию с Регистром, можно пренебречь.

2.2.3.3.4 Изготовление проб.

Одна проба стыкового сварного соединения должна быть сварена с погонной энергией свыше 50 кДж/см таким образом, чтобы ось шва была перпендикулярна к направлению прокатки.

Размер пробы, согласно 2.2.1.4.3, должен быть достаточен для изготовления всех требуемых образцов.

Технология сварки при изготовлении проб должна в максимальной степени соответствовать практике, применяемой на верфях при изготовлении конструкций из предоставляемой к испытаниям стали. Процесс сварки, положение сварки, сварочные материалы (указываются изготовитель, торговая марка, категория, диаметр и защитный газ), а также условия выполнения сварки, включая детали подготовки кромок, погонную энергию, температуру предварительного подогрева, температуру межпроходной сварки, число проходов и т. п., должны фиксироваться и приводиться в соответствующем отчете об испытаниях.

2.2.3.3.5 Требования к проведению испытаний.

Если иное не согласовано отдельно, должны быть выполнены следующие виды обследований и испытаний:

.1 осмотр.

Поверхность сварного соединения должна быть однородной и свободной от недопустимых дефектов, таких как трещины, надрезы, наплывы и т. п.;

.2 контроль макроструктуры.

По крайней мере, одна фотография поперечного шлифа сварного соединения должна подтверждать отсутствие непроваров, трещин, несплавлений и других недопустимых дефектов;

.3 контроль микроструктуры.

В отчете в качестве информационного материала следует представить, по крайней мере, по одной фотографии поперечных микрошлифов, выполненных по линии, соответствующей середине листа, и в следующих точках: пересечения с осью шва и линией сплавления, а также на расстоянии 2, 5 и 10 мм и, как минимум, 20 мм от линии сплавления;

.4 определение твердости.

Замеры твердости (HV5) должны выполняться с обеих сторон (лицевая и корневая части) вдоль двух линий поперечного сечения шва, расположенных на расстоянии 1 мм от поверхности свариваемого проката. Точки замера должны располагаться на осевой линии шва, линии сплавления и далее с шагом 0,7 мм от линии сплавления по зоне термического влияния, вплоть до неподверженного структурным превращениям основного металла (для каждой зоны минимальное общее число точек — 6 или 7). Максимальное значение твердости не должно превышать 350 HV;

.5 испытания на растяжение.

От пробы стыкового сварного соединения должно быть отобрано не менее двух поперечных образцов для испытаний на растяжение. Испытания и размеры образцов должны отвечать требованиям 2.2. О необходимости проведения повторных испытаний — см. 1.3.2.3 части XIII «Материалы» Правил классификации и постройки морских судов.

Величина временного сопротивления, полученная в результате испытаний, должна быть не менее требуемой для основного металла;

.6 испытания на изгиб.

От пробы стыкового сварного соединения должно быть отобрано не менее двух поперечных образцов для испытаний на изгиб на оправке диаметром, равным учетверенной толщине образца. Образец должен выдерживать загиб, по крайней мере, на 120°.

Для проката толщиной 20 мм и менее испытываются лицевая и корневая стороны шва или на двух образцах выполняется боковой изгиб. Для проката толщиной более 20 мм на двух образцах выполняются испытания на боковой загиб.

После испытаний на поверхности образцов не должны присутствовать трещины, а также другие раскрывшиеся дефекты размером более 3 мм в любом направлении;

.7 испытания на ударный изгиб.

Испытания должны выполняться на комплектах из трех поперечных образцов с V-образным надрезом. Образцы должны вырезаться с лицевой стороны шва в пределах до 2 мм от поверхности проката.

По одному комплекту образцов должно быть вырезано в 4-х местах: по линии сплавления, на расстоянии 2 и 5 мм и, как минимум, 20 мм от линии сплавления. Линия сплавления должна определяться на травленых образцах. Температура испытаний должна соответствовать температуре, требуемой для испытаний основного металла.

Для проката толщиной более 50 мм или при односторонней сварке листов толщиной более 20 мм от пробы дополнительно отбираются комплекты образцов со стороны корня шва, расположенные в тех же местах, что и с лицевой стороны.

Средние значения работы удара, полученные в результате упомянутых выше испытаний, должны отвечать требованиям табл. 3.2.2-1 и 3.2.3 части XIII «Материалы» Правил классификации и постройки морских судов для соответствующих категорий стали.

С целью построения кривых перехода стали в хрупкое состояние по требованию Регистра должны отбираться дополнительные комплекты образцов и определяться процент вязкой (хрупкой) составляющей на всех образцах. Температуры и объем испытаний в этом случае подлежат отдельному согласованию с Регистром.

Испытания и размеры образцов должны отвечать требованиям 2.2 части XIII «Материалы» Правил классификации и постройки морских судов.

О необходимости повторных испытаний и критериях зачета выполненных испытаний — см. 1.3.2.3 части XIII «Материалы» Правил классификации и постройки морских судов;

.8 другие виды испытаний.

Дополнительные испытания, такие как испытания на растяжение образцов полной толщины, испытания по определению стойкости к образованию холодных трещин (СТS, крестовая проба и др.), испытания по определению параметров хладостойкости (СТОD) и другие, могут быть потребованы Регистром в случаях представления новых типов стали, при использовании стали в специальных конструкциях и/или предполагаемом использовании в специальных условиях и т. п.

2.2.3.4 Результаты.

Предприятие (изготовитель) должно представить Регистру полный отчет о результатах испытаний и условиях их проведения. В отчет должна быть включена информация о выборе объема испытаний. Оценка и принятие решения о подтверждении свариваемости принимается Регистром на основании рассмотрения отчета и соответствия его содержания требованиям настоящего раздела и в целом Правил.

2.2.3.5 Признание.

2.2.3.5.1 При положительных результатах испытаний и соответствующей оценке представленного отчета Регистр выдает документ (СПИ), подтверждающий признание изготовителя судостроительной стали, предназначенной для сварки на высоких погонных энергиях.

Упомянутый документ должен содержать следующую информацию:

- .1 наименование изготовителя;
- **.2** обозначение категории стали с добавлением индекса сварки с высокой погонной энергией (см. 2.2.2.5.2);
 - .3 процесс раскисления;
 - .4 присутствие измельчающих зерно элементов;
 - .5 состояние поставки;
 - .6 толщину проката;
 - .7 процесс сварки;
- .8 сварочные материалы (с указанием изготовителя, торговой марки, категории), если необходимо;
- .9 действительное значение погонной энергии, применяемой при проведении испытаний.
- 2.2.3.5.2 В СПИ, в заказной документации, в сертификатах качества изготовителя и при клеймении стали к обозначению категории стали, выдержавшей необходимые испытания, может быть добавлена условная запись погонной энергии,

использованной при проведении испытаний. Например, «Е36 — W300» (в случае применения погонной энергии 300 кДж/см). Величина энергии, приводимая в обозначении категории стали, должна быть не менее 50 кДж/см и кратна 10.

2.2.4 Схема признания изготовителей проката для сварных цепей.

2.2.4.1 Общие положения.

Настоящие положения определяют схему признания изготовителя сортового проката, предназначенного для изготовления сварных смычек пепей.

Схема признания является основанием для удостоверения Регистром способности изготовителя обеспечивать стабильное удовлетворительное качество продукции, в свою очередь, обеспечиваемое технологией производства, включая программируемые режимы прокатки, и существующей на предприятии системой качества в соответствии с требованиями 3.2.1.3 и 3.6.1 части XIII «Материалы» Правил классификации и постройки морских судов.

Как правило, признание по предложенной схеме процесса производства стали для определенной категории цепи означает признание поставляемого изготовителем определенного вида продукции из этой стали, отвечающей требованиям правил Регистра.

2.2.4.2 Область распространения. Документация. В общем случае, совместно с заявкой предоставляется указанное в 2.2.1.2.1, 2.2.1.2.2.

2.2.4.3 Испытания.

Объем испытаний, одобрение и проведение испытаний выполняются в соответствии с требованиями 2.2.1.3.

2.2.4.3.1 Отбор проб.

Если не оговорено иное, пробы для вырезки образцов (см 3.6 части XIII «Материалы» Правил классификации и постройки морских судов) от полуфабриката (пруток, профиль) должны отбираться таким образом, чтобы металл проб соответствовал верхней части слитка, или, в случае непрерывной разливки, производится случайная выборка проб.

В соответствии с требованиями приведенной ниже таблицы пробы отбираются от «верха» или «низа», по длине раската.

2.2.4.3.2 Виды испытаний.

Испытания должны выполняться в соответствии с указаниями табл. 2.2.4.3.2.

2.2.4.3.3 Результаты испытаний, а также порядок проведения признания, должны отвечать требованиям 2.2.1.5 и 2.2.1.6.

2.2.5 Схема признания изготовителей коррозионно-стойкой (нержавеющей) стали.

2.2.5.1 Общие положения.

Настоящие положения определяют схему признания (первоначальное освидетельствование)

Tаблица $2.2.4.3.2^{1, 2}$

Вид испытаний	Расположение проб, направление вырезки образцов		Приме	ечания	
Испытание на растяжение	Верх и низ ³	Определяются $R_{eH}, R_m, A_5, \%, R(A), \%$		%	
Испытание на растяжение, со снятием напряжений (только для ТМ стали)	Верх и низ ³	Снятие напряжений при 600 (2 мин/мм в течение 1 ч)			
Испытания на ударный изгиб ⁴ для категорий:		Тем	пература и	испытаний	i °C
1, 2 3 и выше	Верх и низ Вдоль	+ 20	0 -20	$-20 \\ -40$	_
Испытания на ударный изгиб ⁴ после старения ⁵ для стали категорий:		Температура испытаний °С		i °C	
1, 2 3 и выше	Верх Вдоль	+ 20	0 -20	$-20 \\ -40$	_ _
Химический анализ ⁶	Верх		бщий анал оолегирую		
Сегрегация серы	Верх	_			
Микроструктура	Верх	_			
Размер зерна	Верх	Только для стали, обработанной измельчающими зерно элементами			

Вид, объем и результаты испытаний должны отвечать требованиям правил Регистра и документации на поставку проката.

²В соответствии с требованиями правил Регистра механические свойства проката определяются на прокате после его термической обработки, аналогичной термической обработке готовой цепи соответствующей категории. Вид и режимы термообработки указываются изготовителем цепи.

³Для профиля, прутка и полосовой стали шириной менее 600 мм – вдоль.

⁴Каждое испытание выполняется на трех образцах с V-образным надрезом.

⁵Деформация – 5 % + 1 ч при 250 °C.

⁶Химический анализ ковшовой пробы также необходим.

Регистром процесса производства проката, поковок, кованых и катаных плит, а также штамповок и труб из коррозионно-стойкой (нержавеющей) стали. Порядок осуществления работ по признанию изготовителя, оформлению, подтверждению и переоформлению СПИ изложен в 2.1.

Требования к коррозионно-стойкой стали изложены в 3.16 части XIII «Материалы» Правил классификации и постройки морских судов.

2.2.5.2 Схема признания изготовителей проката, поковок, кованых и катаных плит и штамповок из коррозионно-стойкой (нержавеющей) стали.

2.2.5.2.1 Общие положения.

До начала производства под техническим наблюдением Регистра при первоначальном освидетельствовании предприятие (изготовитель) должно подготовить и представить документацию, содержащую информацию о всей технологической цепи производства и этапах, на которых контролируются соответствующие параметры процесса и свойства полуфабриката и конечного продукта.

2.2.5.2.2 Область распространения признания. Документация.

На прокат из коррозионно-стойкой стали распространяются все положения и указания, приведенные в 2.2.1 и относящиеся к заявке, объему и содержанию представляемой документации, освидетельствованию, объему представляемого к испытаниям металла, а также отбору проб и методам испытаний.

Для поковок, кованых и катаных плит, а также штамповок из коррозионно-стойкой (нержавеющей) стали также распространяются все положения и указания, приведенные в 2.2.1. При этом совместно с заявкой предоставляются сведения, указанные в 2.2.1.2.1.1 – 2.2.1.2.1.6, и следующие сведения:

.1 по ковке и штамповке:

тип печи и режимы нагрева; мощность пресса/молота;

соотношение размеров слитка/сляба/заготовки и толщины конечного продукта, соотношение температуры ковки/штамповки и времени окончания ковки/штамповки;

удаление окалины в процессе ковки;

.2 по термической обработке:

тип печей, их температурные возможности, регистрация параметров при проведении термической обработки стали;

точность и калибровка приборов контроля и поддержания температуры;

.3 по режимам ковки/штамповки/термической обработки:

поверка измерительного и регистрирующего оборудования;

.4 дополнительная информация о передаче части технологического процесса на другое производство или другому изготовителю (в случае, если такое возможно).

2.2.5.2.3 Объем и виды испытаний.

Если не оговорено иное, методы и методики испытаний должны отвечать требованиям признанных национальных, международных стандартов, согласованной Регистром документации, а также требованиям 1.3, разд. 2 и 3.16 части XIII «Материалы» Правил классификации и постройки морских судов.

Во изменение 2.2.1.3.6.1 испытания при признании производства и качества изготавливаемых полуфабрикатов должны выполняться в соответствии с указаниями табл. 2.2.5.2.3.

Результаты испытаний должны отвечать требованиям 3.16 части XIII «Материалы» Правил классификации и постройки морских судов и/или признанным Регистром стандартам, спецификациям.

Как правило, при первоначальном освидетельствовании производства для каждой марки стали, каждого вида полуфабриката, каждого технологического процесса (производство стали, разливка, прокатка: ковка и/или штамповка, состояние поставки) испытания следует выполнять на одном полуфабрикате от каждой из двух плавок. Если по единой технологии производятся полуфабрикаты различных размеров, допускается проведение испытаний на полуфабрикате максимального (одна плавка) и минимального (вторая плавка) размеров.

Количество представляемых для испытаний плавок и полуфабрикатов может быть уменьшено или увеличено в соответствии с требованиями 2.2.1.3.

Как правило, объем испытаний должен быть согласован при представлении предприятием (изготовителем) соответствующей документации и, в общем, при осуществлении наблюдения в процессе производства, не должен превышать указанного в 3.16 части XIII «Материалы» Правил классификации и постройки морских судов.

2.2.5.2.4 Программа испытаний.

Программа испытаний подлежит согласованию с Регистром. Программа подготавливается предприятием (изготовителем) в соответствии с изложенным в 2.2.5.2.3.

При разработке программы испытаний следует иметь в виду, что во изменение указанного в 2.2.1.3.1.3 и 2.2.1.3.1.4 признание производства любой марки коррозионно-стойкой стали может быть распространено на другую марку стали той же системы легирования (того же класса) при условии подтверждения неизменности технологии производства, состояния поставки и методик контроля и испытаний.

Технология сварки и сварочные материалы, применяемые при изготовлении полуфабрикатов, должны быть одобрены Регистром в процессе освидетельствования производства.

Испытания на свариваемость должны охватывать все приемлемые методы сварки, включая ремонтную

Таблица 2.2.5.2.3

Вид испытаний	Расположение проб, направление вырезки образцов	Примеч	ания
Химический анализ ¹	Верх	Общий анализ, вкл микролегирующие эле	1
Испытание на растяжение при комнатной и повышенной температуре	Верх и низ, вдоль ²	Определяются $R_{p0,2}$, $R_{p0,2}$	R_m, A_5, Z
Испытание на ударный изгиб, <i>KV</i> , <i>KCV</i> , для сталей классов M-1, MF-2,	Верх, вдоль	Температура испытан	ий, °С
F-3, AM-4, AF-8		+ 20	0
Испытание на ударный изгиб при отрицательной температуре, KV, KCV, для сталей следующих классов: M-1 AF-8 M-1 ³ , AM-4 A-5, A-6	Верх, вдоль	Температура испытан. -20 -40 -60 -165	ий, ℃
Ультразвуковой контроль	По всему объему		
Макрострукгурный анализ	Верх		
Контроль содержания неметаллических включений	Верх		
Контроль величины зерна	Верх и низ	Для сталей классов F3, AN	1-4, A-5, A-6, A-7, AF-8
Определение содержания ферритной фазы	Верх	Для сталей классов А	-5, A-6, A-7
Испытание на стойкость к межкристаллитной коррозии	Верх, вдоль	Кроме стали класса М	1 -1 ⁴
Микроструктурный анализ	Верх и низ		

¹Химический анализ по ковшовой пробе также необходим.

сварку. Должна быть представлена необходимая информация о послесварочной термообработке. Вид, объем испытаний и критерии приемки должны быть согласованы в каждом конкретном случае.

2.2.5.2.5 Отбор проб.

Отбор проб осуществляется в соответствии с требованиями 3.16.1.7 части XIII «Материалы» Правил классификации и постройки морских судов и/или в соответствии с признанными Регистром стандартами, согласованной документацией.

При вырезке образцов из пустотелых или рассверленных поковок с толщиной стенки до 100 мм образцы вырезают на расстоянии 1/2 толщины стенки поковки, а при толщине свыше 100 мм — на расстоянии 1/3 толщины стенки поковки от наружной поверхности.

При изготовлении поперечных или тангенциальных образцов их ось должна проходить на том же расстоянии, что и для продольных образцов.

Место вырезки образцов из поковок нецилиндрической и непризматической формы указывается на чертеже поковки.

По согласованию предприятия (изготовителя) с потребителем допускается вырезать образцы с поверхности поковки на расстоянии, исключающем влияние поверхностных дефектов или из ее центра.

Механические свойства поковок типа колец, изготавливаемых раскаткой, определяются на тангенциальных образцах.

2.2.5.2.6 Испытания.

2.2.5.2.6.1 Механические испытания должны выполняться на полуфабрикатах после выполнения завершающих операций, а результаты должны отвечать требованиям национальных или международных стандартов и/или одобренной Регистром документации и табл. 3.16.1.5 части XIII «Материалы» Правил классификации и постройки морских судов.

Испытания выполняются в присутствии представителя Регистра.

2.2.5.2.6.2 Химический анализ.

При первоначальном освидетельствовании, кроме анализа по ковшовой пробе, определяется химический анализ готовых полуфабрикатов. Анализ, как правило, выполняется, на образцах для испытаний на растяжение.

2.2.5.2.6.3 Испытания на растяжение.

При первоначальном освидетельствовании испытания выполняются на продольных и поперечных (тангенциальных) образцах, отобранных от двух концов каждого из полуфабрикатов, представленных для испытаний.

²Допускается использовать поперечные, радиальные или тангенциальные образцы.

³Только для стали марки 07Х16Н4Б.

⁴Для стали марки 07X16H4Б испытание проводится.

Пробы для определения сортовой стали круглого, квадратного и шестигранного сечений отбирают от любого конца таким образом, чтобы было обеспечено изготовление образцов, ось которых направлена вдоль направления прокатки.

2.2.5.2.6.4 Испытания на ударный изгиб.

При первоначальном признании, если возможно, должна быть определена кривая перехода. Испытания должны быть выполнены при пяти температурах, как правило, с интервалом в 20 °С. Температуры проведения испытаний согласуются при разработке программы испытаний, в зависимости от группы стали и условий применения. Для испытаний на ударный изгиб, также исходя из возможностей, следует использовать стандартные образцы.

Пробы сортовой стали круглого, квадратного и шестигранного сечений отбирают от любого конца прутка таким образом, чтобы было обеспечено изготовление образцов, ось которых направлена вдоль направления прокатки.

2.2.5.2.6.5 Макроструктурный анализ.

Макроструктурный анализ выполняется на двух концах полуфабриката на поперечных темплетах.

2.2.5.2.6.6 Определение величины зерна и содержания неметаллических включений.

Определение величины зерна для сталей аустенитного класса и содержания неметаллических включений для сталей всех классов проводится на микрошлифах, изготовленных в соответствии со стандартами.

2.2.5.2.6.7 Определение содержания ферритной фазы.

Определение содержания ферритной фазы для сталей аустенитного класса проводится не менее чем на двух образцах, изготовленных из металла проб, отбираемых при разливке стали.

2.2.5.2.6.8 Испытания на стойкость к межкристаллитной коррозии (МКК).

Для испытания на стойкость к МКК материала листов, сортового проката и труб изготавливают:

из сталей аустенитного класса — два комплекта образцов (не менее 4 шт.),

из сталей аустенитно-ферритного класса и стали 07X16H4E — четыре комплекта образцов (не менее 8 шт.), два из которых являются контрольными.

Для испытаний на стойкость к МКК материала поковок сталей всех классов изготавливают не менее шести образцов, два из которых являются контрольными.

Ось образца для испытания на стойкость к МКК должна быть направлена вдоль направления прокатки. Отбор проб для образцов для проведения испытаний на стойкость к МКК осуществляется в соответствии с требованиями признанных стандартов.

2.2.5.2.6.9 Испытания на стойкость к питтинговой коррозии и испытания на стойкость к

сульфидному коррозионному растрескиванию проводятся на металле не менее трех плавок в соответствии с требованиями стандартов.

2.2.5.2.6.10 Дополнительные испытания, такие как испытания на определение распространения холодных трещин и др., могут быть востребованы при соответствующих указаниях других частей правил Регистра и/или согласованной с ним документации.

2.2.5.3 Схема признания изготовителей труб из коррозионно-стойкой (нержавеющей) стали.

2.2.5.3.1 Общие положения.

Настоящие положения распространяются на трубы, изготовленные одним из следующих способов:

труба изготавливается из трубной заготовки горячим формованием без сваривания;

труба изготавливается из расточенных, обточенных, горячедеформированных труб-заготовок;

труба сваривается одним продольным швом без использования присадочного материала из полос или штрипса.

До начала производства под техническим наблюдением Регистра предприятие должно подготовить и представить документацию, содержащую информацию о всей технологической цепи производства и этапах, на которых контролируются соответствующие параметры процесса и свойства полуфабриката и конечного продукта.

2.2.5.3.2 Область распространения признания. Документация.

Все общие положения и указания, приведенные в 2.2.1 и относящиеся к заявке, объему и содержанию представляемой документации, освидетельствованию, объему представляемого к испытаниям металла, а также отбору проб и методам испытаний, распространяются на трубы из коррозионно-стойкой стали.

Для труб из коррозионно-стойкой (нержавеющей) стали совместно с заявкой предоставляется документация, перечисленная в 2.2.1.2.1, за исключением подпунктов 2.2.1.2.1.7 — 2.2.1.2.1.12, содержание которых заменяется на следующее:

- «.7 технология формования труб;
- .8 режим центрирования и стыковки для сварки (технология и этапы сварочных работ, если требуется по дополнительным условиям заказов);
 - .9 режим окончательной термообработки;
- .10 метод холодной раскатки/калибровки/чистовой прокатки, допустимые соотношения размеров;
- .11 методики контроля размеров, испытаний на герметичность, выполняемых при производстве механических испытаний и испытаний на коррозионную стойкость;
- .12 идентификация и прослеживаемость труб, метод маркировки и места ее нанесения.

.13 дополнительные требования, предъявляемые потребителем к трубам, в зависимости от условий эксплуатации».

2.2.5.3.3 Объем и виды испытаний.

Если не оговорено иное, методы и методики испытаний труб из коррозионно-стойкой стали должны соответствовать признанным национальным и международным стандартам, согласованной с Регистром документации и требованиям 1.3, разд. 2 и 3.16 части XIII «Материалы» Правил классификации и постройки морских судов.

Во изменение 2.2.1.3.6.1 испытания при признании производства и качества изготавливае-

мых полуфабрикатов должны выполняться в соответствии с указаниями табл. 2.2.5.3.3.

Результаты испытаний должны отвечать требованиям 3.16 части XIII «Материалы» Правил классификации и постройки морских судов и/или признанным Регистром стандартам, спецификациям.

Испытания при первоначальном одобрении выполняются по согласованной с Регистром программе с учетом изложенного в 2.2.1 и 2.2.4.3.3.

Испытания в процессе производства труб должны выполняться в соответствии с указаниями табл. 3.16.4.3 части XIII «Материалы» Правил классификации и постройки морских судов и 2.2.4.3.3 настоящих Правил. Таблица 2.2.5.3.3

Вид испытаний	Необходимость проведения испытаний ^{1, 2}	Расположение проб, направление вырезки образцов	Примечания
Химический анализ (см. 2.2.4.2.10.1)	а/в	От одного конца	Общий анализ, включая примеси и микролегирующие элементы + анализ по ковшовой пробе
Испытание на растяжение при комнатной и повышенной температуре в состоянии поставки и/или после термической обработки (см. 2.2.4.2.10.2)	а/в	От двух концов	Определяются $R_{p0,2}, R_m, A_5, Z$
Испытание на ударный изгиб, <i>KV, KCV</i> , для сталей классов М-1, MF-2, F-3, AM-4, AF-8 (см. 2.2.4.2.10.3)	а/в	От двух концов	Температура испытаний, °C + 20 0
Испытание на ударный изгиб при отрицательной температуре, <i>KV, KCV</i> , для сталей следующих классов:	а/в	От двух концов	Рекомендуемая минимальная температура испытаний, °C
M-1	а/в]	-20
AF-8	а/в	1	-40
M-1, AM-4	a/в	1	-60
А-5, А-6 (см. 2.2.4.2.10.3)	a/e	1	-165
Свариваемость (см. 2.2.4.2.10.4)	а		Отдельная программа
Определение твердости (см. 2.2.4.2.10.5)	а/в	От двух концов	
Ультразвуковой контроль (см. 2.2.4.2.10.13)	а/в	По всей длине	
Контроль шероховатости (см. 2.2.5.13)	а/в	По всей длине	
Макроструктурный анализ	а	От одного конца	
Микроструктурный анализ (см. 2.2.4.2.10.6)	а	От одного конца	
Контроль содержания неметаллических включений (см. 2.2.4.2.10.7)	а	От одного конца	
Контроль величины зерна (см. 2.2.4.2.10.8)	a/s	От одного конца	Для стали классов F3, AM-4, A-5, A-6, A-7, AF-8
Определение содержания ферритной фазы	а/в	От одного конца	Для стали классов А-5, А-6, А-7
Испытание на стойкость к межкристаллитной коррозии (см. 2.2.4.2.10.11)	а/в	От одного конца	Кроме стали класса М-1, испытание проводится для стали марки 07Х16Н4Б
Испытание на сплющивание, испытание на раздачу (см. 2.2.4.2.10.9)	а/в	От одного конца	
Испытание гидравлическим давлением (см. 2.2.4.2.10.10)	а/в	Вся труба	
1 <i>д</i> – при первоначальном одобрении предприятия	1	1	

a -при первоначальном одобрении предприятия.

 $[\]frac{2}{6}$ – при техническом наблюдении в процессе производства труб.

2.2.5.3.4 Программа испытаний.

2.2.4.3.4.1 Программа испытаний подлежит согласованию с Регистром.

При разработке программы испытаний следует иметь в виду, что во изменение указанного в 2.2.1.3.1.3 и 2.2.1.3.1.4 признание производства любой марки коррозионно-стойкой стали может быть распространено на другую марку стали той же системы легирования (того же класса) при условии подтверждения неизменности технологии производства, состояния поставки и методик контроля и испытаний.

2.2.5.3.4.2 Испытания при признании производства следует выполнять для каждого технологического процесса на 10 трубах, отобранных из двух партий. Если по единой технологии производятся трубы различных размеров, допускается проведение испытаний на трубах максимального (одна партия) и минимального (вторая партия) размеров (диаметр, толщина стенки).

Партия должна состоять из труб одной плавки, одной марки, одного режима термообработки, одного диаметра и толщины стенки.

Как правило, объем партии должен быть согласован при представлении предприятием (изготовителем) соответствующей документации и, в общем, при осуществлении наблюдения в процессе производства, не должен превышать указанного в 3.16.4 части XIII «Материалы» Правил классификации и постройки морских судов.

Технология сварки и сварочные материалы, применяемые при изготовлении труб, если требуется, должны быть одобрены Регистром в процессе освидетельствования производства.

Испытания на свариваемость должны охватывать все приемлемые методы сварки, включая изготовление трубы, монтаж трубопровода, ремонтную сварку. Должна быть представлена необходимая информация о послесварочной термообработке.

Вид, объем испытаний, и критерии приемки должны быть согласованы в каждом конкретном случае.

2.2.5.3.4.3 Механические испытания должны выполняться на трубах после термической обработки, раскатки и окончательной формовки и должны отвечать требованиям национальных или международных стандартов и/или одобренной Регистром документации и/или табл. 3.16.4.2 части XIII «Материалы» Правил классификации и постройки морских судов.

Трубы из нержавеющей дуплексной стали испытываются после термообработки на твердый раствор.

2.2.5.3.4.4 Трубы, предназначенные для работы в кислых средах, должны подвергаться дополнительным испытаниям по отдельной программе, согласованной с Регистром.

2.2.5.3.4.5 При освидетельствовании и одобрении технологических процессов изготовления труб из дуплексной стали Регистр может потребовать проведения испытаний на коррозионную стойкость. Температура испытаний и критерии приемки, если не оговорено иное, определяются по соглашению.

2.2.5.3.4.6 Неудовлетворительные испытания.

Изложенные ниже положения одинаково применимы при признании производства труб и в процессе их производства.

При неудовлетворительных результатах во время испытаний при признании производства (первоначальные испытания) Регистр может приостановить их выполнение до предоставления соответствующих пояснений и/или прекратить испытания, если это не связано с отрицательным влиянием на результаты испытаний таких факторов, как отбор проб, изготовление или дефекты образцов, неполадки оборудования и т. п.

В процессе производства, при неудовлетворительных результатах хотя бы по одному из видов испытаний, дополнительные испытания должны быть выполнены на удвоенном количестве труб из предъявленной партии. При отрицательных результатах одного из дополнительных испытаний партия бракуется.

В этом случае допускается приемка труб из отбракованной партии по результатам испытаний каждой из оставшихся труб партии. При этом партия также бракуется, если общее количество забракованных труб в партии превышает 25 %.

В данном случае Регистр может приостановить осуществление технического наблюдения на предприятии за трубами, изготовляемыми по той же технологии, что и забракованная партия. Предприятие (изготовитель) должно представить результаты анализа случившегося, а Регистр вправе потребовать выполнения контрольных испытаний в объеме первоначальных.

В любом случае, при получении неудовлетворительных результатов по любому виду испытаний должна быть выявлена причина и определены корректирующие действия.

Если выявлено отрицательное влияние на результаты испытаний таких факторов, как отбор проб, изготовление или дефекты образцов, неполадки оборудования и т. п., допускается осуществить ремонт/замену оборудования и/или образцов на другие образцы той же трубы и выполнить повторные испытания.

На изготовителе, признанном Регистром, в процессе производства, по согласованию с Регистром, допускается предъявлять в качестве новой партии трубы, забракованные по механическим характеристикам, величине зерна, стойкости к МКК, но прошедшие повторную термообработку.

2.2.5.3.5 Испытания.

2.2.5.3.5.1 Химический анализ.

При первоначальном признании, дополнительно к результатам анализа по ковшовой пробе, выполняется химический анализ на каждой предъявленной трубе партии.

При техническом наблюдении в процессе производства, если указано в согласованной с Регистром документации, допускается приемка стали по результатам химического анализа, указанным в сертификате качества трубной заготовки.

Указанное относится к случаям, когда заготовка поступает на трубный завод с признанного Регистром предприятия, имеющего СПИ. В других случаях требуется определение химического состава одной трубы партии/плавки.

2.2.5.3.5.2 Механические испытания.

Механические испытания выполняются на образцах, отобранных от концов каждой трубы, представленной для испытаний. Как правило, от труб диаметром менее 300 мм все испытания для определения механических свойств проводятся на образцах, отобранных параллельно оси трубы.

В зависимости от диаметра трубы и толщины стенки трубы, дополнительных условий заказа и требований согласованной документации испытания на растяжение выполняются на патрубках, образцах в виде сегмента (прямоугольные образцы) или круглых образцах.

Прямоугольные образцы должны иметь толщину, равную полной толщине стенки трубы. Уплощение образцов не допускается, допускается сплющивание захватной части образцов.

При первоначальном одобрении производства труб из дуплексной стали с расчетной температурой выше 20 °C и труб из других сталей с расчетной температурой выше 50 °C должны быть определены их свойства при максимальной расчетной температуре.

Определяются отклонения от номинального значения предела текучести.

При техническом наблюдении за трубами в процессе их производства упомянутые здесь испытания при повышенной температуре выполняются, если это указано в признанной Регистром документации и/или в дополнительных условиях заказа.

2.2.5.3.5.3 Испытания на ударный изгиб.

При первоначальном признании, если возможно, должна быть определена кривая перехода. Испытания должны быть выполнены при пяти температурах, как правило, с интервалом в 20 °С. Температуры проведения испытаний в зависимости от группы стали и условий применения труб согласуются в процессе разработки программы испытаний. Для испытаний на ударный изгиб, также исходя из возможностей, следует использовать стандартные образцы.

Для группы M-1 рекомендуемая минимальная температура испытаний $-40~^{\circ}\mathrm{C}$ — только для стали марки $07\mathrm{X}16\mathrm{H}4\mathrm{Б}$.

При предоставлении результатов испытаний, выполненных ранее и приемлемых для данного предприятия (изготовителя) и данной технологии изготовления, испытания на ударный изгиб могут быть ограничены испытаниями при одной минимальной температуре.

2.2.5.3.5.4 Свариваемость.

Испытания на свариваемость выполняются при первоначальном признании в соответствии с указаниями 2.4 части XIII «Материалы» Правил классификации и постройки морских судов и 2.2.2.4 настоящей части.

При предоставлении соответствующих результатов испытаний, выполненных ранее, испытания на свариваемость могут не проводиться.

2.2.5.3.5.5 Определение твердости.

Как правило, при первоначальных испытаниях твердость по HV10 замеряется на каждой представляемой трубе, а при техническом наблюдении в процессе производства — в соответствии с требованиями признанной Регистром документации и/или дополнительными условиями заказа.

2.2.5.3.5.6 Металлографический анализ.

Металлографический анализ дуплексных сталей выполняется после обработки на твердый раствор. После обработки на твердый раствор необходимо обеспечить отсутствие образования карбидов, нитридов и интерметаллических включений по границам зерен. Измеряется содержание феррита (35 – 55 %). В любом случае, исследование должно выполняться при увеличении не менее X400.

2.2.5.3.5.7 Контроль содержания неметаллических включений.

При первоначальных испытаниях контроль содержания неметаллических включений осуществляется на одной трубе от партии. В партию должны входить трубы одного типоразмера и одной плавки. При техническом наблюдении в процессе производства контроль содержания неметаллических включений осуществляется в соответствии с требованиями признанной Регистром документации и/или дополнительными условиями заказа.

Контроль содержания неметаллических включений, а также нитридов и карбонитридов титана для труб с толщиной стенки менее 6 мм может осуществляться на передельных трубах с толщиной стенки 6 мм и более.

2.2.5.3.5.8 Контроль величины зерна.

Контроль величины зерна при первоначальных испытаниях выполняется на одной трубе от партии металлографическим методом, если этот же метод используется в процессе производства. Если в процессе производства применяется ультразвуковой метод, то при первоначальных испытаниях следует применять оба метода.

При техническом наблюдении в процессе производства контроль величины зерна выполняется в соответствии с требованиями признанной Регистром документации и/или дополнительными условиями заказа.

2.2.5.3.5.9 Испытание на сплющивание, раздачу.

Испытание на сплющивание, раздачу выполняется на одной трубе от представляемой партии в соответствии с требованиями признанной Регистром документации и/или дополнительными условиями заказа.

2.2.5.3.5.10 Испытание гидравлическим давлением.

Испытание гидравлическим давлением выполняется в соответствии с требованиями признанной Регистром документации и/или дополнительными условиями заказа. Выдержка труб под давлением — не менее 10 с.

2.2.5.3.5.11 Испытание на стойкость к МКК.

Испытание на стойкость к МКК выполняется в соответствии с требованиями признанной Регистром документации и/или дополнительными условиями заказа.

2.2.5.3.5.12 Контроль шероховатости.

Контроль шероховатости выполняется в соответствии с требованиями признанной Регистром документации и, если не оговорено иное, визуальным сравнением с эталоном.

2.2.5.3.5.13 Ультразвуковой контроль.

Ультразвуковой контроль, если оговорено иное, осуществляется в соответствии с признанной Регистром документацией.

При первоначальном признании контроль осуществляется на каждой представленной для испытания трубе.

2.2.5.3.5.14 Дополнительные испытания, такие как испытания на определение распространения холодных трещин, СТОD и др., могут быть востребованы при соответствующих указаниях в других правилах Регистра и/или согласованной с ними документации.

2.3 ПЕРЕЧЕНЬ ПРИЗНАННЫХ ИЗГОТОВИТЕЛЕЙ МАТЕРИАЛОВ

2.3.1 Изготовители и поставляемая ими продукция, удовлетворяющие требованиям правил Регистра, включаются в Перечень одобренных материалов и признанных изготовителей.

Перечень материалов существует в электронном виде — на официальном сайте Регистра и на сайте для персонала, обновляемом ежедневно.

Подтверждением включения в соответствующий Перечень материалов конкретного изготовителя и поставляемой им подлежащей наблюдению Регистра продукции служит СПИ (см. 2.1).

2.3.2 Основной целью издания Перечня материалов является предоставление информации о поставщиках материалов или изделий, удовлетворяющих требованиям правил Регистра.

Регистр заинтересован в предоставлении подобного рода информации проектантам, строителям и другим предприятиям, нуждающимся в ней.

Предполагается, что при подготовке заказов на материалы, требующие технического наблюдения при их изготовлении, потребитель, исходя даже из финансовых интересов, вынужден принимать в расчет технические возможности изготовителей материалов, подтвержденные Регистром.

2.3.3 В обновляемом Регистром Перечне материалов содержатся следующие сведения:

наименование изготовителя;

местонахождение изготовителя: почтовый адрес, телефон, факс, адрес электронной почты;

вид, наименование продукции;

марка, категория материала.

Другая информация, касающаяся сведений об испытаниях, технологии, оборудовании и т. д., является строго конфиденциальной и может быть предоставлена только по согласованию с самим изготовителем.

2.3.4 Сохранение и обновление информации в Перечне материалов осуществляется ГУР на основании сведений о выдаче, подтверждении/возобновлении и утрате силы СПИ, поступающих от подразделений, выдавших эти СПИ.

Если по производственным причинам подтверждение/возобновление СПИ не может быть проведено в установленные сроки, то для сохранения изготовителя в Перечне материалов изготовитель должен согласовать новые сроки подтверждения/ возобновления с подразделением, выдавшим СПИ, в период действия документа, т. е. до установленной даты возобновления, о чем подразделение информирует отдел обработки информации и внедрения информационных технологий ГУР (направляется Извещение с указанием новой даты подтверждения или возобновления). В Перечне материалов указывается новая дата подтверждения или возобновления. Действие документа не прерывается, а дата следующего подтверждения или возобновления остается неизменной.

В течение 30 дней после установленной даты подтверждения или возобновления, при отсутствии информирования ГУР о принятом подразделением решении, в электронном Перечне материалов рядом с документом сохраняется сообщение «Не подтверждено», а после 30 дней изготовитель исключается из электронного Перечня материалов.

- **2.3.5** Одновременно с Перечнем материалов в ГУР формируются базы данных для каждого из изготовителей, на котором когда-либо осуществлялось техническое наблюдение Регистра.
- **2.3.6** Изготовитель может быть исключен из данного Перечня материалов при утрате силы СПИ.
- **2.3.7** Исключение изготовителя из Перечня материалов производится только по решению ГУР на основании соответствующего представления

подразделения, осуществляющего наблюдение на этом изготовителе.

2.4 ОСУЩЕСТВЛЕНИЕ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ ПРИ ИЗГОТОВЛЕНИИ МАТЕРИАЛОВ

2.4.1 Общие положения.

2.4.1.1 Материалы, подлежащие техническому наблюдению Регистра при их изготовлении (см. 1.1.4), поставляются изготовителями, имеющими СПИ (см. 1.3.1 и 2.1), вместе со Свидетельствами о соответствии (формы 6.5.30 или 6.5.31).

По согласованию с подразделением Регистра, осуществляющим наблюдение, продукция может поставляться с сертификатами изготовителя, заверенными представителем Регистра.

2.4.1.2 К документам Регистра, указанным в 2.3.1.1, должны в обязательном порядке прикладываться сертификаты изготовителя или соответствующие протоколы испытаний материала. Номера протоколов или сертификатов изготовителя должны быть указаны в Свидетельстве о соответствии (форма 6.5.30).

Содержание сертификатов изготовителя должно удовлетворять требованиям указанной в документации на поставку и согласованной с Регистром документации. Одновременно содержание сертификатов должно позволять идентифицировать поставляемую продукцию.

- В Свидетельствах о соответствии Регистра, обычно, кроме номера заказа и реквизитов изготовителя и заказчика приводятся общие сведения на материал (размеры полуфабрикатов, вес, марка, категория материала, номера сертификатов предприятия/протоколов).
- 2.4.1.3 По согласованию с ГУР и по представлению подразделения, осуществляющего техническое наблюдение у изготовителя, поставка материалов может осуществляться с заверенными Регистром сертификатами изготовителя. Сертификат изготовителя в этом случае должен соответствовать требованиям Стандарта EN 10204-3.2, объем информации, размещенной в сертификатах должен быть согласован с РС заранее.

2.4.2 Область распространения.

- **2.4.2.1** Регистр осуществляет техническое наблюдение во всех перечисленных ниже случаях:
- **.1** материал регламентирован правилами Регистра и в контракте (заказе) на поставку отмечено его соответствие требованиям указанных правил;
- .2 материал регламентирован правилами Регистра, а в контракте (заказе) на поставку указано соответствие правилам Регистра и требованиям стандартов (национальных, международных), спецификаций или иной технической документации;

- 3 материал регламентирован правилами Регистра, а в контракте (заказе) на поставку указано соответствие требованиям стандартов (национальных, международных), спецификаций или иной технической документации;
- .4 материал не регламентирован правилами Регистра, а в контракте (заказе) на поставку указано его соответствие требованиям правил Регистра;
- .5 материал не регламентирован правилами Регистра, а в контракте (заказе) на поставку указано его соответствие требованиям правил Регистра, стандартов (национальных, международных), спецификаций или иной технической документации;
- .6 материал не регламентирован правилами Регистра, а в контракте (заказе) на поставку указано его соответствие требованиям стандартов (национальных, международных), спецификаций или иной технической документации;
- .7 стандарты (национальные, международные), спецификации или иная техническая документация, в соответствии с которыми предполагается осуществить поставку материала, согласованы с Регистром;
- .8 стандарты (национальные, международные), спецификации или иная техническая документация, в соответствии с которыми предполагается осуществить поставку материала, не согласована с Регистром.
- 2.4.2.2 На изготовителях, имеющих действующее СПИ, во всех случаях, упомянутых в 2.4.2.1.1 2.4.2.1.6), техническая документация на поставку материалов подлежит рассмотрению и согласованию с Регистром в период, предшествующий испытаниям и освидетельствованию изготовителя. Соответствующая корректировка этой документации по результатам освидетельствования и испытаний должна быть осуществлена до выдачи СПИ.

При этом необходимо руководствоваться следующим:

- в случаях, приведенных в 2.4.2.1.2 и 2.4.2.1.3, материал должен одновременно удовлетворять соответствующим требованиям правил Регистра, стандартов (национальных, международных), спецификаций или иной технической документации, в соответствии с которыми предполагается осуществить поставку (при наличии различий между правилами и документацией оценка должна проводиться на основе наиболее жестких требований);
- в случаях, приведенных в 2.4.2.1.4 2.4.2.1.6, материал должен удовлетворять требованиям указанной в контракте документации (стандарт, спецификация, и т. п.). Методики испытаний, отбор проб, изготовление образцов, объем испытаний должны удовлетворять требованиям разд. 2 части XIII «Материалы» Правил классификации и постройки морских судов. Случай, приведенный в 2.3.2.1.4, требует дополнительных указаний от

потребителя (заказчика) материала, регламентирующих его параметры и внесенных в контракт.

При указании в контракте (заказе) стандартов (национальных, международных), спецификаций или иных технических требований, отличных от ранее согласованных, техническое наблюдение за материалом может осуществляться после анализа новых требований, на основе сопоставления с ранее согласованными. При принципиальных отличиях, затрагивающих условия выдачи СПИ, может потребоваться расширение области распространения действующего СПИ.

В качестве альтернативы, с учетом изложенного в 2.4.2.5, подразделением Регистра может быть принято решение об осуществлении технического наблюдения за материалом по конкретному контракту (заказу).

2.4.2.3 От изготовителей, не имеющих действующего СПИ (см. 2.4.2.4), вместе с заявкой на проведение технического наблюдения должна быть получена указанная в контракте (заказе) документация на поставку материала для ее согласования (если она не была согласована ранее, и срок действия согласования документации (5 лет) не истек).

Эта документация (стандарт, спецификация, специальные требования, заказ и т. п.) должна рассматриваться с учетом изложенного в 2.4.2.2.

2.4.2.4 Регистр может осуществлять техническое наблюдение за изготовлением и допускать к применению материалы, регламентируемые Правилами классификации и постройки морских судов, но поставляемые предприятием (изготовителем), не имеющим действующего СПИ.

Решение об осуществлении такого технического наблюдения должно приниматься с учетом следующего:

подразделение Регистра должно обладать необходимой информацией о возможностях предприятия (изготовителя) выполнить соответствующий заказ;

объем заказа должен быть ограничен;

объем технического наблюдения должен быть согласован с предприятием (изготовителем) отдельно и, при положительных результатах, может служить основанием к оформлению СПИ;

техническое наблюдение должно осуществляться по отдельному соглашению (договору).

Информация о возможностях предприятия (изготовителя) выполнить соответствующий заказ может основываться на следующем:

предприятие (изготовитель) и его продукция известны подразделению с положительной стороны; изготовитель имел СПИ, которое не возобновлялось из-за отсутствия заказов;

изготовитель имеет действующее СПИ, но не на рассматриваемую продукцию (вариант расширения области действия СПИ);

изготовитель имеет одобрение других классификационных обществ на изготовление рассматриваемой продукции или сходной с ней; изготовитель освидетельствован подразделением Регистра, но для выдачи или возобновления СПИ недостает определенного объема испытаний.

2.4.2.5 В процессе осуществления технического наблюдения у изготовителя, с целью устранения имеющихся сомнений в стабильности качества изготавливаемой продукции, Регистр может предъявлять дополнительные требования.

Эти дополнительные требования могут касаться изменения объема испытаний на определенный вид и количество продукции, по сравнению с требуемым Правилами классификации и постройки морских судов или контрактом, а также могут включать замену/дополнение видов и методик испытаний.

Объем дополнительных требований должен быть согласован с предприятием (изготовителем), а результаты его выполнения могут являться основанием для подтверждения СПИ.

Основанием для предъявления дополнительных требований могут служить причины, приведенные в 2.1.4, даже если не имеется официальных подтверждений упомянутым в пункте случаям. Кроме того, изменение объема и/или видов испытаний может быть потребовано в случае систематического получения результатов испытаний, соответствующих предельным требуемым (близких или входящих в область погрешности испытаний), или имеющих очень большую амплитуду разброса значений для одного и того же вида продукции.

2.5 НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ СТАЛЬНЫХ ПОКОВОК И ОТЛИВОК ДЕТАЛЕЙ КОРПУСА И МЕХАНИЗМОВ

2.5.1 Общие указания.

2.5.1.1 Настоящая глава содержит указания по проведению технического наблюдения при осуществлении неразрушающего контроля поковок и отливок деталей корпуса и механизмов. Глава дополняет требования к поковкам и отливкам, изложенные в 3.7 и 3.8 части XIII «Материалы» Правил классификации и постройки морских судов.

Указания по осуществлению неразрушающего контроля стальных поковок и отливок, изложенные в настоящей главе, распространяются на все типы судов и применяются при проектировании, строительстве, ремонте, переоборудовании и модернизации судов.

2.5.1.2 Вся нормативно-техническая, технологическая и методическая документация, содержащая описания технологии измерений и методы контроля, а также требования к качеству поковок и отливок, включая разрабатываемую на предприятии (изготовителе) рабочую документацию, должна быть признана и/или согласована с Регистром.

- 2.5.1.3 Система контроля, существующая у изготовителя, должна предусматривать процедуру идентификации и прослеживаемости всех этапов изготовления поковок и отливок, а также способы выполнения требований контроля. Система должна предусматривать пооперационную приемку работ и отчетность.
- **2.5.1.4** Критерии оценки качества поковок и отливок должны содержаться в признанной и/или согласованной с Регистром документации.
- 2.5.1.5 Радиографический или ультразвуковой контроль или их комбинация должны применяться для выявления внутренних (подповерхностных) дефектов; магнитопорошковый контроль, капиллярный контроль или другой одобренный Регистром равноценный вид контроля, как правило, должны применяться для выявления поверхностных дефектов.
- 2.5.1.6 Результаты контроля поковок и отливок должны быть документированы, содержать сведения, позволяющие определить местоположение обнаруженных дефектов, оценку качества и фамилию контролера, и быть соответствующим образом проиллюстрированы (эскиз участка контроля с координатами дефектов).
- **2.5.1.7** Аппаратура и материалы для контроля должны отвечать требованиям согласованной с Регистром технической документации на соответствующие виды контроля.

Неразрушающий контроль и оценка качества поковок и отливок осуществляются испытательными лабораториями (центрами), чья компетенция и статус отвечают требованиям национальных и международных стандартов. Компетентность производственной или субподрядной лаборатории должна подтверждаться Свидетельством о признании, выданным Регистром или другим уполномоченным национальным органом. Соответствующий документ предоставляется представителю Регистра по его требованию.

- 2.5.1.8 Персонал, выполняющий визуальный осмотр, должен иметь достаточные знания и опыт, а персонал, осуществляющий магнитопорошковый, капиллярный, а также радиографический и ультразвуковой контроль, должен иметь квалификацию, соответствующую признанным национальным или международным нормам. Квалификация должна удостоверяться соответствующими свидетельствами.
- **2.5.1.9** Орган по сертификации персонала, осуществляющего неразрушающий контроль и оценку качества поковок и отливок, должен отвечать требованиям национальных стандартов, унифицированных со Стандартом EN 473 (для России ГОСТ 30488-97).
- **2.5.1.10** Регистр осуществляет техническое наблюдение в процессе контроля качества поверхности и выявления внутренних (подповерхностных) дефектов, если это требуется 3.7, 3.8 части XIII

«Материалы», другими частями Правил классификации и постройки морских судов и/или согласованной с Регистром документацией.

2.5.2 Неразрушающий контроль стальных поковок.

2.5.2.1 Неразрушающий контроль стальных поковок должен осуществляться на завершающей стадии производства. Дополнительные требования изложены в 2.5.2.3 и 2.5.2.4.

В случае проведения промежуточных осмотров изготовитель, по требованию представителя Регистра, предоставляет соответствующие результаты осмотра.

2.5.2.2 Требования главы также распространяются на не упомянутые здесь стальные поковки (например, детали муфт, шестерен, котлов и сосудов под давлением) с учетом их материалов, видов, форм, а также напряженных состояний, которым они подвергаются.

2.5.2.3 Контроль качества поверхности.

2.5.2.3.1 Контроль качества поверхности стальных поковок должен осуществляться в соответствии с национальными или международными стандартами (см. 2.5.1) путем визуального осмотра, магнитопорошкового или капиллярного контроля. Для магнитопорошкового контроля стальных поковок, как правило, требуется напряженность магнитного поля, составляющая 2000 — 6500 А/м.

2.5.2.3.2 В процессе технического наблюдения при осуществлении контроля качества поверхности необходимо руководствоваться следующим.

Контроль качества поверхности, как правило, осуществляется на следующих стальных поковках:

гребных, промежуточных и упорных валах и баллерах руля с минимальным диаметром не менее 100 мм;

шатунах, штоках поршня и крейцкопфах с минимальным диаметром не менее 75 мм или с равноценным поперечным сечением;

болтах с минимальным диаметром не менее 50 мм, которые подвергаются воздействию динамических напряжений (таких, например, как болты, крышки цилиндров, анкерные связи, болты шатунных шеек, болты рамовых подшипников, крепежные болты лопастей гребного винта).

2.5.2.3.3 Зоны контроля качества поверхности.

Стальные поковки должны подвергаться 100-процентному визуальному осмотру. Магнитопорошковый или там, где это допускается, капиллярный контроль должны осуществляться в зонах I и II, как показано на рис. 2.5.2.3.3-1 – 2.5.2.3.3-4.

2.5.2.3.4 Состояние поверхности.

Поверхности поковок, которые подвергаются контролю качества поверхности, не должны иметь окалину, грязь, жир или краску.

2.5.2.3.5 Контроль качества поверхности.

В соответствии с указаниями рис. 2.5.2.3.3-1 — 2.5.2.3.3-4, как правило, осуществляется магнито-порошковый контроль.

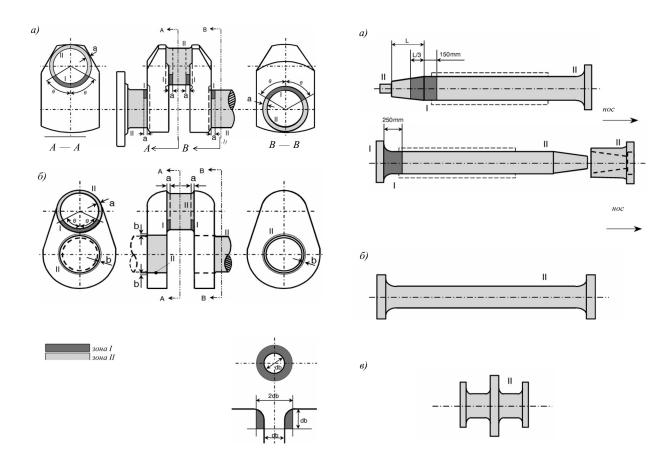


Рис. 2.5.2.3.3-1

Зоны контроля качества поверхности коленчатого вала (магнитопорошковая/капиллярная дефектоскопия):

a — цельнокованый коленчатый вал;

 δ — полусоставной коленчатый вал.

Примечания: 1. В случаях, когда шатунная или рамовая шейки имеют выходы масляных каналов, круговая поверхность этих каналов должна рассматриваться как зона I (см. нижнюю правую часть рисунка).

2. На вышерасположенных рисунках $\theta=60^\circ;\; a=1,5r;\; b=0,05d,$ где r — радиус галтели; d — диаметр шатунной шейки; d_b — диаметр масляного канала.

Осуществление капиллярного контроля предписывается:

для аустенитной нержавеющей стали;

для расшифровки индикаторных следов, выявленных путем визуального осмотра или магнито-порошкового контроля;

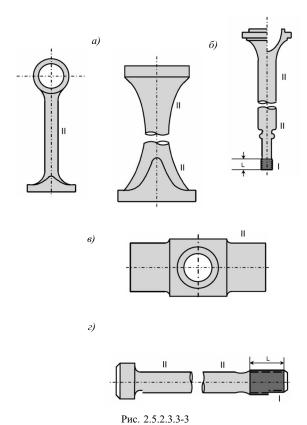
по указанию представителя Регистра (как правило, в спорных случаях).

2.5.2.3.6 Если не оговорено иное, магнитопорошковому контролю подвергается поковка с поверхностью после окончательной механической обработки и окончательной термической обработки. В процессе механической обработки – на глубину не более 0,3 мм для контроля с применением

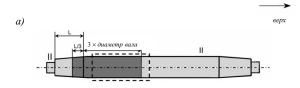
Рис. 2.5.2.3.3-2

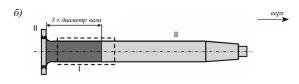
Зоны контроля качества поверхности валов (магнитопорошковая/капиллярная дефектоскопия): a — гребной вал; δ — промежуточный вал; δ — упорный вал.

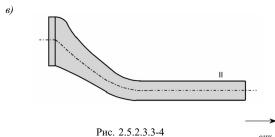
Примечания: 1. Для гребных, промежуточных и упорных валов все участки поверхности с концентраторами напряжений, такими, например, как радиальные отверстия, шплинты и шпоночные канавки, должны рассматриваться как зона I.


2. L — длина конической части.

переменного тока, и не более 0,8 мм с применением постоянного тока.


2.5.2.3.7 Если не оговорено иное, контроль качества поверхности осуществляется в присутствии представителя Регистра. Если применимо, контроль качества поверхности должен осуществляться до горячей посадки.


2.5.2.3.8 При осуществлении магнитопорошкового контроля необходимо обращать внимание на контакт между поковкой и ярмом магнита, с тем, чтобы исключить местный перегрев или выжигание ее поверхности. Выжигание поверхностей с окончательной обработкой не допускается.


2.5.2.3.9 При обнаружении дефектов решение о приемке или отбраковке рекомендуется принимать с учетом изложенного в 2.5.2.3.10 и 2.5.2.3.11 и согласованных/признанных Регистром стандартов.

Зоны контроля качества поверхности деталей механизмов (магнитопорошковая/капиллярная дефектоскопия): a — шатун; δ — шток поршня; ϵ — крейцкопф; ϵ — болт. Примечания: 1. Участок зубцов и отверстия должны рассматриваться как зона I. 2. L — длина участка резьбы

Зоны контроля качества поверхности баллеров (магнитопорошковая/капиллярная дефектоскопия): $a — \text{типа A; } \delta — \text{типа B; } s — \text{типа C.}$ П р и м е ч а н и я : 1. Места сварки должны рассматриваться как зона I. 2. L — длина конической части

2.5.2.3.10 Критерии дефектов:

.1 при визуальном осмотре:

на поверхности поковок не должно быть трещин, свищей, сколов, волосовин и других дефектов, препятствующих их использованию по назначению.

В случае необходимости, даже если не оговорено в заказе или сопроводительной документации, Регистр может потребовать осуществления дополнительного магнитопорошкового или капиллярного контроля.

Отверстия гребных валов должны быть подвергнуты визуальному осмотру с обоих концов вала. Механическая обработка должна быть выполнена должным образом с плавными переходами;

.2 при магнитопорошковом и капиллярном контроле: индикаторные следы или дефекты, обнаруженные путем контроля качества поверхности, определяются следующим образом:

линейные индикаторные следы (следы, продольные размеры которых, по крайней мере, в три раза превосходят поперечные);

круглые индикаторные следы (следы круглой или овальной формы, линейные размеры которых менее чем в три раза превышают поперечные);

рядные индикаторные следы (три или более следа в одной линии, отделенные друг от друга расстоянием в 2 мм и менее);

открытый поверхностный дефект (дефект, визуально наблюдаемый после удаления магнитного порошка или обнаруживаемый методом капиллярного контроля);

скрытый поверхностный дефект (дефект, визуально не наблюдаемый после удаления магнитного порошка или не обнаруживаемый методом капиллярного контроля);

оцениваемый поверхностный дефект (любой дефект (несплошность) размером более 1,5 мм);

трещины.

Всю контролируемую поверхность следует условно разделить на единичные контролируемые участки площадью, примерно равной 225 см². Деление должно быть осуществлено неблагоприятным по отношению к индикаторным следам образом, т. е. форму и размеры каждого участка следует выбирать так, чтобы вместить максимальное число дефектов (несплошностей) без распределения по соседним единичным участками.

Для поковок коленчатых валов допустимые число и размер дефектов на каждом из участков поковок приведены в табл. 2.5.2.3.10-1, а для поковок деталей иного назначения — в табл. 2.5.2.3.10-2.

2.5.2.3.11 Приемка детали осуществляется в соответствии с сопроводительной и заказной документацией, согласованной с Регистром, исходя из знаний условий эксплуатации и характеристик материала. Если не оговорено иное, при приемке необходимо обращать внимание на следующее:

Таблица 2.5.2.3.10-1 Поковки коленчатого вала. Допустимые число и размеры индикаторных следов на участке площадью 225 cm^2

Зона контроля	Общее допустимое	Тип индикатор-	Допустимое число	Макси- мальный
	число	ного следа	индикаторных	***
	индикатор-		следов	MM
	ных следов		каждого типа	
I		Линейный	0	_
Галтели	0	Круглый	0	_
		Рядный	0	-
II		Линейный	0	_
Шатунная	3	Круглый	3	3
шейка вала		Рядный	0	_
II		Линейный	0	_
Рамовая	3	Круглый	3	5
шейка		Рядный	0	_
вала				

Примечание. Площадь несплошностей не должна превышать 5 % от общей площади поковки.

Таблица 2.5.2.3.10-2 Поковки, за исключением поковок коленчатого вала. Допустимое число и размеры индикаторных следов на участке площадью 225 см²

Зона контроля	Общее допустимое число индикатор- ных следов	Тип индикатор- ного следа ¹	Допустимое число индикаторных следов каждого типа	Макси- мальный размер, мм
I	3	Линейный Круглый Рядный	0 3 0	- 3 -
II	10	Линейный Круглый Рядный	3 ² 7 3 ²	3 5 3

¹ Линейные и рядные индикаторные следы, как правило, если не согласовано иное, не допускаются на болтах, испытывающих переменные нагрузки (например, на болтах коленчатых валов, шатунов, крейцкопфов, крышек цилиндров).
² Площадь несплошностей не должна превышать 5 % от

² Площадь несплошностей не должна превышать 5 % от общей площади поковки.

.1 визуальный осмотр:

трещины не допускаются;

другие неровности поверхности могут допускаться по усмотрению представителя Регистра при условии осуществления более тщательного магнитопорошкового или капиллярного контроля;

.2 магнитопорошковый/капиллярный контроль:

отдельные индикаторные следы с максимальным размером менее 1,5 мм могут допускаться (за исключением находящихся в радиусе галтели коленчатых валов);

трещины и другие линейные индикаторные следы не допускаются;

круглые индикаторные следы допускаются, если их максимальный размер не превышает 2 мм для детали толщиной менее 50 мм, а для детали толщиной, более или равной 50 мм, – не превышает 3 мм;

локально, на участке 50 x 50 мм не должно быть больше пяти индикаторных следов.

2.5.2.3.12 Исправление дефектов.

- **2.5.2.3.12.1** Результаты контроля качества поверхности должны регистрироваться с указанием следующих сведений:
 - .1 даты осуществления контроля;
- **.2** фамилии и квалификации персонала, осуществляющего неразрушающий контроль;
 - .3 метода контроля:

для капиллярного метода — сочетания веществ, используемых для контроля;

для магнитопорошкового метода — напряженности магнитного поля;

- .4 типа поковки;
- .5 идентификационного номера поковки;
- .6 категории (марки) стали;
- .7 состояния поставки (вида термообработки);
- **.8** стадии изготовления, на которой осуществлялся контроль;
 - места (зоны) контроля;
 - .10 состояния (шероховатости) поверхности;
- .11 стандартов, используемых для осуществления контроля:
 - .12 условий осуществления контроля;
- .13 результатов контроля и уведомления о приемке: «годен/не годен»;
- **.14** мест применения сварки, отмеченных надлежащим образом на чертежах.
- **2.5.2.3.12.2** Исправление дефектов производится в соответствии с согласованной с Регистром документацией с учетом следующего:

дефекты исправляются зачисткой или строжкой с зачисткой. Заглубления должны иметь плавные переходы с радиусом, примерно равным утроенному значению замеренной глубины зачистки;

ограничение по глубине при зачистке шероховатостей составляет $0.08-0.25\,$ мм от номинального размера поковки. Такие зачистки не считаются дефектами;

одиночный скрытый поверхностный дефект не подлежит зачистке;

качество исправления дефекта должно быть подтверждено магнитопорошковым или капиллярным контролем;

исправление дефектов сваркой для коленчатых валов не допускается.

Любые отклонения от согласованной с Регистром документации являются предметом специального рассмотрения Регистром.

2.5.2.3.12.3 Исправление дефектов по зонам: для коленчатых валов:

зона I: исправление дефектов не допускается;

зона II: дефекты коленчатого вала исправляются зачисткой на глубину не более 1,5 мм; дефекты рамовой шейки коленчатого вала – на глубину не

более 3 мм. Общая площадь зачистки не должна превышать 1 % соответствующего участка зоны.

для иных поковок:

зона I: дефекты исправляются зачисткой на глубину не более 1,5 мм. Зачистка выполняется перед окончательной обработкой детали;

зона II: дефекты исправляются зачисткой на глубину не более 2 % диаметра поковки или не более 4,0 мм, в зависимости от того, что меньше; для поковок, не вошедших в зоны I и II:

дефекты, обнаруженные путем визуального осмотра, исправляются на глубину не более 5 % диаметра поковки или не более 10,0 мм, в зависимости от того, что меньше;

общая площадь зачистки должна быть не более $2\ \%$ площади поковки.

Для поковок, у которых обнаружены поверхностные дефекты, предприятие (изготовитель) должно составить подробные ведомости проверки и представить их инспектору. В дополнение к указанному в 2.5.2.3.12.1, в этих ведомостях должны быть указаны место, размер, способ исправления и характер дефектов на проверяемой поверхности.

2.5.2.4 Ультразвуковой контроль.

2.5.2.4.1 Общие положения.

2.5.2.4.1.1 Ультразвуковой контроль стальных поковок согласно настоящим требованиям должен осуществляться контактным способом с использованием прямого и/или наклонного искателя.

2.5.2.4.1.2 Методика, аппаратура и условия осуществления ультразвукового контроля должны соответствовать признанным национальным или международным стандартам (см. 2.5.1). Как правило, должен применяться метод DGS (чувствительность к усилению по расстоянию) с использованием прямого и/или наклонного искателя при напряжении 2-4 МГц, и контроль должен осуществляться с использованием двухкристаллического 0° искателя для сканирования вблизи поверхности (25 мм) и 0° искателя для стального объекта. Радиусы галтели должны обследоваться с помощью 70° или 45° искателей.

2.5.2.4.1.3 Персонал, осуществляющий ультразвуковой контроль, должен иметь квалификацию в соответствии с признанными национальными или международными стандартами. Квалификация удостоверяется свидетельствами (см. 2.5.1).

2.5.2.4.2 Объекты контроля.

2.5.2.4.2.1 Настоящие требования распространяются на осуществление ультразвукового контроля стальных поковок:

.1 коленчатых валов с минимальным диаметром шатунных шеек не менее 150 мм;

.2 гребных, промежуточных, упорных валов и баллеров руля с минимальным диаметром не менее 200 мм;

.3 шатунов, поршневых штоков и крейцкопфов с минимальным диаметром не менее 200 мм или других поковок с равноценным поперечным сечением.

2.5.2.4.3 Зоны ультразвукового контроля.

2.5.2.4.3.1 Участки поковок, подвергаемые ультразвуковому контролю, разделяются на зоны I, II и III в соответствии с рис. 2.5.2.3.3-1-2.5.2.3.3-4 и 2.5.2.4.3.1 в зависимости от вида изделия.

2.5.2.4.3.2 В зависимости от результатов контроля качества поверхности ультразвуковой контроль, по усмотрению представителя Регистра, может быть осуществлен для участков, не показанных на рис. 2.5.2.3.3-1 — 2.5.2.3.3-4 и 2.5.2.4.3.1.

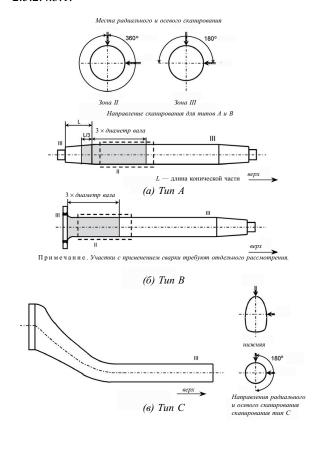


Рис. 2.5.2.4.3.1 Зоны ультразвукового контроля баллера руля

2.5.2.4.4 Состояние поверхности.

Поверхности стальных поковок, подлежащих ультразвуковому контролю, должны обеспечивать надлежащее соединение искателя и поковки, а также отсутствие чрезмерного износа искателя в процессе эксплуатации. Поверхности должны быть очищены от окалины, жира или краски.

Шероховатость предварительно обработанной поверхности не должна превышать высоту шероховатости $R_{\Delta}=10$ мм.

2.5.2.4.5 Осуществление ультразвукового контроля. Ультразвуковой контроль осуществляется после механической обработки поковок до состояния, соответствующего данному методу контроля, и после окончательной термической обработки.

2.5.2.4.6 Критерии приемки.

Критерии приемки ультразвукового контроля приведены в табл. 2.5.2.4.6-1 и 2.5.2.4.6-2.

Таблица 2.5.2.4.6-1

	критерии приемки дл	ія коленчатых в	залов
Зона	Допустимый диаметр эталонного плоского отражателя согласно DGS^1	Допустимая условная длина дефекта	Допустимое расстояние между двумя дефектами ²
I	$d\leqslant 0.5~\mathrm{mm}$	дефекты не д	опускаются
II	<i>d</i> ≤ 2,0 mm	<i>d</i> ≤ 10 mm	<i>d</i> ≥ 20 mm
III	<i>d</i> ≤ 4,0 mm	<i>d</i> ≤ 15 mm	<i>d</i> ≥ 20 mm

¹DGS — чувствительность к усилению по расстоянию.

Это относится также как к расстоянию в осевом направлении, так и к расстоянию по глубине.

Изолированные дефекты с меньшими расстояниями должны определяться как одиночный дефект.

2.5.2.4.7 Регистрация.

Результаты ультразвукового контроля должны быть зарегистрированы. В представляемой на рассмотрение документации должны содержаться сведения, указанные в 2.5.2.3.13.1.

Для поковок с объемными дефектами предприятие (изготовитель) должно составить подробные ведомости контроля и предоставить их представителю Регистра. В этих ведомостях контроля должны быть указаны место, размер (площадь), местоположение и характер дефектов.

2.5.3 Неразрушающий контроль стальных отливок.

2.5.3.1 Настоящие требования распространяются на стальные отливки деталей корпуса и механизмов, таких, например, как:

элементы корпуса:

форштевень, баллер руля, яблоко старнпоста, рулевые штыри и петли, руль;

элементы механизмов:

крышки цилиндров, звездочки, корпуса рамовых подшипников, корпус пускового клапана, вкладыши подшипников шатуна и крейцкопфа, днище поршня.

Для отливок иного, чем указано выше, назначения настоящие требования могут быть использованы с учетом марки материала и условий эксплуатации отливки.

Таблица 2.5.2.4.6-2 Критерии приемки для кованых деталей механизмов

Тип поковки	Зона ¹	Допустимый диаметр эталонного плоского отражателя согласно DGS ²	Допустимая условная длина дефекта	Допустимое расстояние между двумя дефектами ³
Гребной вал Промежуточный вал	II	<i>d</i> ≤ 2 mm		$d\geqslant 20 \text{ mm}$ $d\geqslant 20 \text{ mm}$
Упорный вал Баллер руля	III	<i>d</i> ≤ 3 мм		$d\geqslant 20 \text{ mm}$ $d\geqslant 20 \text{ mm}$
Шатун Поршневой шток	II	<i>d</i> ≤ 2 mm	<i>d</i> ≤ 10 mm	<i>d</i> ≥ 20 mm
Крейцкопф	III	<i>d</i> ≤ 4 mm	<i>d</i> ≤ 10 mm	<i>d</i> ≥ 20 mm

¹Определение зон – см. 2.5.2.4.3.

²DGS – чувствительность к усилению по расстоянию.

³В случае скопления двух или более изолированных дефектов, подлежащих регистрации, минимальное расстояние между двумя соседними дефектами должно быть, по крайней мере, равно длине большего дефекта.

Это относится также как к расстоянию в осевом направлении, так и к расстоянию по глубине.

Изолированные дефекты с меньшими расстояниями должны определяться как одиночный дефект.

Отливки должны подвергаться неразрушающему контролю на завершающей стадии производства после необходимой термической обработки. Дополнительные требования изложены в 2.5.1.

В случаях, когда в процессе производства проводились промежуточные осмотры, предприятие (изготовитель), по требованию представителя Регистра, должно предоставить соответствующие результаты осмотров.

Неразрушающий контроль осуществляется на основе соответствующего плана, согласованного с Регистром. В плане указываются объем контроля, процедуры осуществления контроля, требуемый уровень контроля и, если необходимо, уровни контроля отдельных участков отливки.

Методы контроля, оборудование и используемые дополнительные средства должны соответствовать национальным/международным стандартам.

Техническое наблюдение при осуществлении магнитопорошкового, капиллярного, ультразвукового или радиографического контроля проводится Регистром, если это требуется 3.8 части XIII «Материалы» Правил классификации и постройки морских судов и/или другими частями данных Правил или согласованной с Регистром документацией.

2.5.3.2 Требования к поверхности отливки, подлежащей неразрушающему контролю.

 2.5.3.2.1 Контроль качества поверхности стальных отливок выполняется в соответствии с национальными

²В случае скопления двух или более изолированных дефектов, подлежащих регистрации, минимальное расстояние между двумя соседними дефектами должно быть, по крайней мере, равно длине большего дефекта.

или международными стандартами (см. 2.5.1) путем визуального осмотра, магнитопорошкового или капиллярного контроля. Для магнитопорошкового контроля стальных отливок, как правило, требуется напряженность магнитного поля, равная 2000 – 6500 А/м.

- 2.5.3.2.2 Поверхность подлежащих контролю отливок должна быть очищена от окалины, грязи, жира, краски, дроби и грунта и должна удовлетворять нормам состояния поверхности для соответствующих методов контроля. Поверхность стальной отливки, подлежащей ультразвуковому контролю, должна быть подвергнута механической или дробеструйной обработке для достижения требуемого качества. Необходимо контролировать отливку на отсутствие перегрева в месте отбора проб.
- 2.5.3.2.3 Если не оговорено иное, магнитопорошковый контроль должен осуществляться на отливке после окончательной механической и термической обработки поверхности. В процессе механической обработки — на глубину не более 0,3 мм для контроля с применением переменного тока, и не более 0,8 мм с применением постоянного тока.
 - 2.5.3.3 Контроль качества поверхности.
- **2.5.3.3.1** Стальные отливки должны подвергаться 100-процентному визуальному осмотру.

Шероховатость необработанных отливок не должна превышать $200\,$ мкм $(R_a)\,$ и должна соответствовать применяемой технологии.

Толщина удаляемых остатков литников, прибылей или заусениц должна быть в пределах допуска на размеры отливки. Указания по применению контроля качества поверхности для поковок распространяются и для отливок.

2.5.3.3.2 Магнитопорошковый контроль или, где это предписывается, капиллярный контроль должен осуществляться, как показано на рис. 2.5.3.3.2-1 — 2.5.3.3.2-6.

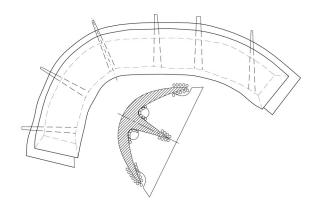


Рис. 2.5.3.3.2-1 Форштевень. Объем контроля. Примечания: 1. Все поверхности: наружный осмотр. 2. Поверхности, указанные (ООО): магнитопорошковый и ультразвуковой контроль

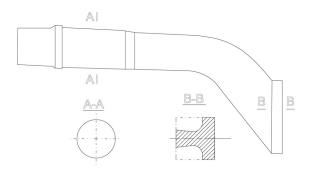
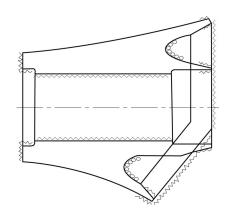



Рис. 2.5.3.3.2-2 Баллер руля. Объем контроля. Примечание. Все поверхности: визуальный осмотр, магнитопорошковый и ультразвуковой контроль

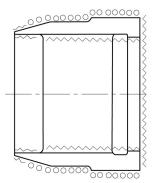


Рис. 2.5.3.3.2-3

Яблоко старнпоста. Объем контроля.
Примечания: 1. Все поверхности: визуальный осмотр.
2. Поверхности, указанные (ООО): магнитопорошковый и ультразвуковой контроль.
3. Поверхности, указанные (^^^^): ультразвуковой контроль

Как правило, капиллярный контроль применяется: для аустенитной нержавеющей стали;

для расшифровки индикаторных следов, выявленных путем визуального осмотра или магнитопорошкового контроля;

по указанию представителя Регистра (как правило, в спорных случаях).

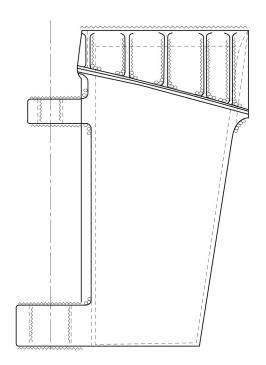


Рис. 2.5.3.3.2-4 Рулевые штыри и петли. Объем контроля. Примечания: 1. Все поверхности: визуальный осмотр. 2. Поверхности, указанные (ООО): магнитопорошковый и ультразвуковой контроль.

3. Поверхности, указанные (^^^): ультразвуковой контроль

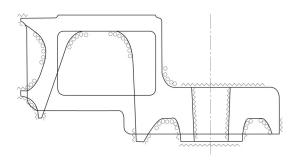


Рис. 2.5.3.3.2-5 Руль (верхняя часть). Объем контроля. Примечания: 1. Все поверхности: наружный осмотр. 2. Поверхности указанные (ООО): магнитопорошковый и ультразвуковой контроль.

3. Поверхности, указанные ($^{\wedge\wedge\wedge\wedge}$): ультразвуковой контроль

При обнаружении дефектов решение о приемке или отбраковке следует принимать с учетом изложенного в 2.5.3.3.3 и согласованных/признанных Регистром стандартов.

2.5.3.3.3 Критерии обнаружения дефектов:

.1 при визуальном осмотре:

на поверхности отливок не должно быть трещин, свищей, сколов, волосовин и других дефектов, препятствующих их использованию по назначению.

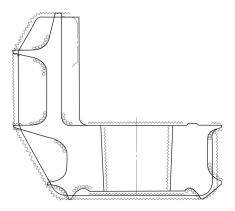


Рис. 2.5.3.3.2-6 Руль (нижняя часть). Объем контроля. Примечания: 1. Все поверхности: наружный осмотр. 2. Поверхности, указанные (ООО): магнитопорошковый и ультразвуковой контроль.

3. Поверхности, указанные (^^^): ультразвуковой контроль

В случае необходимости, даже если не оговорено в заказе или сопроводительной документации, Регистр может потребовать осуществления дополнительного магнитопорошкового или капиллярного контроля;

.2 при магнитопорошковом и капиллярном контроле:

индикаторные следы или дефекты, обнаруженные путем контроля качества поверхности, определяются в соответствии с 2.5.2.3.11.2.

Всю контролируемую поверхность следует условно разделить на единичные контролируемые участки длиной 150 мм для уровня контроля М1/Р1 и плошадью примерно 22500 мм² для уровня контроля М2/Р2. Деление должно быть осуществлено неблагоприятным по отношению к индикаторным следам образом, т. е. форма и размеры каждого участка следует выбирать так, чтобы вместить максимальное число дефектов (несплошностей) без распределения по соседним участкам.

Уровень контроля M1/P1 применяется при подготовке к сварке или заварке дефектов; уровень контроля M2/P2 применяется для всех других поверхностей.

Необходимый уровень контроля указывается изготовителем на чертеже отливки.

Допустимые число и размер дефектов на каждом из участков приводятся в табл. 2.5.3.3.1. Трещины и надрывы не допускаются.

2.5.3.3.4 Зоны контроля качества поверхности.

Зоны контроля качества поверхности показаны на рис. 2.5.3.3.2-1 — 2.5.3.3.2-6, кроме того, дополнительно контроль качества поверхности стальных отливок корпуса и отливок механизмов осуществляется:

в доступных узкостях, утолщениях, изменениях сечений; в местах подготовки под сварку — на полосе шириной 30 мм;

Таблица 2.5.3.3.3.1

M1/P1 4 на 150 мм длины Круглый д² д² д³ д³ д² д² д³ д³ М1/P1 4 на 150 мм длины Динейный д² д² д³ 3 Рядный 4² д² 3 Круглый динейный 10 д³ 7 М2/P2 20 на площади 22500 мм² Линейный 6 5	Уровень контроля	Максимальное число индикаторных следов	Тип индикаторного следа	Максимальное число индикаторных следов каждого типа	Максимальный размер индикаторного следа ¹ , мм
	M1/P1	4 на 150 мм длины	Линейный	4 ² 4 ² 4 ²	5 3 3
Рядный 6 5	M2/P2	20 на площади 22500 мм²	Линейный	10 6 6	7 5 5

¹ При ремонте сваркой максимальный размер индикаторного следа – 2 мм.

² Минимальное расстояние между выявленными индикаторными следами – 30 мм.

в тех местах, где избыточный металл был удален газопламенной резкой, огневой зачисткой или дуговой поверхностной строжкой;

в местах выполнения ремонтной сварки; по требованию представителя Регистра.

2.5.3.4 Ультразвуковой контроль.

- 2.5.3.4.1 Ультразвуковой контроль стальных поковок согласно настоящим требованиям должен осуществляться контактным способом с использованием прямого и/или наклонного искателя. Состояние поверхности отливок должно быть пригодным для осуществления ультразвукового контроля.
- **2.5.3.4.2** Методика, аппаратура и условия осуществления ультразвукового контроля должны соответствовать признанным национальным или международным стандартам (см. 2.5.1). Дополнительные рекомендации к используемой аппаратуре изложены в 2.5.1.7.
- **2.5.3.4.3** Персонал, осуществляющий ультразвуковой контроль, должен иметь квалификацию в соответствии с признанными национальными или международными стандартами. Квалификация удостоверяется свидетельствами (см. 2.5.1).

2.5.3.4.4 Зоны ультразвукового контроля.

Зоны ультразвукового контроля показаны на рис. 2.5.3.3.2-1 – 2.5.3.3.2-6, кроме того, дополнительно ультразвуковой контроль стальных отливок корпуса и отливок механизмов осуществляется:

в доступных узкостях, утолщениях, изменениях сечений;

в местах подготовки под сварку – на расстоянии $50\,$ мм от кромки;

в тех местах, где впоследствии предполагается механическая обработка (например, сверление);

в местах выполнения ремонтной сварки; по требованию представителя Регистра.

2.5.3.4.5 Критерии дефектов.

Критерии приемки отливок указаны в табл. 2.5.3.4.5. Уровень контроля UT1 включает в себя:

контроль в местах подготовки под сварку на расстоянии 50 мм;

контроль на глубину 50 мм от окончательно обработанной поверхности, включая отверстия;

Таблица 2.5.3.4.5 Критерии ультразвукового контроля стальных отливок

Уровень контроля	Допустимый диаметр эталонного плоского отражателя согласно DGS ¹	Максимальное число зарегистрированных индикаторных следов ²	Допустимая длина индикаторного следа (условная протяженность) ³ ,
UT1	> 6	0	0
UT2	12 - 15 >15	5 0	50 0

¹DGS – чувствительность к усилению по расстоянию.

 2 Замеряемая площадь — 300×300 мм.

³Замеряется сканируемая поверхность.

контроль углублений, утолщений и галтелей размером не менее 50 мм и поверхности вокруг них радиусом 50 мм;

контроль по зонам, указанным на рис. 2.5.3.3.2-1 – 2.5.3.3.2-6, на глубину 1/3 толщины отливок, при эксплуатации которых возникают циклические изгибающие напряжения (валы и баллеры);

контроль дефектных областей, таких как надрывы, трещины и т. п., выявленных на отливках другими методами контроля.

Уровень контроля UT2 включает в себя:

контроль других зон, не указанных на рис. 2.5.3.3.2-1 – 2.5.3.3.2-6, или контроль в соответствии с согласованным ранее планом;

контроль области, обозначенной для уровня UT1, в которой была удалена литниковая система;

контроль по указанным на рис. 2.5.3.3.2-1 – 2.5.3.3.2-6 зонам центральной части на глубину 1/3 толщины отливок, при эксплуатации которых возникают циклические изгибающие напряжения (валы и баллеры);

- 2.5.3.5 Исправление дефектов.
- **2.5.3.5.1** Результаты контроля качества поверхности должны регистрироваться с указанием следующих сведений:
 - .1 даты осуществления контроля;
- .2 фамилии и квалификации персонала, осуществляющего неразрушающий контроль;
 - .3 метода контроля;

- .4 типа отливки;
- .5 идентификационного номера изделия;
- .6 категории (марки) стали;
- .7 состояния поставки (вида термической обработки);
- .8 стадии изготовления, на которой осуществлялся контроль;
 - .9 места (зоны) контроля;
 - .10 места регистрации индикаторных следов;
 - .11 состояния (шероховатости) поверхности;
- .12 стандартов, используемых для осуществления контроля;
 - .13 условий осуществления контроля;
- **.14** результатов контроля и уведомления о приемке: «годен/не годен»;
- **.15** мест сварки, отмеченных надлежащим образом на чертежах.
- **2.5.3.5.2** Исправление дефектов производится в соответствии с согласованной с Регистром документацией, в которой отмечаются процедуры выполнения всех возможных видов ремонта отливок.
- 2.5.3.5.3 Дефекты могут исправляться зачисткой или строжкой с последующей зачисткой или сваркой. Заглубления должны иметь плавные переходы с радиусом, примерно равным утроенному значению замеренной глубины зачистки.

Без сварочных операций обычно производится ремонт на механически обработанной поверхности отливки при выявленных дефектах глубиной, не превышающей 15 мм или 10 % толщины стенки отливки, в зависимости от того, что меньше. Наибольший размер ремонтного участка не должен превышать 100 мм.

- **2.5.3.5.4** Ремонт сваркой подразделяется на крупный ремонт, мелкий ремонт и косметический ремонт.
- **2.5.3.5.4.1** Крупный ремонт выполняется в следующих случаях:

когда глубина дефекта превышает 25 % толщины стенки отливки или 25 мм, в зависимости, от того, что меньше;

когда общая площадь ремонта сваркой превышает 2 % площади отливки, при этом, если расстояние между соседними сварными швами меньше, чем их средний размер, они рассматривается как единый сварной шов;

Крупный ремонт выполняется перед окончательной термической обработкой, и его выполнение требует одобрения Регистра. Выполнение ремонта должно быть отмечено в соответствующем чертеже, который является частью документации на отливку при ее изготовлении.

2.5.3.5.4.2 Мелкий ремонт выполняется в случаях, когда общая площадь ремонта сваркой (длина х ширина) превышает 500 мм 2 .

Мелкий ремонт также выполняется перед окончательной термической обработкой.

Выполнение мелкого ремонта обычно не требует одобрения Регистра, но должно быть отмечено в соответствующем чертеже, который является частью документации на отливку при ее изготовлении.

2.5.3.5.4.3 Косметический ремонт выполняется во всех иных случаях ремонта сваркой.

Косметический ремонт не требует одобрения Регистра, может выполняться после окончательной термической обработки, но обычно требует местного снятия остаточных напряжений.

2.5.3.5.5 В соответствии с 3.8 части XIII «Материалы» Правил классификации и постройки морских судов для отливок из углеродистой и углеродисто-марганцевой стали температура и режимы предварительного подогрева и термической обработки для снятия окончательных напряжений зависят от химического состава отливки, ее назначения, конфигурации и мест ремонта. Температура отливки при термической обработке для снятия окончательных напряжений не должна превышать 550 °С.

3 НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

3.1 ПРОЦЕДУРА ОДОБРЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ КОНСТРУКЦИЙ КОРПУСА

3.1.1 Общие положения.

3.1.1.1 Настоящий раздел определяет порядок одобрения следующих защитных покрытий:

антикоррозионные защитные покрытия конструкций корпуса (балластных танков; грузовых пространств, комингсов люков и люковых закрытий навалочных судов);

противообрастающих покрытий корпусов судов.

- **3.1.1.2** Процедура одобрения включает в себя следующие этапы.
- 3.1.1.2.1 Рассмотрение и одобрение документации, определяющей свойства, состав и характеристики покрытия (технические условия, технологические регламенты, технические спецификации или описания и пр., что применимо). В документации должны содержаться применимые требования правил РС, международных конвенций, резолюций ИМО и пр., в том числе по испытаниям покрытий. При отсутствии в правилах РС и других, указанных выше нормативных документах конкретных требований к покрытиям, одобрение технической документации производится с целью фиксации установленных в ней параметров.
- 3.1.1.2.2 Рассмотрение и одобрение программы контрольных испытаний покрытия. Объем испытаний должен предусматривать проверку требований правил РС, международных конвенций, резолюций ИМО и пр. При отсутствии в них конкретных требований по испытаниям объем испытаний покрытия принимается согласно стандартной процедуре изготовителя покрытия.
- 3.1.1.2.3 Участие инспектора РС в испытаниях покрытий по одобренной программе. Могут зачитываться результаты испытаний, выполненных под наблюдением классификационного обществачлена МАКО (протоколы испытаний должны быть им заверены). В данном случае зачитываются испытания, проведенные не более 5 лет назад.
- **3.1.1.2.4** Освидетельствование изготовителя покрытия согласно разд. 7 части I «Общие положения по техническому наблюдению» (при поставке покрытий с копией СТО).
- **3.1.1.2.5** Оформление СТО покрытия при положительных результатах вышеуказанных этапов одобрения.
- **3.1.1.3** Возобновление СТО производится в порядке, аналогичном первоначальному одобрению. При этом объем освидетельствований и испытаний может быть сокращен, исходя из опыта технического наблюдения у данного изготовителя, например при

отсутствии претензий или рекламаций, отсутствии или незначительном характере изменений в требованиях нормативных документов и документации изготовителя и пр.

3.1.2 Антикоррозионные защитные покрытия конструкций корпуса.

3.1.2.1 В представляемой на одобрение документации, определяющей свойства, состав и характеристики покрытия, кроме прочего, должны содержаться следующие сведения:

тип системы покрытия (твердое-эпоксидное и др., полутвердое);

цвет покрытия;

сведения о несовместимости с теми или иными средами и/или грузами;

пригодность для конструкций, нагреваемых солнечными лучами или ограничивающих нагреваемые грузовые помещения;

сведения о совместимости с анодной защитой от коррозии;

сведения об удовлетворительных эксплуатационных качествах покрытия. При их отсутствии покрытия должны быть испытаны согласно признанным стандартам на пригодность к условиям эксплуатации (например, испытание погружением, ускоренное испытание в горячем соляном тумане и испытание на адгезионную прочность).

- **3.1.2.2** В состав документации, представляемой на одобрение должны входить следующие документы.
- **3.1.2.2.1** Перечень технических данных изготовителя по каждому из компонентов покрытия (Технические условия, Спецификация, Technical Data Sheet):
- **3.1.2.2.** Инструкция (стандарт, рекомендации) по подготовке поверхности к нанесению покрытия, содержащая следующую информацию:

инструкция, основанная на рекомендациях резолюции ИМО А.798(19);

методы подготовки поверхности;

условия окружающей среды в случае применения абразивной очистки (относительная влажность не более 85 %, превышение температуры стали над точкой росы не менее чем на 3 °C, отсутствие следов влаги или конденсации);

методы и объемы проверок подготовки поверхности;

критерии оценки подготовки поверхности.

3.1.2.2.3 Инструкция (стандарт, рекомендации) по нанесению покрытия, содержащая следующую информацию:

условия окружающей среды при нанесении системы покрытий;

методы нанесения покрытий;

толщина каждого слоя покрытий (мокрого и сухого);

интервалы времени между сушкой поверхности и нанесением следующего слоя;

использование и количество разбавителей;

контролируемые и фиксируемые параметры при нанесении покрытия;

объем и периодичность контроля;

восстановление дефектных или поврежденных участках.

3.1.2.2.4 Информация о возможных рисках для здоровья и необходимых мерах безопасности при нанесении покрытий (Material Safety Data Sheet).

3.1.2.2.5 Процедура предприятия (изготовителя) по уходу и поддержанию покрытия в процессе эксплуатации, как минимум, должна содержать:

рекомендуемую периодичность проверок покрытия судовладельцем в процессе эксплуатации судна:

способы устранения дефектов, обнаруженных в ходе проверок во время эксплуатации;

информацию о совместимости нанесенного покрытия с покрытиями, применяемыми для ремонта.

Рекомендуется, чтобы процедура учитывала:

Циркуляр ИМО MSC.1/1330 «Инструкция по обслуживанию и ремонту защитных покрытий» и/или;

Рекомендацию МАКО 87 «Руководство по поддержанию состояния и ремонту покрытий балластных цистерн и комбинированных грузовых/ балластных цистерн на нефтеналивных судах».

3.1.2.2.6 Форма сертификата изготовителя покрытия (сертификата качества), оформляемого на каждую партию (поставку) покрытия, должна предусматривать следующее:

наименование предприятия (изготовителя);

дату изготовления;

количество и идентификационные данные поставляемой партии;

характеристики покрытия (тип, марка, цвет и т. п.).

3.1.2.3 Полутвердое покрытие должно иметь следующие свойства:

быть пригодным к нанесению в широком диапазоне температур;

ограничение температуры эксплуатации должно быть не менее 65 $^{\circ}\mathrm{C};$

обладать хорошими проникающими свойствами; где применимо, быть пригодным для нанесения на влажные поверхности, т. е. обработанные струей воды или гидросбивом, в соответствии с рекомендациями изготовителя;

сохранять эластичность в течение всего срока службы;

быть стойким к хождению по нему для проведения проверок;

быть стойким против балластной воды;

быть способным предотвращать коррозию, по меньшей мере, в течение 3 лет;

толщина мокрого слоя должна ограничиваться, чтобы избежать растрескивания или образования скользкой поверхности из-за увеличенной толщины пленки;

предпочтительным является светлый цвет (отличный от ржавчины);

некоторые полутвердые покрытия могут уменьшать коррозию путем пассивации металла с использованием ингибитора коррозии при образовании пленки, предотвращающей проникновение влаги.

3.1.2.4 С 1 июля 2008 г. одобрение защитных покрытий для балластных танков забортной воды всех типов судов и пространств двойных бортов навалочных судов производится в соответствии с резолюцией ИМО MSC. 215(82).

3.1.3 Противообрастающие покрытия корпусов судов.

3.1.3.1 В представляемой на одобрение документации, определяющей свойства, состав и характеристики покрытия, кроме прочего, должны содержаться следующие сведения:

тип противообрастающей системы¹;

наименование изготовителя противообрастающей системы;

наименование и цвет противообрастающей системы; активный(ые) ингредиент(ы) и его(их) номер(а) по базе данных «Chemical Abstract Service» (номер(а) КАС);

состав маркировки емкостей, в которых производится поставка покрытия.

3.1.3.2 В состав документации, представляемой на одобрение, должны входить:

технические данные на покрытие (ТУ, спецификации, технические характеристики/Data Sheet);

данные о безопасности материала (паспорт безопасности материала/Material Safety Data Sheet (такие данные также могут содержаться в ТУ, спецификации));

сертификат изготовителя покрытия (сертификат качества), оформляемого на каждую партию (поставку) покрытия, которая должна предусматривать указанные выше сведения;

протоколы контрольных испытаний (анализа) образцов, подтверждающие отсутствие в составе покрытия оловоорганических соединений (см. 3.1.3.3).

3.1.3.3 Отбор проб и контрольные испытания (анализ) образцов для подтверждения отсутствия в

¹Примерами подходящих формулировок могут быть: самополирующего типа без оловосодержащих органических соединений, абляционного типа без оловосодержащих органических соединений, обычного типа без оловосодержащих органических соединений, краска силиконового типа без биоцидов, другие. В отношении противообрастающей системы, не содержащей активных ингредиентов, должны использоваться слова «без биоцидов».

составе покрытия оловоорганических соединений должны проводиться в признанной Регистром испытательной лаборатории. При отсутствии таковой отбор проб и анализ должны проводиться согласно требованиям резолюции ИМО МЕРС.104(49) в присутствии инспектора Регистра.

- **3.1.3.3.1** В качестве альтернативы контрольным испытаниям могут быть рассмотрены статистические данные анализов данного покрытия, подтвержденные компетентной организацией (см. также 3.1.1.2.3).
- 3.1.3.3.2 Анализ в отношении массы общего содержания олова на один килограмм сухой краски рекомендуется выполнять с помощью массспектрометрии с индуктивно-связанной плазмой (МС/ИСП). Также приемлема любая другая научно признанная процедура анализа олова (например, AAS, XRF и ICP-OES).
- **3.1.3.3.3** Результаты анализа должны соответствовать требованиям резолюции ИМО МЕРС.104(49), а именно, положительным считается, если:
- .1 не более 25 % общего количества проб дают результаты, превышающие 2 500 мг общего содержания олова на один килограмм сухой краски (2 500 мг Sn/кг сухой краски); и
- .2 никакая проба не содержит олова более 3 000 мг Sn/кг сухой краски.
- 3.1.3.4 Если испытательная лаборатория, выполняющая регулярный анализ содержания олова в покрытии, входит в состав изготавителя покрытия, то при освидетельствовании изготовителя одновременно должна быть освидетельствована эта испытательная лаборатория согласно разд. 9 части I «Общие положения по техническому наблюдению».

3.2 ПРОЦЕДУРА ПРИМЕНЕНИЯ СТАНДАРТА КАЧЕСТВА ЗАЩИТНЫХ ПОКРЫТИЙ (РЕЗОЛЮЦИЯ ИМО MSC. 215(82)) ДЛЯ СУДОВ, СПРОЕКТИРОВАННЫХ В СООТВЕТСТВИИ С ОБЩИМИ ПРАВИЛАМИ МАКО ПО КОНСТРУКЦИИ

И ПРОЧНОСТИ НЕФТЕНАЛИВНЫХ СУДОВ С ДВОЙНЫМИ БОРТАМИ И ОБЩИМИ ПРАВИЛАМИ МАКО ПО КОНСТРУКЦИИ И ПРОЧНОСТИ НАВАЛОЧНЫХ СУДОВ

- 3.2.1 Требованиями настоящей главы следует руководствоваться при применении Стандарта качества защитных покрытий для судов, спроектированных в соответствии с Общими правилами МАКО по конструкции и прочности нефтеналивных судов с двойными бортами и Общими правилами МАКО по конструкции и прочности навалочных судов, контракт на строительство которых заключен 8 декабря 2006 года или после этой даты.
- **3.2.2** Настоящую процедуру следует рассматривать совместно с PSPC, приведенным в приложении к резолюции ИМО MSC.215(82).

Применение международных стандартов, упомянутых в PSPC, является обязательным для настоящей главы.

3.2.2.1 Определения.

Техническая документация покрытия — термин, используемый для обозначения совокупности документов, относящихся к системе покрытия и способам его нанесения, куда входят документы, начиная с первого подготовленного документа, и последующие, выдаваемые в течение всего срока службы судна, в том числе инспекционное соглашение и все положения п. 3.4 PSPC.

3.2.3 Процедура одобрения систем покрытия.

Свидетельство о типовом одобрении (СТО) на соответствие требованиям п. 5 PSPC может быть выдано, если результаты любого из методов A + D или B + D или C + D признаны Регистром удовлетворительными.

В СТО должно быть указано об испытаниях продукта и заводского грунтового покрытия². Также в СТО должен быть приведен список других типов одобренных заводских грунтов, с которыми продукт может быть применен, и которые прошли удовлетворительно перекрестные испытания на совместимость с продуктом в лаборатории, отвечающей требованиям 3.2.3.1.1.

К СТО должен быть приложен Лист технических данных (Technical Data Sheet) на продукт, в котором должны быть приведены все данные, требуемые п. 3.4.2.2 PSPC.

Для зимнего типа эпоксидного покрытия требуется проведение отдельного испытания на соответствие PSPC, включая испытания совместимости заводского грунта в соответствии с дополнением 1 к PSPC.

Зимние и летние типы покрытий рассматриваются как разные покрытия, если данные инфракрасной идентификации (IR) и удельной плотности не показывают, что они одинаковы.

- 3.2.3.1 Метод А: лабораторное испытание.
- **3.2.3.1.1** Испытания покрытия на соответствие PSPC должны быть проведены, как указано ниже, испытательной лабораторией, которая признана Регистром и отвечает требованиям разд. 8 части I «Общие положения по техническому наблюдению».
- **3.2.3.1.2** Результаты испытаний (см. п. 1.3 табл. 1 PSPC) системы покрытия должны быть отражены в документах и представлены Регистру.
- 3.2.3.1.3 Испытания в соответствии с приложением 1 к PSPC проводятся для систем покрытий на эпоксидной основе с предложенным заводским грунтом. Если результаты испытаний удовлетворительные, выдается СТО на эпоксидное покрытие с заводским грунтом, прошедшим испытание в составе системы покрытия. СТО допускает нанесение

¹ В дальнейшем – PSPC.

² В дальнейшем – заводской грунт.

эпоксидного покрытия как с испытанным в составе системы заводским грунтом, так и на «голую» подготовленную сталь.

- 3.2.3.1.4 Системы на эпоксидной основе могут применяться с заводским грунтом, который не испытывался в составе данной системы, но который прошел испытания в соответствии с п. 1.7 добавления 1 к дополнению 1 и п. 2.3, 3.2 табл. 1 PSPC, известные как «перекрестные испытания». Если испытание или испытания удовлетворительны, то выдается СТО. В этом случае в СТО приводятся данные об эпоксидном покрытии и перечень всех заводских грунтов, с которыми оно было испытано, и которые отвечают настоящим требованиям. СТО будет позволять применение системы эпоксидного покрытия со всеми указанными заводскими грунтами или нанесение на «голую» подготовленную сталь.
- 3.2.3.1.5 В качестве альтернативы, эпоксидное покрытие может быть испытано без заводского грунта, нанесенного на «голую» подготовленную сталь на соответствие дополнению 1 (Annex 1) PSPC. Если результаты испытания или испытаний удовлетворительны, то выдается СТО. В СТО, в данном случае, указывается покрытие без заводского грунта. СТО позволяет применять покрытие только на «голую» подготовленную сталь без заводского грунта. Если дополнительно с удовлетворительными результатами проведены перекрестные испытания на совместимость с заводскими грунтами, одобренными как часть других систем покрытий, то в СТО должна быть указана информация об этих грунтах. В последнем случае СТО будет позволять применение системы со всеми указанными заводскими грунтами или нанесение их на «голую» подготовленную сталь.
- 3.2.3.1.6 Как правило, одобрение системы покрытий производится на основании испытаний в соответствии с дополнением 1 PSPC. Регистром может быть принят эквивалентный лабораторный метод испытания, включающий одиночное испытание или несколько объединенных испытаний (процедура испытаний). Метод эквивалентных испытаний должен удовлетворять следующему:
- .1 программа/метод испытаний должна быть хорошо известна, подтверждаться опытом и основываться на признанных национальных или международных стандартах;
- .2 программа эквивалентных испытаний должна в достаточной мере соответствовать технической сущности требований к испытаниям дополнения 1 PSPC;
- .3 результаты испытаний образцов в соответствии с эквивалентным методом испытаний, насколько это возможно, должны быть сопоставлены с допустимыми критериями дополнения 1 PSPC. В случае, если такое сопоставление по

- параметрам эквивалентного метода испытаний произвести невозможно, принимаемые критерии эквивалентного метода испытаний должны быть выбраны такие, которые наиболее близки к указанным в дополнении 1 PSPC;
- .4 испытательные лаборатории должны быть признаны Регистром и отвечать требованиям разд. 8 части I «Общие положения по техническому наблюдению» Правил;
- .5 системы покрытий на эпоксидной основе, при одобрении которых принимались эквивалентные методы испытаний, должны применяться на верфи согласно всем требованиям PSPC к подготовке поверхности и нанесению покрытия.
- **3.2.3.1.7** СТО теряет силу, если рецептура эпоксидного покрытия или заводского грунта меняется. За своевременное информирование Регистра об изменениях рецептуры ответственность несет изготовитель покрытия.
 - 3.2.3.2 Метод В: 5-летний период эксплуатации.
- 3.2.3.2.1 Отчеты изготовителей покрытий, включающие, по меньшей мере, информацию, указанную в 3.2.3.2.2, должны быть проверены на соответствие того, что система покрытия использовалась в течение 5 лет, и предъявляемый продукт аналогичен оцениваемому (подвергшемуся эксплуатации).
- **3.2.3.2.2** Должны быть представлены следующие документы изготовителя:

документы, подтверждающие нанесение покрытия; оригинальная спецификация покрытия;

листы технических данных первоначального покрытия;

действующее уникальное обозначение (код или номер);

если соотношение основы и отвердителя изменились, необходимо подтверждение изготовителя о том, что смешенный продукт соответствует первоначальному составу. Также необходимы сопровождающие пояснения об изменениях;

действующие листы технических данных предъявляемого продукта;

данные по удельной плотности и IR (инфракрасной) идентификации оригинального продукта;

данные по удельной плотности и IR идентификации предъявляемого продукта;

подтверждение изготовителя о том, что предъявляемый продукт является аналогом первоначального продукта, если данные по удельной плотности и IR идентификации не могут быть представлены.

3.2.3.2.3 Должны быть представлены отчетные документы Регистра о результатах освидетельствования всех балластных танков выбранного судна, проводимого с целью проверки соответствия требованиям 3.2.3.2.1 и 3.2.3.2.7 или совместного (представитель изготовителя покрытия и инспектор

Регистра) освидетельствования. В обоих случаях определение состояния покрытия должно соответствовать разд. 2 рекомендации МАКО 87.

3.2.3.2.4 Выбранное для проверки защитного покрытия судно должно иметь находящиеся в постоянной эксплуатации балластные цистерны, из которых:

по крайней мере, одна цистерна имеет объем примерно 2000 m^3 ;

по крайней мере, одна цистерна является смежной с нагреваемой цистерной;

по крайней мере, одна цистерна под палубой подвергается нагреву солнцем.

3.2.3.2.5 В случае, если выбранное судно не отвечает требованиям 3.2.3.2.4, ограничения должны быть указаны в СТО. Например: «Покрытие не может использоваться в цистернах, смежных с нагреваемыми цистернами или с верхней палубой, или в цистернах, имеющих объем больше, чем объем освидетельствованных цистерн».

3.2.3.2.6 В случае одобрения по методу В заводской грунт должен быть удален до нанесения одобренной эпоксидной системы покрытия, или должно быть подтверждение того, что заводской грунт, применяемый при строительстве, идентичен по рецептуре заводскому грунту, примененному на выбранном судне.

3.2.3.2.7 Все балластные цистерны должны находиться в «ХОРОШЕМ» состоянии, исключая механические повреждения, без ремонта покрытия или подкрашивания течение всего 5-летнего периода эксплуатации.

3.2.3.2.7.1 «ХОРОШЕЕ» состояние — состояние с пятнами коррозии без видимого повреждения покрытия на площади меньше 3 % от рассматриваемой площади. Коррозия на краях или сварных швах должна быть меньше 20 % от рассматриваемой площади краев и сварных швов.

3.2.3.2.7.2 Примеры описания состояния покрытия на рассматриваемых областях приведены в рекомендации МАКО 87.

3.2.3.2.7.3 Если примененная номинальная толщина сухой пленки (НТСП) больше, чем требуемая PSPC, то она должна соблюдаться при нанесении. Минимальная НТСП указывается в СТО.

3.2.3.2.7.4 Если результат освидетельствования удовлетворительный, то СТО выдается как на покрытие, так и на заводской грунт. СТО позволяет использовать покрытие как с указанным заводским грунтом так и на «голой» подготовленной стали. СТО должно содержать ссылки на отчеты об освидетельствовании, которые также должны быть включены в комплект Технической документации покрытия (ТДП).

3.2.3.2.7.5 СТО теряет силу, если изменилась рецептура эпоксидного покрытия или заводского

грунта. За своевременное информирование Регистра об изменениях рецептуры ответственность несет изготовитель покрытия.

3.2.3.3 Метод C: существующее одобрение Marintek $\mathrm{B1}^1$.

3.2.3.3.1 Могут быть признаны системы покрытий на эпоксидной основе, имеющие удовлетворительные отчеты об испытаниях с минимальным уровнем В1 Магіптек, включая данные по удельной плотности и ІК идентификации, выданные до 8 декабря 2006 г. Если данные по удельной плотности и ІК идентификации не могут быть представлены, необходимо представить подтверждение предприятия (изготовителя) о том, что предъявляемый продукт является аналогом первоначального (испытанного) продукта.

3.2.3.3.2 Отчеты об испытании Marintek с данными по удельной плотности и IR идентификации должны быть представлены Регистру на рассмотрение. При положительных результатах рассмотрения может быть выдано СТО. СТО позволяет наносить систему покрытий на эпоксидной основе на «голую» подготовленную сталь или применять ее с указанным заводским грунтом, если имеется подтверждение того, что грунт совместим с системой.

3.2.3.3.3 Системы покрытий на эпоксидной основе, одобренные настоящим методом, могут применяться с другими заводскими грунтами, если были проведены перекрестные испытания с заводскими грунтами, которые дали удовлетворительные результаты и были одобрены как часть системы (см. 3.2.3.1.4). В данном случае СТО будет включать данные о системе покрытий на эпоксидной основе и список всех заводских грунтов, прошедших испытания. СТО будет позволять применение систем покрытий на эпоксидной основе со всеми указанными заводскими грунтами или нанесение на «голую» подготовленную сталь.

3.2.3.3.4 Такие покрытия могут быть нанесены в соответствии с указаниями табл. 1 PSPC, а не в соответствии с методикой нанесения, использовавшейся при проведении испытания на одобрение, которая может отличаться от PSPC, но только в случае, если эта методика не является более строгой, чем указания табл. 1 PSPC (например, в том случае, если НТСП имеет большее значение, или используется обмыв водой под большим давлением и/или обработка щетками заводского грунта). В таких

¹Marintek (Norwegian Marine Technology Research Institute) Морской научно-исследовательский институт Норвегии.

²NACE – Национальная ассоциация инженеровкоррозионистов, США.

³FROSIO – Орган по обучению и сертификации инспекторов обработки поверхности, Норвегия.

случаях соответствующие ограничения должны быть добавлены в СТО, и они должны соблюдаться при нанесении покрытия верфью.

3.2.3.3.5 СТО теряет силу, если изменилась рецептура эпоксидного покрытия или заводского грунта. За своевременное информирование Регистра об изменениях рецептуры ответственность несет изготовитель покрытия.

3.2.3.4 Метод D: изготовитель покрытия.

3.2.3.4.1 Изготовитель покрытия/заводского грунта должен выполнять требования, изложенные в разд. 7 части I «Общие положения по техническому наблюдению» и 3.2.11, что должно быть проверено Регистром.

3.2.3.4.2 При желании изготовителя получать продукцию, произведенную в его разных подразделениях, под одним названием (маркой) должна применяться инфракрасная (IR) идентификация и проверка удельного веса (плотности) для подтверждения того, что это одно и то же покрытие, в противном случае потребуются индивидуальные испытания для одобрения продукции, изготовленной в каждом подразделении.

3.2.3.4.3 СТО теряет силу, если изменилась рецептура эпоксидного покрытия или заводского грунта. За своевременное информирование Регистра об изменениях рецептуры ответственность несет изготовитель покрытия. Если Регистр не был информирован о таких изменениях, СТО на данный материал аннулируется.

3.2.4 Процедура оценки квалификации инспекторов по покрытиям.

3.2.4.1 Инспекторы по покрытиям, выполняющие освидетельствования в соответствии с п. 6 PSPC, должны иметь квалификацию «NACE². Инспектор по покрытиям уровня II», «FROSIO³. Инспектор по покрытиям уровня III» или эквивалентную квалификацию. Эквивалентные квалификации описаны в 3.2.4.3.

3.2.4.2 Только инспекторы по покрытиям с 2-летним опытом работы, имеющие квалификацию «NACE. Инспектор по покрытиям уровня II», «FROSIO. Инспектор по покрытиям уровня III» или эквивалентную квалификацию, могут составлять и/или одобрять (подписывать) отчетные документы или принимать решения по выполнению корректирующих действий для устранения несоответствий.

3.2.4.3 Эквивалентная квалификация.

3.2.4.3.1 Эквивалентная квалификация представляет собой результат успешно оконченного, как установлено преподавателем, одобренного курса.

3.2.4.3.1.1 Преподаватели курса должны иметь квалификацию «NACE. Инспектор по покрытиям уровня II» или «FROSIO. Инспектор по покрытиям уровня III» или эквивалентную квалификацию и, как минимум, 2-летний практический опыт.

3.2.4.3.1.2 Одобренный курс – курс, в который входит программа обучения, разработанная на основании документов по PSPC и включающая следующие разделы:

здоровье, окружающая среда и безопасность; коррозия;

материалы и проектирование;

международные стандарты, связанные с PSPC;

механизмы отвердения покрытия;

роль инспектора;

испытательные приборы;

процедуры проверки;

спецификация на покрытие;

процедуры нанесения;

дефекты покрытия;

согласование подготовительных работ;

MSDS и рассмотрение листа данных на покрытие; техническая документация на покрытие¹;

подготовка поверхности;

удаление влаги;

обмыв водой;

типы покрытий и критерии проверки;

специализированное прикладное оборудование;

использование процедур контроля приборов для испытания разрушающим и неразрушающим методами;

приборы контроля и методы испытаний;

технические методы контроля покрытия;

катодная защита;

практические упражнения, учебные примеры.

Одобренные курсы могут проводиться производителями покрытий или верфями и т. п.

3.2.4.3.1.3 Такой курс должен включать в себя приемлемую оценку знаний в форме экзамена по теоретической и практической подготовке. Курс и экзамен должны быть одобрены Регистром.

3.2.4.3.2 Эквивалентная квалификация присваивается на основании практического опыта лицам, которые:

имеют, как минимум, 5-летний опыт работ инспектором по покрытиям балластных танков при постройке новых судов за последние 10 лет;

успешно сдали экзамены, указанные в 3.2.4.3.1.3.

3.2.4.4 Ассистент инспектора по покрытиям.

3.2.4.4.1 Если инспектору по покрытиям требуется ассистент при выполнении проверок, под его наблюдением, то такой ассистент должен иметь уровень подготовки, отвечающий требованиям инспектора по покрытиям.

3.2.4.4.2 Уровень подготовки должен быть документирован и заверен инспектором по покрытиям, органом по подготовке персонала на верфи, предприятием или изготовителем контрольного оборудования

¹В дальнейшем — ТДП.

с целью подтверждения компетентности ассистента при использовании оборудования и подтверждении знаний в отношении требований PSPC к замерам.

3.2.4.4.3 Документ, подтверждающий подготовку ассистента, в случае необходимости, должен предъявляться для проверки.

3.2.5 Соглашение по проверке качества нанесения покрытия (п. 3.2 PSPC).

- 3.2.5.1 Соглашение по проверке подготовки поверхности и окрасочным работам должно быть подписано верфью, судовладельцем и производителем покрытия и должно быть представлено верфью в Регистр для рассмотрения до начала каких-либо работ на любой стадии нового строительства и, как минимум, должно соответствовать PSPC.
- **3.2.5.2** Для облегчения рассмотрения соглашения должны быть в наличии следующие документы из ТЛП:
- .1 спецификация по окраске, включая выбор участков (пространств), которые должны быть окрашенными, выбор системы покрытия, подготовки поверхности и способа нанесения;
 - .2 СТО на систему покрытия.
- **3.2.5.3** Соглашение должно быть включено в ТДП и должно, как минимум, содержать:
- .1 описание процесса проверки, включая область проверки, перечень лиц, которым поручена проверка, определение квалификации инспектора по покрытиям и должности квалифицированного инспектора по покрытиям (ответственного за проверку того, что покрытие нанесено в соответствии с PSPC). Если задействовано более одного инспектора по покрытиям, то области ответственности каждого из них должны быть определены (к примеру, между инспекторами распределены строительные участки, подлежащие проверке);
- .2 язык соглашения должен быть идентичен использованному в ТДП.
- **3.2.5.4** Информация о любых отклонениях процедуры от PSPC, обнаруженных при проверке, должна быть передана верфи, которая является ответственной за их выявление и выполнение корректирующих действий.
- **3.2.5.5** Классификационное свидетельство не должно выдаваться на судно до тех пор, пока все требуемые Регистром корректирующие действия не будут выполнены.

3.2.6 Проверка применения PSPC.

3.2.6.1 Проверка требований п. 7 PSPC должна быть выполнена Регистром.

Мониторинг выполнения требований по проверке покрытий, как указывается в п. 7.5 PSPC, означает выборочную проверку использования инспекторами правильного оборудования, технических приемов и

отчетных методов, как указано в процедурах по проверке, рассмотренных Регистром.

- **3.2.6.2** Информация о любых отклонениях от положений 3.2.6.1 должна быть сразу же передана инспектору по покрытиям, который является ответственным за определение и выполнение корректирующих действий.
- **3.2.6.3** Верфь должна быть проинформирована, если корректирующие действия не принимаются Регистром или не выполнены.

Классификационное свидетельство не должно выдаваться до тех пор, пока все требуемые Регистром корректирующие действия не будут выполнены.

3.2.7 Процедура проверки ТДП.

- **3.2.7.1** Верфь является ответственной за формирование ТДП в бумажной или электронной форме или в их комбинации.
- **3.2.7.2** ТДП должна содержать всю информацию, требуемую п. 3.4 PSPC, и соглашение по проверке подготовки поверхности и окрасочным работам (см. п. 3.2 PSPC).
- **3.2.7.3** ТДП должна быть рассмотрена на соответствие п. 3.4.2 PSPC.
- **3.2.7.4** Информация о любых отклонениях от требований 3.2.7.3 должна быть передана верфи, которая является ответственной за определение и выполнение корректирующих действий.
- **3.2.7.5** Классификационное свидетельство не должно выдаваться до тех пор, пока все требуемые Регистром корректирующие действия не будут выполнены.
- 3.2.8 Анализ контроля качества автоматизированных поточных линий для нанесения заводского грунта.
- **3.2.8.1** Учитывая, что требования п. 6.2 PSPC затруднительно применять к автоматизированным поточным линиям для нанесения заводского грунтового покрытия, подход к контролю качества должен быть более практичным для обеспечения соответствия требованиям PSPC.
- **3.2.8.2** В соответствии с требованиями PSPC инспектор по покрытиям несет ответственность за подтверждение того, что процедуры контроля качества отвечают требованиям PSPC.
- **3.2.8.3** При рассмотрении системы качества автоматизированных поточных линий для нанесения заводского грунта должны быть учтены следующие процедуры:
- **.1** процедура по управлению абразивом, включая измерения загрязнения и засоленности;
- **.2** процедура учета температуры поверхности стали, относительной влажности, точки росы;
- .3 процедура контроля или наблюдения за чистотой поверхности, профилем поверхности (шероховатостью), загрязнением маслом, пылью и загрязнением иного рода;

- **.4** процедура учета/измерения засоленности поверхности стали;
- .5 процедура по проверке толщины и степени высыхания заводского грунта для подтверждения значений, указанных в технической спецификации покрытия¹.

3.2.9 Процедура рассмотрения ТСП.

- **3.2.9.1** ТСП должна предоставляться верфью в соответствии с требованиями табл. 1 PSPC.
- **3.2.9.2** ТСП должна содержать процедуру применения, допустимые критерии проверки и т. п., как указано в п. 2 дополнения 1 к PSPC.
- **3.2.9.3** При рассмотрении ТСП на соответствие должны учитываться интерпретации к PSPC, указанные в 3.2.10.

3.2.10 Интерпретации положений PSPC (приложение к резолюции ИМО MSC.215(82)).

Таблица 1, п. 1.3: «Испытания покрытия на соответствие PSPC».

Для зимних типов эпоксидных покрытий требуется проведение отдельных испытаний, включая испытание на совместимость в соответствии с дополнением 1 к PSPC. Зимние и летние типы покрытий рассматриваются как разные, несмотря на то, что показания IR идентификации и удельной плотности показывают на то, что они одинаковы.

Таблица 1, п. 1.4: «Рабочая спецификация».

Два слоя полосового покрытия должны быть применены для всех кромок и сварных швов с дефектами формы шва. Там, где PSPC допускает второе полосовое покрытие, считается приемлемым, если оно не распределяется на зону замеров толщины сухой пленки вдоль сварных швов более, чем на 15 мм от сварного шва.

Для проверки номинальной толщины сухой пленки плоских поверхностей достаточно провести статистические выборочные замеры (измерение толщины сухой пленки), перечисленные в приложении 3 к PSPC.

На гладких поверхностях сварных швов автоматической сварки может применяться одно полосовое покрытие, если будет подтверждено, что номинальная толщина сухой пленки будет обеспечена при замере толщины покрытия после второго основного слоя.

Таблица 1, п. 1.5: «НТСП».

Для контроля характеристик должна регулярно проверяться толщина несформировавшегося (мокрого) слоя в процессе его нанесения. PSPC не регламентирует, кто должен проверять толщину мокрого слоя. Контроль толщины сухой пленки выполняется, как часть проверок по п. 6 PSPC.

Полосовые покрытия должны наноситься ровной

пленкой и без видимых дефектов, которая должна указывать на хорошее формирование покрытия. Применяемый метод нанесения должен обеспечивать, чтобы все участки, для которых требуется полосовое покрытие, были должным образом окрашены кисточкой или валиком. Валик может быть использован для пор раковин и т. д., но не для краев и сварных швов.

Таблица 1, п. 2.1 — 2.3, 3.6.

Концентрация растворимых солей измеряется в соответствии со стандартами ИСО 8502-6 и ИСО 8502-9 и сравнивается с концентрацией 50 мг/м² NaCl. Если измеренная концентрация меньше или равна 50 мг/м² NaCl, результат считается удовлетворительным.

Минимальное число замеров, которые должны быть выполнены, — один замер на блок/секцию/изделие до нанесения покрытия или, в случае ручного нанесения заводского грунта, один замер на лист. В случае, если используется автоматизированный процесс нанесения заводского грунта, должны быть представлены способы демонстрации соответствия PSPC по средствам системы контроля качества, в которую должны быть включены ежемесячные испытания.

При анализе контроля качества автоматизированных поточных линий для нанесения заводского грунта следует руководствоваться 3.2.8.

Таблица 1, п. 3.3: «Обработка поверхности после сборки».

Обычно, угловые сварные соединения на границах цистерны с водонепроницаемой переборкой оставляют без покрытия на стадии формирования секций (по причине того, что впоследствии необходимо проведение испытаний для проверки непроницаемости). В случае, если эти соединения являются стыковочными соединениями секций, они должны быть очищены механизированным инструментом до степени St3.

Таблица 1, п. 3.6: «Концентрация водорастворимых солей, эквивалентных NaCl, после абразивоструйной обработки или обработки механизированным инструментом».

Концентрация растворимых солей измеряется в соответствии со стандартами ИСО 8502-6 и ИСО 8502-9 и сравнивается с концентрацией 50 мг/м 2 NaCl. Если измеренная концентрация меньше или равна 50 мг/м 2 NaCl, результат считается удовлетворительным.

Все растворимые соли оказывают отрицательный эффект в меньшей или большей степени. Стандарт ИСО 8502-9 не указывает действительное значение концентрации NaCl. Процентное содержание NaCl в общем содержании водорастворимых солей будет изменяться от случая к случаю. Минимальное число замеров, которые должны быть выполнены, — один замер на блок/секцию/изделие до нанесения покрытия.

¹В дальнейшем – ТСП.

Таблица 1, п. 4.3: «Испытание покрытия (проверка)».

Все замеры ТСП должны быть выполнены и отражены в отчетных документах. В соответствии с требованиями PSPC только окончательные замеры ТСП должны быть отражены в отчетных документах квалифицированным инспектором по покрытиям. Техническая документация на покрытие может содержать всю информацию по замерам, которая обычно содержит максимальные и минимальные значения замеров, число замеров и процент замеров больших и меньших, чем требуется ТСП. Окончательная ТСП должна быть пересчитана и подтверждена в соответствии с правилом 90/10 (см. п. 2.8 PSPC).

3.2.11 Изготовитель покрытия (см. 3.2.3.4.1).

- **3.2.11.1** Область применения производство систем покрытий в соответствии с резолюцией ИМО MSC.215(82) и 3.2.
- **3.2.11.2** Настоящие требования применяются как к изготовителю заводского грунта, так и к изготовителю основного покрытия, если эти покрытия являются составляющими системы покрытия.
- **3.2.11.3** Изготовитель покрытия должен представить Регистру следующую информацию:

перечень производственного оборудования (мощностей);

название и адрес поставщика сырья (исходного материала);

подробный перечень используемых стандартов и оборудования (в объеме одобрения);

подробную информацию о применяемых процедурах контроля качества;

подробную информацию о договорах с субподрядчиками;

перечень руководств по качеству, процедур испытаний и инструкций, отчетных документов и т. п.;

копию любого соответствующего свидетельства с номерами и/или датой выдачи (например, по сертификации системы менеджмента качества).

- **3.2.11.4** Проверки производственных мощностей должны основываться на требованиях резолюции ИМО MSC.215(82).
- 3.2.11.5 Не допускается корректировка рецептуры без ограничений, исключая «подгонку» пропорций на ранней стадии изготовления при переходе от лаборатории к производству, вне указанных ниже ограничений, за исключением случаев, когда они вносятся на основании испытаний, проводимых в составе программы по разработке системы покрытия, или последующих испытаний. Любые подобные изменения следует согласовывать с техническим центром изготовителя.
- **3.2.11.6** Если корректировка рецептуры предусматривается в процессе производства, максимально допустимые пределы должны одобряться

техническим центром и четко указываться в рабочих процедурах контроля качества.

- 3.2.11.7 Система контроля качества изготовителя должна гарантировать, что вся текущая продукция изготавливается по технологии, предусмотренной СТО. Изменение технологии недопустимо без испытаний в соответствии с процедурой резолюции ИМО MSC.215(82) и выдачи СТО Регистром.
- **3.2.11.8** Документы на партию покрытий, включая данные об испытаниях по системе качества, такие как вязкость, удельная плотность и характеристики безвоздушного распыления, должны тщательно регистрироваться. Дополнительные данные также должны учитываться.
- 3.2.11.9 По возможности должна прослеживаться информация о поставках сырья и серий каждой партии покрытия. Исключение может быть сделано, если оптовые материалы, такие как растворители и предварительно растворенные эпоксидные смолы, хранятся в цистернах; в таком случае имеется возможность учесть только данные поставщика.
- **3.2.11.10** Даты, номера партий, данные поставок для каждого контракта на покрытие должны тщательно регистрироваться.
- **3.2.11.10.1** Все поставки сырья должны снабжаться сертификатом соответствия поставщика. Сертификат должен включать все требования, приведенные в системе контроля качества изготовителя покрытия.
- **3.2.11.10.2** При отсутствии сертификата соответствия поставщика на сырье изготовитель покрытия должен проверить соответствие сырья всем требованиям, перечисленным в его системе контроля качества.
- **3.2.11.10.3** Емкости с краской должны иметь четкую маркировку с информацией, указанной в СТО.
- **3.2.11.10.4** Листы технических данных продукции должны соответствовать требованиям PSPC. Все Листы технических данных продукции должны быть действующими согласно системе контроля качества.
- **3.2.11.10.5** Процедуры контроля качества технического центра должны удостоверять, что все производственные установки отвечают приведенным выше положениям, а вся поставка сырья одобрена техническим центром.
- 3.3 ПРИМЕНЕНИЕ СТАНДАРТА КАЧЕСТВА ЗАЩИТНЫХ ПОКРЫТИЙ, СПЕЦИАЛЬНО ПРЕДНАЗНАЧЕННЫХ ДЛЯ ЗАБОРТНОЙ ВОДЫ БАЛЛАСТНЫХ ТАНКОВ НА СУДАХ ВСЕХ ТИПОВ И ПОМЕЩЕНИЙ ДВОЙНОГО БОРТА НА НАВАЛОЧНЫХ СУДАХ, В СООТВЕТСТВИИ С ПРАВИЛОМ II-1/3-2 СОЛАС-74 (РЕЗОЛЮЦИЯ ИМО MSC.215(82))
- **3.3.1** Настоящая глава дополняет положения PSPC и применяется для защитных покрытий,

специально предназначенных для забортной воды балластных танков на судах всех типов и помещений двойного борта на навалочных судах, в соответствии с правилом II/1/3-2 СОЛАС-74, принятого резолюцией ИМО MSC.215(82).

Настоящую главу необходимо читать совместно с PSPC.

- **3.3.2** Интерпретации к 2.6, раздел 2 «Определения» PSPC.
- .1 «ХОРОШЕЕ» состояние с пятнами коррозии без видимого повреждения покрытия на площади менее 3 % от рассматриваемой площади. Коррозия на краях или сварных швах должна быть менее 20 % от рассматриваемой площади краев и сварных швов;
 - .2 применяется 3.2.2.1.
- **3.3.3** Интерпретации к 3.2, раздел 3 «Общие принципы» PSPC:
 - .1 применяется 3.2.5.
- **3.3.4** Интерпретации к 3.4 «Техническая документация покрытия», раздел 3 «Общие принципы» PSPC:
 - .1 применяются 3.2.7.1 3.2.7.4;
- .2 Свидетельство о безопасности пассажирского судна или Свидетельство о безопасности грузового судна или Свидетельство о безопасности грузового судна по конструкции не должны быть выданы, пока все требуемые корректирующие действия не будут выполнены к удовлетворению Регистра.
- **3.3.5** Интерпретации к 3.5 «Охрана труда и безопасность», раздел 3 «Общие принципы» PSPC:
- .1 для того, чтобы документ отвечал 3.5 PSPC, рекомендуется, чтобы в ТДП была включена соответствующая документация производителя, касающаяся аспектов безопасности и здоровья, такая как Паспорт безопасности материала (Material Safety Data Sheet).
- **3.3.6** Интерпретации к 4.3 «Специальное нанесение покрытия», раздел 4 «Стандарт покрытия» PSPC:
- .1 следует учитывать рекомендательный циркуляр ИМО MSC.1/Circ.1279 от 23.05.2008 «Инструкция по защите от коррозии постоянных средств доступа».

- 3.3.7 Интерпретации к таблице 1 PSPC:
- .1 ссылки на стандарты.

Стандарты, на которые дается ссылка в таблице 1 PSPC, являются обязательными.

.2 пункт 1.3 «Преквалификационные испытания».

Применяются 3.2.3 и 3.2.10, за исключением 3.2.3.1.5 - 3.2.3.1.7;

.3 пункт 1.4 «Рабочая спецификация».

Применяется 3.2.10;

.4 пункт 1.5 «НТСП (номинальная толщина сухой пленки)».

Применяется 3.2.10;

.5 пункт 2.

Применяются 3.2.10 и 3.2.8;

.6 пункт 3.3.

Применяется 3.2.10;

.7 пункт 4.3.

Применяется 3.2.10.

3.3.8 Интерпретации к 5 PSPC.

Применяются 3.2.3 и 3.2.10.

3.4 ПРОЦЕДУРА ПРИМЕНЕНИЯ СТАНДАРТА КАЧЕСТВА ЗАЩИТНЫХ ПОКРЫТИЙ ПУСТЫХ ПОМЕЩЕНИЙ НАВАЛОЧНЫХ СУДОВ И НЕФТЕНАЛИВНЫХ СУДОВ (РЕЗОЛЮЦИЯ ИМО MSC.244(83))

- 3.4.1 При применении резолюции ИМО MSC.244(83) (см. 6.5.1.2, часть XIII «Материалы» Правил классификации и постройки морских судов) следует руководствоваться положениями 3.2 с учетом положений настоящей главы, за исключением 3.2.3.2 и интерпретации в 3.2.10 к 1.4 «Рабочая спецификация», таблица 1 PSPC.
- **3.4.2** Здесь ссылки в 3.2 на PSPC и резолюцию ИМО MSC.215(82) следует читать как ссылки на резолюцию ИМО MSC.244(83).
- **3.4.3** При применении 3.2.10 (интерпретации к 3.6, таблица 1 PSPC) следует учитывать, что минимальная концентрация NaCl, требуемая резолюцией ИМО MSC.244(83) 100 мг/м^2 .

4 СВАРКА. ПРАВИЛА АТТЕСТАЦИИ СВАРЩИКОВ

4.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **4.1.1** Допуск сварщиков является обязательной процедурой, которая применяется Регистром с целью подтверждения квалификации рабочих сварщиков, занятых при изготовлении объектов технического наблюдения Регистра.
- **4.1.2** Документом, удостоверяющим, что конкретный сварщик удовлетворяет всем требованиям, установленным разд. 5 части XIV «Сварка» Правил классификации и постройки морских судов и настоящим разделом, является Свидетельство о допуске сварщика (СДС) (форма 7.1.30).
- **4.1.3** Основанием для выдачи СДС является успешная сдача последним теоретического и практического экзаменов.
- **4.1.4** Порядок проведения испытаний сварщиков и выдачи СДС должен соответствовать требованиям разд. 5 части XIV «Сварка» Правил классификации и постройки морских судов и изложенным ниже требованиям.

4.2 ТРЕБОВАНИЯ К ПОРЯДКУ ПРОВЕДЕНИЯ И ОРГАНИЗАЦИИ АТТЕСТАЦИИ СВАРШИКОВ

- **4.2.1** Испытания по допуску сварщиков должны проводиться в централизованном порядке по заявке предприятий-работодателей в аттестационных центрах удостоверенной Регистром компетенции.
- **4.2.2** Аттестационные центры могут создаваться на предприятиях, в учебных заведениях, специализированных организациях и учреждениях, располагающих квалифицированными специалистами по сварке и необходимой для подготовки и проведения испытаний сварщиков учебно-испытательной базой.
- **4.2.3** Структура аттестационного центра должна предусматривать наличие следующих основных компонентов, обеспечивающих его функционирование:

руководство;

аттестационная комиссия;

обслуживающий персонал, обеспечивающий проведение всех видов испытаний и функционирование оборудования;

основное и вспомогательное производственное оборудование для проведения практических испытаний;

оборудование, инструмент и средства измерений для проведения испытаний сварных соединений;

помещения для проведения практических и теоретических испытаний сварщиков.

4.2.4 Рабочим органом аттестационного центра, непосредственно проводящим аттестацию сварщиков, является постоянно действующая аттестационная комиссия.

Инспектор Регистра, осуществляющий техническое наблюдение за проведением испытаний, является членом аттестационной комиссии и должен присутствовать при проведении всех видов испытаний, результаты которых он удостоверяет.

- **4.2.5** При проведении освидетельствования аттестационного центра с целью подтверждения его компетенции инспектор Регистра должен выполнить следующие работы:
- .1 рассмотрение Положения об аттестационном центре с приложениями (положительный результат оформляется постановкой штампа «Принято к сведению»);
- .2 рассмотрение и одобрение программы теоретического обучения и перечня вопросов экзаменационных билетов (постановка штампа «Одобрено»);
- .3 рассмотрение и одобрение программы проведения практических испытаний сварщиков (постановка штампа «Одобрено»), а также заполненных для проведения практических испытаний бланков спецификаций процесса сварки (подписываются инспектором и заверяются личным штампом);
- **.4** освидетельствование материальной базы, включающее:

процесс подготовки проб для практических испытаний сварщиков (листы и трубы);

организацию хранения и выдачи сварочных материалов для практических испытаний (наличие и техническое состояние прокалочных печей, термошкафов и термопеналов для хранения);

организацию предварительной проверки качества сварочных материалов перед их выдачей для испытаний (наличие пресса для излома тавровых образцов, наличие и исправность эксцентриметра для контроля эксцентричности покрытия электродов, оборудование для измерения влажности покрытия электродов и флюсов или для контроля содержания диффузионного водорода в наплавленном металле и т. п.);

проверку наличия и функционирования оборудования для выборки корня шва (газоэлектрическая строжка, выборка абразивным инструментом или механическая строжка);

проверку наличия и функционирования оборудования для выполнения неразрушающего контроля

сварных соединений (ультразвуковой контроль, радиографический контроль, магнитопорошковая и цветная дефектоскопия).

Примечание. В том случае, если контроль сварных соединений выполняется сторонними организациями, то в аттестационном центре должен иметься негатоскоп для контрольного просмотра рентгеновских снимков;

проверку наличия контрольно-измерительного инструмента для контроля сварных соединений внешним осмотром и измерением (контролируются акты поверки инструмента);

проверку наличия и функционирования оборудования для проведения механических испытаний сварных соединений (контролируются акты госповерки испытательных машин).

Примечание. При аттестации сварщиков по сварке нержавеющих сталей требуется наличие оборудования для проведения испытаний на МКК и для анализа содержания ферритной составляющей в металле шва;

проверку наличия и исправности оборудования для проведения практических испытаний, включая освидетельствование постов для тех методов сварки, которые предъявляются для допуска сварщиков;

проверку исправности систем местной (сварочные посты) и общей приточно-вытяжной вентиляции в помещениях для практических испытаний;

проверку исправности КИП для замеров параметров режима сварки, включая межпроходную температуру (контролируются акты поверки);

- .5 освидетельствование квалификации персонала, занятого при проведении испытаний, включая членов аттестационной комиссии и обслуживающего персонала;
- освидетельствование помещения, предназначенного для работы членов аттестационной комиссии;
- .7 проверка наличия контрольных образцов НТД, на которую даны ссылки в программах теоретических и практических испытаний (включая перечни контрольных вопросов).
- 4.2.6 Если аттестационный центр организован на базе производственного предприятия, выполняющего работы по сварке конструкций под техническим наблюдением Регистра, и его деятельность ограничена проведением аттестации сварщиков собственного предприятия, то процедура признания центра Регистром с оформлением соответствующих документов может не применяться.
- **4.2.7** Все аттестационные центры, занятые обучением и/или аттестацией рабочих сварщиков сторонних организаций на коммерческой основе с образованием или без образования юридического лица, подлежат признанию Регистром.

По результатам сертификации оформляется Свидетельство о соответствии предприятия (ССП) (форма 7.1.27). При этом взаимные обязательства и обязанности сторон регулируются Договором о техническом наблюдении, прилагаемом к ССП.

4.2.8 Аттестация сварщиков подразделяется на первичную, дополнительную, периодическую и внеочередную.

К первичной аттестации допускаются сварщики не моложе 18 лет, ранее не проходившие испытания на допуск к сварке объектов и оборудования, подлежащего техническому наблюдению Регистра, имеющие свидетельство о присвоении квалификации сварщика и производственный стаж выполнения сварочных работ по присвоенной квалификации не менее 12 месяцев, а также прошедшие специальную теоретическую и практическую подготовку по программам, составленным индивидуально для каждого вида работ и для каждого способа сварки с учетом специфики работ, по которым сварщик подлежит аттестации.

Дополнительная аттестация сварщиков, прошедших первичную аттестацию, выполняется перед допуском к выполнению работ, не указанных в СДС, а также после перерыва в выполнении соответствующих сварочных работ свыше 6 месяцев.

Периодическую аттестацию проходят все сварщики в целях подтверждения уровня их профессиональной квалификации и продления срока действия СДС в соответствии с требованиями 3.6. Срок периодической аттестации – не реже одного раза в 2 года.

Внеочередную аттестацию проходят сварщики перед допуском к выполнению сварочных работ после временного отстранения от работы за неудовлетворительное качество и нарушение технологии сварки. Срок подготовки для внеочередной аттестации (для дополнительного обучения и тренировки) — не менее одного месяца с даты отстранения от работы.

При дополнительной, периодической и внеочередной аттестациях объем специальной теоретической и практической подготовки устанавливается аттестационной комиссией и подлежит согласованию с Регистром в индивидуальном порядке.

4.2.9 Для проведения Регистром работ по допуску сварщиков администрации предприятия надлежит направить в региональное подразделение Регистра, осуществляющее наблюдение за сварочными работами на этом предприятии, заявку, в которой должны быть указаны:

наименование и адрес аттестационного центра, в котором будет проводиться аттестация сварщиков;

список рабочих, подлежащих аттестации, в котором указываются (для каждого аттестуемого) фамилия, имя, отчество, год и место рождения, место работы, специальность и квалификационный разряд, стаж работы, по которой предусмотрена аттестация;

копии документов, подтверждающих профессиональную квалификацию рабочих по тому виду работ, на который должна проводиться аттестация;

способ сварки, пространственные положения и другие сведения, необходимые для проведения аттестации и заполнения бланка СДС;

гарантии оплаты услуг Регистра согласно действующим тарифам.

Примечание. Если в соответствии с заключенным Соглашением (см. 4.2.7) оплата услуг Регистра выполняется через аттестационный центр, заявка на проведение работ может исходить непосредственно от его администрации.

4.3 ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ, ПРИМЕНЯЕМЫЕ ПРИ ДОПУСКЕ СВАРЩИКОВ

4.3.1 Термины и определения.

Аттестация — совокупность действий по определению уровня квалификации сварщика с целью установления возможности его допуска к выполнению конкретного вида сварочных работ.

Аттестационная комиссия – группа специалистов аттестационного центра, ответственная за организацию и достоверность результатов работ по аттестации сварщиков.

Аттестационный центр — компетентная организация, уполномоченная Регистром проводить испытания по аттестации сварщиков согласно требованиям правил Регистра.

Допуск – специальная процедура, предусматривающая установление квалификации сварщика посредством его аттестации и выдачу официального документа – Свидетельства о допуске сварщика (форма 7.1.30), удостоверяющего разрешение на право выполнения сварочных работ на подлежащих техническому наблюдению Регистра объектах в пределах установленной СДС области одобрения.

Заполняющий проход (проходы) — при многослойной сварке валик (валики), наплавленный после корневого прохода и до выполнения облицовочного прохода.

Корневой проход — при многослойной сварке валик (валики) первого слоя, наплавленный в корне шва.

Область одобрения – пределы признания Регистром квалификации сварщика на основании выполненных при аттестации испытаний.

Облицовочный проход — при многослойной сварке валик (валики), видимый на поверхности шва после завершения сварки.

Образец – часть пробы, используемая для проведения разрушающих испытаний.

Подкладка — материал, расположенный с обратной стороны подготовленного к сварке соединения с целью поддержания расплавленного металла шва.

Проба – сваренная деталь, используемая при практических испытаниях по аттестации сварщиков.

С в а р щ и к — лицо, выполняющее сварку металлов. Общее понятие для сварщика ручной сварки различными способами и сварщика-оператора установок для полуавтоматической и автоматической сварки.

Свидетельство о допуске сварщика (СДС) — документ Регистра, удостоверяющий, что конкретный сварщик успешно выдержал испытания по аттестации в объеме требований правил Регистра и допускается к выполнению сварочных работ на конструкциях, подлежащих техническому наблюдению Регистра в пределах определенной в Свидетельстве области одобрения.

Толщина металла шва — толщина металла шва за исключением усиления.

4.3.2 Условные обозначения, относящиеся к технологии сварки и сварочным материалам.

- **4.3.2.1** Аттестация сварщиков проводится раздельно для каждого из следующих способов сварки (условное цифровое обозначение соответствует Стандарту ИСО 4063):
- 111 ручная дуговая сварка покрытыми электродами (SMAW или MMAW);
- 114 дуговая сварка порошковой проволокой без дополнительной газовой защиты (FCAW);
- 121 дуговая сварка под слоем флюса одним проволочным электродом (SAW);
- 125 дуговая сварка под слоем флюса порошковой проволокой;
- 131 дуговая сварка сплошной проволокой в среде инертного газа (MIG);
- 135 дуговая сварка сплошной проволокой в среде активного защитного газа (MAG);
- 136 дуговая сварка порошковой проволокой в среде активного защитного газа (FCAW);
- 137 дуговая сварка порошковой проволокой в среде инертного защитного газа (FCAW);
- 141 дуговая сварка неплавящимся (вольфрамовым) электродом в среде инертного газа с присадочной проволокой или без нее (TIG);
 - 15 плазменная сварка;
 - 311 газовая (ацетилено-кислородная) сварка;
 - 73 электрогазовая сварка;
 - 72 электрошлаковая сварка.
- **4.3.2.2** Аттестация сварщиков производится раздельно для каждого из перечисленных ниже процессов сварки, различающихся степенью механизации труда сварщика:
- MW ручная сварка, при которой подача присадочной проволоки и перемещение сварочной горелки вдоль и поперек шва выполняются сварщиком (вручную);
- SA полуавтоматическая сварка, при которой подача сварочной проволоки механизирована, а процесс перемещения горелки вдоль и поперек шва выполняются сварщиком;

А – автоматическая сварка, при которой процессы подачи сварочной проволоки и манипулирования движением сварочной горелки автоматизированы и выполняются без непосредственного участия сварщика.

4.3.2.3 При назначении области одобрения СДС для способов сварки 111, 114, 131, 135, 136, 137 должны применяться условные обозначения типов покрытия электродов, типа проволоки и наполнителя порошковой проволоки в соответствии с изложенными ниже указаниями.

В соответствии со Стандартами ИСО 2560 и EN 499 в зависимости от состава тип покрытия электродов (способ сварки 111) обозначается следующими индексами:

А – кислое (окислительное) покрытие;

В – основное покрытие;

С – целлюлозное покрытие;

R – рутиловое покрытие;

RA(AR) – смешанное рутилово-кислое покрытие;

RB – смешанное рутилово-основное покрытие;

RC – смешанное рутилово-целлюлозное покрытие;

RR – рутиловое покрытие увеличенной толщины.

Применение сплошной проволоки для способов сварки 131 и 135 обозначается индексом S.

В соответствии со Стандартом EN758 в зависимости от состава тип наполнителя сварочной порошковой проволоки (способы сварки 114, 136 и 137) обозначается индексами согласно указаниям табл. 4.3.2.3.

4.3.2.4 Для обозначения состава защитного газа, применяемого для практических испытаний сварщиков, используются унифицированные со Стандартом EN 439 буквенно-цифровые индексы, приведенные в табл. 4.3.2.4-1 и 4.3.2.4-2.

Таблица 4.3.2.3 Условные обозначения типов наполнителя сварочной порошковой проволоки согласно Стандарту EN 758

Символ	Характеристика	Типы сварного шва	Защитный газ		
R P	Рутиловый, медленно твердеющий шлак Рутиловый, быстро твердеющий шлак	Одно- и многопроходный Одно- и многопроходный	Требуется Требуется		
M M	The state of the s				
V Рутиловый или основной/фтористый Однопроходный Не требуется W Основной/фтористый, медленно твердеющий шлак Одно- и многопроходный Не требуется					
Y Основной/фтористый, быстро твердеющий шлак Z Другие типы Одно- и многопроходный Не требуется — —					
Примечание. Описание каждого типа наполнителя приведено в приложении 7.					

Таблица 4.3.2.4-1 Классификация защитных газов для дуговой сварки и резки согласно Стандарту EN 439

Обозначен	значение состава Содержание компонентов, % об.			Обычная область приме-				
Группа	Кодовый номер	Окисл	яющие	Инер	тные	Восстанавли- вающие	Мало- активные	нения (по способам сварки)
		CO_2	O_2	Ar	Не	H_2	N_2	
R	1	_	_	Основа ^{1,2}	_	> 0 — 15	_	141, 15, защита
	2	_	_	Основа ^{1,2}	_	> 15 — 35	_	корня шва
I	1	_	_	100	_	_	_	131, 137, 141,
	2	_	_	_	100	_	_	15 защита
	3	_	_	Основа ²	> 0 — 95	_	_	корня шва
M1	1	> 0 — 5	_	Основа 1,2	_	> 0 — 5	_	135 и 136
	2	> 0 — 5	_	Основа1,2	_	_	_	
	3	_	> 0 — 3	Основа ^{1,2}	_	l –	_	
	4	> 0 — 5	> 0 — 3	Основа ^{1,2}	_	_	_	
M2	1	> 5 — 25	_	Основа ^{1,2}	_	_	_	135 и 136
	2	_	> 3 — 10	Основа ^{1,2}	_	_	_	
	3	> 0 — 5	> 3 — 10	Основа 1,2	_	l –	_	
	4	> 5 — 25	> 0 — 8	Основа ^{1,2}	_	l –	_	
M3	1	> 25 — 50	_	Основа ^{1,2}	_	_	_	135 и 136
	2	_	> 10 — 15	Основа ^{1,2}	_	l –	_	
	3	> 5 — 50	> 8 — 15	Основа1,2	_	_	_	
C	1	100	_	_	_	l –	_	135 и 136
	2	Основа	> 0 — 30	_	_	_	_	
F	1	_	_	_	_	l –	100	Защита корня
	2	_	_	_		> 0 — 50	Основа	шва

¹ До 95 % аргона может быть заменено гелием. Доля гелия указывается дополнительным кодовым индексом после обозначения состава согласно табл. 4.3.2.4-2.

² Одобрение действительно только для смесей защитных газов с аналогичным или более высоким содержанием гелия по отношению к номинальному составу смеси при испытаниях по одобрению.

При применении смесей газов, которые не приведены в таблице, они обозначаются индексом S с последующей расшифровкой состава. Одобрение действует только в пределах номинального состава смеси, применяемой при испытаниях по одобрению.

Таблица 4.3.2.4-2 Кодовые индексы для групп R и M, содержащих гелий

Кодовый индекс	Содержание гелия в смеси газов, % об
(1)	> 0 — 33
(2)	> 33 — 66
(3)	> 66 — 95

- **4.3.2.5** Для обозначения типа флюса, применяемого для практических испытаний сварщиков, используются унифицированные со Стандартом EN 760 буквенные индексы, характеризующие способ изготовления:
 - F плавленный флюс;
 - А агломерировенный (керамический) флюс;
- М смешанные флюсы (различные виды механических смесей и спекаемые флюсы).
- **4.3.2.6** Для обозначения состава флюса, применяемого для практических испытаний сварщиков, могут использоваться унифицированные со Стандартом EN 760 буквенные индексы согласно указаниям табл. 4.3.2.6.
- **4.3.2.7** Для обозначения наличия присадочного металла, участвующего в формировании шва, при аттестации сварщиков употребляются следующие условные индексы:
 - wm сварка с подачей присадочного металла,

nm — сварка без присадочного материала, т. е. шов формируется только за счет расплавления основного металла.

4.3.3 Условные обозначения, относящиеся к основному металлу и типу соединения.

- **4.3.3.1** Аттестация сварщиков по результатам практических испытаний выполняется применительно к группам типового состава основного металла согласно табл. 4.3.3.1-1, 4.3.3.1-2 и 4.3.3.1-3.
- **4.3.3.2** Для аттестации сварщиков выделяются в самостоятельные группы следующие особенности выполнения сварных соединений, которые должны кодироваться с применением следующих индексов:
 - .1 стыковые швы BW:
- ss nb сварка односторонним швом без подкладок;
- ss mb сварка односторонним швом с применением подкладок;

Таблица 4.3.2.6 Классификация сварочных флюсов по химическому составу компонентов согласно Стандарту EN 760

Ин-	Наименование	Характеристика ха	имического состава
декс		Компоненты	Ограничения по содержанию %, масс
MS	Кремнемарганцовистые	MnO + SiO ₂ CaO	Мин. 50 Макс. 15
CS	Кремнекальциевые	$\begin{array}{c} {\rm CaO + MgO + SiO_2} \\ {\rm CaO + MgO} \end{array}$	Мин. 55 Мин. 15
ZS	Кремнециркониевые	$ZrO_2 + SiO_2 + MnO$ ZrO_2	Мин. 45 Мин. 15
RS	Рутилокремниевые	$ ext{TiO}_2 + ext{SiO}_2 \ ext{TiO}_2$	Мин. 50 Мин. 20
AR	Алюморутиловые	$Al_2O_3 + TiO_2$	Мин. 40
AB	Алюмоосновные	$\begin{array}{c} \text{Al}_2\text{O}_3 + \text{CaO} + \text{MgO} \\ \text{Al}_2\text{O}_3 \\ \text{CaF}_2 \end{array}$	Мин. 40 Мин. 20 Макс. 22
AS	Алюмокремниевые	$\begin{array}{c} \mathrm{Al_2O_3} + \mathrm{SiO_2} + \mathrm{ZrO_2} \\ \mathrm{CaF_2} + \mathrm{MgO} \\ \mathrm{ZrO_2} \end{array}$	Мин. 40 Мин. 30 Мин. 5
AF	Алюмофлюоритноосновные	$Al_2O_3 + CaF_2$	Мин. 70
FB	Флюоритноосновные	$\begin{aligned} \text{CaO} + \text{MgO} + \text{CaF}_2 + \text{MnO} \\ \text{SiO}_2 \\ \text{CaF}_2 \end{aligned}$	Мин. 50 Макс. 20 Мин. 15
Z	_	Любые другие компоненты	

Таблица 4.3.3.1-1 Распределение сталей на группы согласно Стандарту CR ISO/TR 15608

		Распределение сталей на группы согласно Стандарту CR ISO/TR 15608
Группа	Подгруппа	Тип стали/характеристика
1		Стали с нормативным пределом текучести
		$R_{eH}^{-1} \le 460 \text{ МПа и химическим составом, % масс.:}^2$
		$C\leqslant 0.25;\ Si\leqslant 0.60;\ Mn\leqslant 1.70;\ Mo\leqslant 0.70;\ S\leqslant 0.045;\ P\leqslant 0.045;\ Cu\leqslant 0.40;\ Ni\leqslant 0.5;\ Cr\leqslant 0.3\ (0.4\ для отливок);$
		Nb≤0,05; V≤0,12; Ti≤0,05
	1.1	Стали с нормативным пределом текучести $R_{eH} \leqslant 275 \text{ M}\Pi a$
	1.2	Стали с нормативным пределом текучести 275 МПа $< R_{eH} \le 360$ МПа
	1.3	Нормализованные мелкозернистые стали с нормативным пределом текучести R _{eH} >360 МПа
	1.4	Стали стойкие к атмосферной коррозии, у которых химический состав по отдельным элементам может
		превышать ограничения для группы 1
2		Термомеханически обработанные мелкозернистые стали и стальные отливки с нормативным пределом
		текучести $R_{eH} > 360 \ \mathrm{M\Pi a}$
	2.1	Термомеханически обработанные мелкозернистые стали и стальные отливки с нормативным пределом
		текучести 360 МПа $<\!\!R_{eH}\!\!<\!\!460$ МПа
	2.2	Термомеханически обработанные стали и стальные отливки с нормативным пределом текучести $R_{eH} > 460 \text{ M}$ Па
3		Термоулучшенные (закаленные и отпущенные) стали и дисперсионно упрочняемые стали, за исключением
		нержавеющих сталей, с нормативным пределом текучести $R_{eH} > 360 \text{ M}\Pi a$
	3.1	Термоулучшенные (закаленные и отпущенные) стали с нормативным пределом текучести 360 МПа < $R_{eH} \leqslant 690$ МПа
	3.2	Термоулучшенные (закаленные и отпущенные) стали с нормативным пределом текучести R_{eH} > 690 МПа
	3.3	Дисперсионноупрочняемые стали за исключением нержавеющих сталей
4		Cr-Mo-(Ni) низкованадиевые стали с Mo \leq 0,7 % и V \leq 0,1 %
	4.1	Стали с содержанием Cr ≤ 0,3 % и Ni ≤ 0,7 %
	4.2	Стали с содержанием Cr ≤ 0,7 % и Ni ≤ 1,5 %
5		Cr-Мо безванадиевые стали с С ≤ 0,35 % ³
	5.1	Стали с содержанием 0,75 % € Сг ≤ 1,5 % и Мо ≤ 0,7 %
	5.2	Стали с содержанием 1,5 % < Ст ≤ 3,5 % и 0,7 % < Мо ≤ 1,2 %
	5.3	Стали с содержанием 3,5 % < Ст ≤ 7,0 % и 0,4 % < Мо ≤ 0,7 %
	5.4	Стали с содержанием 7,0 % < Cr ≤ 10,0 % и 0,7 % < Mo ≤ 1,2 %
6		Cr-Mo-(Ni) высокованадиевые стали
	6.1	Стали с содержанием 0,3 % < Cr < 0,75 %, Mo < 0,7 % и V < 0,35 %
	6.2	Стали с содержанием 0,75 % < Cr \le 3,5 %; 0,7 % < Mo \le 1,2 % и V \le 0,35 %
	6.3	Стали с содержанием 3,5 % < Ст ≤ 7,0 %; Мо ≤ 0,7 % и 0,45 % ≤ V ≤ 0,55 %
7	6.4	Стали с содержанием 7,0 % < Cr ≤ 12,5 %; 0,7 % < Мо ≤ 1,2 % и ≤ 0,35 %
7		Ферритные, мартенситные или дисперсионноупрочняемые нержавеющие стали с содержанием $C \le 0.35 \%$ и
	7.1	10,5 % < Cr < 30 %
	7.1	Ферритные нержавеющие стали Мартенситные нержавеющие стали
	7.2	Мартенеитные нержавеющие стали Дисперсионноупрочняемые нержавеющие стали
8	7.3	Аустенитные нержавеющие стали
"	8.1	Аустенитные нержавеющие стали с содержанием Ст≤19 %
	8.2	Аустенитные нержавеющие стали с содержанием Cr > 19 %
	8.3	Марганцовистые аустенитные нержавеющие стали с содержанием 4,0 % < Мп ≤ 12,0 %
9	0.5	Легированные никелем стали с содержанием Ni≤10,0 %
	9.1	Легированные никелем стали с содержанием Ni ≤ 3,0 %
	9.2	Легированные никелем стали с содержанием 3,0 % < Ni ≤ 8,0 %
	9.3	Легированные никелем стали с содержанием 8,0 % < Ni ≤ 10,0 %
10		Аустенитно-ферритные нержавеющие стали (дуплекс стали)
	10.1	Аустенитно-ферритные нержавеющие стали с содержанием Ст ≤ 24,0 %
	10.2	Аустенитно-ферритные нержавеющие стали с содержанием Cr > 24,0 %
11		Стали, соответствующие по составу группе 1, за исключением содержания $0.25 \% < C \le 0.5 \%^4$
	11.1	Стали, соответствующие индексу 11, с содержанием 0,25 % < С ≤ 0,35 %
	11.2	Стали, соответствующие индексу 11, с содержанием 0,35 % < С ≤ 0,5 %

 $^{^{1}}$ В соответствии с требованиями спецификаций и стандартов на поставку продукции нормируемое значение R_{eH} может быть заменено на $R_{p0,2}$ или $R_{p0,5}$. 2 Максимальное суммарное содержание легирующих элементов ограничивается на уровне Cr+Mo+Ni+Cu+V ≤ 0,75 %. 3 «Свободные от ванадия» — означает отсутствие в спецификации на поставку требований по содержанию этого элемента. 4 Максимальное суммарное содержание легирующих элементов ограничивается на уровне Cr+Mo+Ni+Cu+V ≤ 1 %.

Таблица 4.3.3.1-2
Распраталение элюминиемых спларов на группы согласно Стандарту СВ ISO/ГВ 15608

	Распределение алюминиевых сплавов на группы согласно Стандарту CR ISO/TR 15608				
Группа	Подгруппа	Тип стали/характеристика			
21		Чистый алюминий с содержанием примесей или легирующих элементов ≤ 1 %			
22		Нетермоупрочняемые сплавы			
	22.1	Алюминиево-марганцевые сплавы			
	22.2	Алюминиево-магниевые сплавы с содержанием Мд ≤ 1,5 %			
	22.3	Алюминиево-магниевые сплавы с содержанием 1,5 % < Mg ≤ 3,5 %			
	22.4	Алюминиево-магниевые сплавы с содержанием Mg > 3,5 %			
23		Термоупрочняемые сплавы			
	23.1	Алюминиево-магниево-кремниевые сплавы			
	23.2	Алюминиево-цинково-магниевые сплавы			
24		Алюминиево-кремниевые сплавы с содержанием Cu ≤ 1 %			
	24.1	Алюминиево-кремниевые сплавы с содержанием Cu ≤ 1 % и 5 % < Si ≤ 15 %			
	24.2	Алюминиево-кремниево-магниевые сплавы с содержаним $Cu \le 1 \%$, $5 \% < Si \le 15 \%$ и $0.1 \% < Mg \le 0.80 \%$			
25		Алюминиево-кремниево-медные сплавы с содержанием 5 % $<$ Si \le 14,0 %; 1,0 % $<$ Cu \le 5,0 % и Mg \le 0,8 %			
26		Алюминиево-медные сплавы с содержанием 2 % < Cu ≤ 6 %			

Примечание. Группы 21, 22 и 23 обычно используются в виде деформируемых продуктов (лист, профильный формат, штампованные изделия), а группы 24, 25 и 26— в виде литых изделий (литейные сплавы).

Таблица 4.3.3.1-3 Распределение медных сплавов на группы согласно Стандарту CR ISO/TR 15608

Группа Подгруппа Тип стали/характеристика 31 Чистая медь 32 Мелно-шинковые сплавы 32.1 Медно-цинковые сплавы, бинарные 32.2 Мелно-пинковые сплавы, комплексные 33 Медно-оловянистые сплавы 34 Мелно-никелевые сплавы 35 Мелно-алюминиевые сплавы 36 Медно-никелево-цинковые сплавы 37 Низколегированные медные сплавы (содержание других элементов не более 5 % и не соответствует характеристикам для групп 31...36) 38 Остальные медные сплавы (содержание других элементов более 5 % и не соответствует характеристики для групп 31...36)

bs - сварка двусторонним швом.

.2 угловые швы FW:

sl – однослойная сварка;

ml – многослойная сварка.

4.3.4 Условные обозначения, относящиеся к типам проб и пространственным положениям сварки.

4.3.4.1 Для практических испытаний по допуску сварщиков должны применяться унифицированные контрольные сварные соединения – пробы, соответствующие указаниям приложения 1. Геометрические параметры и размеры проб должны указываться с применением следующих индексов:

P — пластина;

T – труба;

D – наружный диаметр трубы;

t — толщина материала пробы сварного соединения (пластины или стенки трубы);

 t_1 — толщина материала пробы сварного соединения для способа сварки 1;

 t_2 — толщина материала пробы сварного соединения для способа сварки 2;

 l_1 – длина пробы сварного соединения;

 l_2 — половина ширины пробы сварного соединения;

 l_f – зачетная длина шва пробы сварного соединения;

 s_1 — толщина металла шва для способа сварки 1;

 s_2 — толщина металла шва для способа сварки 2;

а – расчетная толщина углового шва;

z — размер катета углового шва.

4.3.4.2 Сварка проб сварных соединений выполняется в унифицированных пространственных положениях, соответствующих указаниям приложения 2.

4.3.5 Обозначение условий проведения практических испытаний.

Буквенно-цифровое обозначение условий проведения практических испытаний сварщиков следует использовать для записи в соответствующую графу СДС и в протоколе практических испытаний. Структура обозначения предусматривает запись следующих блоков информации:

A	Б1	Б2	Б3	Б4	Б5	Б6	Б7	Б8
---	----	----	----	----	----	----	----	----

где: A – правила и стандарт на проведение испытаний;

Б – основные переменные параметры технологического процесса сварки, определяющие область одобрения СДС по результатам практических испытаний

Обозначение основных переменных параметров технологического процесса сварки предусматривает запись следующих индексов:

Б1 — условное обозначение способа сварки согласно 4.3.2.1 с учетом дополнительных разъяснений 4.5.2 для комбинации способов;

Б2 — обозначение типа изделия: пластина (Р), труба (Т) с дополнительным указанием в скобках типа пробы сварного соединения согласно приложению 1:

БЗ – обозначение типа шва: стыковой (BW), угловой (FW);

54 — обозначение группы основного материала пробы сварного соединения согласно CR ISO/TR 15608 (см. 4.3.3.1);

Б5 — обозначение типов сварочных материалов, которые определяют их область одобрения согласно 4.5.6: для способа сварки 111 — тип электродного покрытия (см. 4.3.2.3), для способов сварки 114, 136, 137 — тип наполнителя порошковой проволоки (см. 4.3.2.3), для способов сварки 141, 15 и 311 — наличие присадочного материала (см. 4.3.2.7), для способов сварки 131 и 135 — обозначение сплошной проволоки S;

56 — конструктивные размеры пробы сварного соединения: толщина t, мм, материала пластины или стенки трубы, наружный диаметр трубы D, мм;

Б7 – обозначение унифицированного пространственного положения пробы при сварке согласно приложению 2;

Б8 — обозначения особенностей технологического процесса сварки (см. 4.3.3.2), определяющих область одобрения СДС согласно 4.5.9; см. табл. 4.5.9-1 для BW и табл. 4.5.9-2 для FW, для способа 311 указывается индекс способа технологии сварки (гw — правосторонний, lw — левосторонний).

Примеры:

1. Правила Регистра, EN 287-1:111P (P_1) BW 1.3 Bt12 PF bs

Запись означает:

испытания выполнены согласно требованиям правил Регистра и Стандарта EN 287-1;

111 – способ сварки: ручная дуговая сварка покрытыми электродами;

 $P(P_1)$ – пластина (проба стыкового сварного соединения пластин P1);

BW – стыковой шов;

1.3 — нормализованная мелкозернистая сталь с $R_{eH} > 360 \ \mathrm{M\Pi a};$

В – основной тип покрытия электродов;

t12 — толщина материала пробы сварного соединения 12 мм;

PF – вертикальное положение сварки в направлении снизу-вверх;

bs – сварка двусторонним швом.

2. Правила Регистра, EN 287-1:135 P (P_2) FW 1.2S t10 PBml

Запись означает:

Испытания выполнены согласно требованиям правил Регистра и Стандарта EN 287-1:

135 – способ сварки: дуговая сварка сплошной проволокой в среде активного защитного газа (MAG);

 Р – пластина (проба таврового соединения пластин Р2);

FW – угловой шов;

1.2 — сталь с нормативным пределом текучести 275 МПа < $R_{eH} \leqslant 360$ МПа;

S – сварка проволокой сплошного сечения;

t10 — толщина материала пробы сварного соединения 10 мм;

PB – горизонтально-вертикальное положение сварки;

ml – многослойная сварка.

3. Правила Регистра, EN 287-1:141/135T (P₃) BW 1.2S t20 (5/15) D200PA ss nb

Запись означает:

Испытания выполнены согласно требованиям правил Регистра и Стандарта EN 287-1;

141/135 – комбинация двух способов сварки: корень шва – дуговая сварка неплавящимся электродом в среде инертного газа (ТІG), заполняющие и облицованные слои – дуговая сварка порошковой проволокой в среде активного защитного газа (МАG);

T — труба (проба стыкового соединения труб P_3); BW — стыковой шов;

1.2 — сталь с нормативным пределом текучести 275 МПа < R_{eH} ≤ 360 МПа;

S – сварочная проволока сплошного сечения;

t20~(5/15) — толщина стенки трубы пробы сварного соединения 20~мм (толщина шва для метода $TIG-s_1=5~\text{мм}$; толщина шва для метода $MAG-s_2=15~\text{мм}$);

D200 – наружный диаметр труб пробы сварного соединения 200 мм;

РА – нижнее положение сварки;

ss nb - односторонняя сварка без подкладок.

4.4 ПРОЦЕДУРА ИСПЫТАНИЙ ПО ДОПУСКУ СВАРЩИКОВ

4.4.1 Общие требования к порядку проведения испытаний.

Процедура аттестации сварщиков включает в себя сдачу аттестуемым сварщиком теоретического и практического экзаменов.

Аттестацию следует начинать с проведения практического экзамена. Если сварщик не выдерживает практический экзамен, то к дальнейшим экзаменам он не допускается и считается не прошедшим аттестацию.

В процессе сдачи экзамена по теории сварщик должен ответить не менее чем на 15 вопросов, охватывающих основные разделы общих и специальных (по специальности) вопросов. Вопросы подбираются аттестационной комиссией для каждого способа сварки.

Экзамен принимается аттестационной комиссией одним из следующих методов или их комбинацией:

письменная проверка знаний;

устный опрос;

проверка знаний с помощью компьютера;

письменное описание с последующей практической демонстрацией на оборудовании.

Оценка результатов экзамена проводится аттестационной комиссией по системе «сдано/не сдано». Отметке «сдано» соответствуют правильные ответы не менее чем на 80 % заданных сварщику вопросов. Сварщик считается аттестованным, если он успешно прошел практический и теоретический экзамены.

Если сварщик выдержал практический экзамен и не сдал теоретического, то ему разрешается пересдача данного экзамена по дополнительной заявке в течение полугода со дня первого экзамена, но не ранее чем через две недели после первоначальной даты теоретического экзамена. При повторном отрицательном результате теоретического экзамена сварщик считается не прошедшим аттестацию.

4.4.2 Требования к порядку проведения практических испытаний.

4.4.2.1 Практические испытания сварщиков выполняются путем выполнения сварки проб сварных соединений, приведенных в приложении 1.

Выполнение сварки проб сварных соединений должно производиться в присутствии не менее трех членов аттестационной комиссии:

один дипломированный инженер по сварке;

один представитель службы технического контроля с уровнем квалификации, позволяющим давать заключение по результатам контроля внешним осмотром и измерением;

один представитель Регистра.

4.4.2.2 Перед сваркой производится клеймение проб сварных соединений с присвоением им

идентификационного номера, фиксируемого в протоколе испытаний.

Дополнительно на пробе сварного соединения наносится маркировка пространственного положения сварки для всех типов проб, а для труб, свариваемых в фиксированном положении, должна быть отмечена позиция, соответствующая положению сварки на 12 часов.

Сборка деталей соединения под сварку осуществляется сварщиком, проходящим аттестацию. Разрешение на сварку пробы дается членом аттестационной комиссии после приемки качества сборки под сварку.

Аттестационная комиссия может прервать практический экзамен, если сварщиком нарушены условия и технология сварки или если очевидно, что сварщик не в состоянии выполнить сварку пробы в соответствии с требованиями Спецификации и правил Регистра.

4.4.2.3 Сварка проб при проведении практических квалификационных испытаний по допуску сварщиков должна выполняться на основании Спецификации процесса сварки (производителя) установленного образца, которая заполняется в соответствии с реальными условиями выполнения сварочных работ в производственных условиях. При этом должны быть выполнены следующие требования:

сварка проб должна выполняться с применением сварочных процессов, используемых в производстве; присадочный материал должен соответствовать особенностям сварочного процесса и пространственному положению сварки;

конструктивные элементы подготовки кромок проб сварных соединений для проведения испытаний (угол раскрытия разделки, величина притупления, сборочный зазор) должны быть типичны для используемых в производственной практике;

размеры проб должны быть указаны в Спецификации и соответствовать требованиям приложения 1; сварочное оборудование должно быть однотипным с используемым в производственной практике;

сварка проб должна выполняться в пространственных положениях и для углов сочленения трубных связей, соответствующих обычно используемым в производстве;

режимы сварки и раскладка валиков в разделке должны соответствовать применяемым в производственной практике;

комбинация основного, присадочного и вспомогательного материалов должна соответствовать обычной производственной практике;

время, затраченное сварщиком на сварку пробы, должно соответствовать обычным нормативам, принятым в производстве;

на зачетной длине пробы должна быть выполнена, по крайней мере, одна операция «стоп-старт» для корневого прохода и верхнего облицовочного

слоя шва с обязательной маркировкой места выполнения. Данное требование является обязательным для ручной и полуавтоматической сварки;

если в производственной практике для конкретных сварных соединений (комбинации основного и сварочных материалов) требуется применение предварительного подогрева, контроля погонной энергии или регламентируется требование к минимальной/максимальной межпроходной температуре, то эти параметры технологического процесса должны быть обязательно учтены при сварке проб сварных соединений;

если в производственной практике для конкретных сварных соединений предусмотрена послесварочная термообработка, то выполнение данной операции является обязательным при сварке проб сварных соединений только в том случае, если программа испытаний предусматривает испытание образцов на изгиб. Для остальных случаев послесварочная термообработка проб сварных соединений по согласованию с Регистром может не проводиться;

пробы сварных соединений должны быть однозначно идентифицированы;

по согласованию с инспектором Регистра допускается удаление незначительных поверхностных дефектов валиков внутренних слоев шва механической зачисткой или другим методом, используемым в производстве. Исправление дефектов в поверхностном слое шва, а также сплошная зачистка или строжка корневого прохода со стороны усиления не допускаются.

4.4.2.4 Толщина металла свариваемых проб, их диаметр для испытаний по сварке трубопроводов должны назначаться с учетом фактического диапазона значений этих характеристик в соответствии с заявкой предприятия и области одобрения Регистром согласно требованиям 4.5.9.

Сборка и сварка стыковых соединений пластин должна обеспечивать отсутствие угловой деформации выполненного сварного соединения (его плоскостность).

При сварке односторонним однопроходным угловым швом тавровых соединений пластин и труб расчетная толщина углового шва a должна находиться в следующих пределах в зависимости от толщины t основного металла:

 $0,5t \le a \le 0,7t$

Для соединений труб минимальная контрольная длина шва должна составлять 150 мм. В том случае, если окружность трубы меньше 150 мм, общее количество проб сварных соединений при испытаниях по допуску не должно превышать трех для одного пространственного положения сварки.

4.4.3 Типы проб для практических испытаний сварщиков.

4.4.3.1 Количество, размеры и конструктивные элементы проб сварных соединений для практи-

ческих испытаний должны устанавливаться аттестационной комиссией в зависимости от указанной в заявке области работ, на которые аттестуется сварщик, согласно требованиям правил Регистра.

При назначении типа унифицированной пробы сварного соединения, из числа предусмотренных приложением 1, следует руководствоваться изложенными ниже требованиями и пояснениями.

- **4.4.3.2** Основной пробой, применяемой для допуска к сварке соединений листовых конструкций, является проба P_1 , которая, в зависимости от области одобрения, может выполняться в различных пространственных положениях и конструктивными элементами подготовки кромок.
- **4.4.3.3** Проба таврового соединения пластин P_2 является дополнительной и применяется в случаях, оговоренных в 4.5.5, для допуска сварщиков к выполнению однопроходных угловых швов без разделки кромок.
- **4.4.3.4** Основной пробой, применяемой для допуска сварщиков к сварке трубопроводов, является проба стыкового соединения труб P_3 , которая, в зависимости от области одобрения, может выполняться в различных пространственных положениях и с разными конструктивными элементами подготовки кромок.
- **4.4.3.5** Для допуска сварщиков к выполнению сварки соединений трубопроводов однопроходным угловым швом может применяться проба P₄. Основные случаи необходимости применения данной пробы рассмотрены в 4.5.5.
- **4.4.3.6** Для допуска сварщиков к выполнению Т-, Y- и K-образных соединений труб (труба к трубе или труба к пластине) с полным или частичным проваром должна применяться унифицированная проба стыкового соединения с ограничивающим кольцом P₆. Сварка пробы, если нет других указаний, выполняется в положении H-LO45.

Примечание. Положение сварки J-LO45 для пробы P_6 может применяться, если область одобрения сварщика предусматривает (согласно заявке на аттестацию) выполнение сварки кольцевых стыков трубопроводов методом на спуск (от 12 часов к 6 часам).

- 4.4.3.7 Сварка судовых трубопроводов в монтажных условиях, как правило, выполняется в условиях ограниченного доступа к сварному соединению, что требует наличия у сварщика специальной подготовки и соответствующей квалификации. Наличие отметки «Допущен к выполнению сварки трубопроводов в условиях ограниченного доступа» в графе «Область одобрения» (строка положения сварки/тип пробы) СДС сварщика требуется, когда в реальных условиях имеют место следующие условия (независимо друг от друга или в совокупности):
- .1 доступ к зоне сварки ограничен в радиальном направлении поверхностью, расположенной парал-

лельно или под некоторым углом к оси трубопровода. Граничное условие: наименьшее расстояние, измеренное по перпендикуляру к оси трубы в плоскости сварного соединения от ее наружной поверхности до ограничивающей доступ к зоне сварки поверхности (одной или нескольких), не превышает 400 мм. Положения сварки, т. е. ориентация оси трубы, должны соответствовать области одобрения;

.2 доступ к зоне сварки ограничен в продольном направлении поверхностью, пересекающей трубу в непосредственной близости от сварного соединения. Граничное условие: наименьшее расстояние, измеренное по перпендикуляру от осевой линии шва по наружной поверхности трубы до пересекающей трубу поверхности, не превышает 100 мм.

Распространение области одобрения СДС на сварку трубопроводов в условиях ограниченного доступа требует обязательного выполнения практических испытаний сварщиков на пробах P_5 . При этом, в отдельных случаях допускается по согласованию с Регистром ограничиваться сваркой пробы P_6 .

4.4.3.8 Испытание по сварке сочленения труб на пробе P_7 является дополнительным при допуске сварщиков к выполнению работ по сварке высоконагруженных решетчатых конструкций из труб и предполагает наличие у сварщика допуска к сварке T_7 . Y- и K-образных соединений труб соответствующего диаметра и толщины стенки. Данный вид испытаний обязателен при допуске сварщиков к сварке соединений труб с наружным диаметром присоединяемого патрубка $D_2 \! \ge \! 200$ мм, толщине его стенки $t_2 \! \ge \! 12$ мм и углом между осями труб менее 70° .

Рекомендуемые размеры пробы P_7 : наружный диметр основной трубы $D_1 \geqslant 1,5 D_2$; наружный диаметр привариваемой трубы $D_2 = 200...300$ мм, толщина стенки привариваемой трубы $t_2 \geqslant 20$ мм.

Корневой проход и, по крайней мере, 4 последующих прохода должны выполняться в секторе 180° от положения 6 часов к 12 часам. Контроль пробы P_7 выполняется методами магнитопорошковой или капиллярной дефектоскопии в сочетании с контролем макрошлифов. От пробы должно быть отобрано 4 макрошлифа, соответствующих положениям сварки 3, 6, 9 и 12 часов.

 Π р и м е ч а н и я : 1. Ультразвуковой контроль пробы P_7 может выполняться по отдельному требованию Регистра с применением дополнительно одобренной схемы и методики его проведения.

- 2. Для допуска к сварке узлов сочленений труб с параметрами, не подпадающими под применение пробы P_7 , достаточным считается проведение практических испытаний на пробе P_6 , а для тонкостенных труб ($t_2 < 3$ мм) различных вариантов исполнения проб P_3 и P_4 .
- **4.4.3.9** Проба P_8 применяется для допуска сварщиков к ремонту дефектов отливок и поковок. При этом конкретные размеры и материал для изготовления пробы подлежат дополнительному

уточнению аттестационной комиссией и согласуются с Регистром в индивидуальном порядке.

Примечание. Рекомендуется совмещать испытания на допуск к ремонту отливок и поковок с испытаниями на допуск к сварке листовых конструкций или трубопроводов тем же способом сварки и для той же группы основного материала.

4.4.4 Методы оценки результатов практических испытаний сварщиков.

4.4.4.1 После завершения сварки каждая проба должна быть подвергнута испытаниям согласно указаниям табл. 4.4.4.1 в исходном состоянии после сварки.

В том случае, если в процессе испытаний по аттестации использовались остающиеся подкладки, то они должны быть удалены перед разрушающими (механическими) испытаниями.

Контрольные образцы для проверки макроструктуры должны быть протравлены с одной стороны для ясного выявления границ зоны термического влияния и шва. Полировки поверхности не требуется.

В соответствии с указаниями примечания 3 к табл. 4.4.4.1 для бесшлаковых методов сварки должны быть дополнительно испытаны два образца на изгиб (один от поверхности и один от корня шва или два на боковой изгиб) или два образца на излом (один со стороны поверхности и один со стороны корня шва).

4.4.4.2 Пробы стыковых соединений пластин P₁. Сплошность металла шва проб стыковых соединений пластин должна контролироваться радиографическим методом, а по согласованию с Регистром для толщин 8 мм и более допускается применение ультразвукового контроля.

Альтернативно неразрушающему контролю для проверки сплошности металла шва могут применяться испытания на излом или статический изгиб.

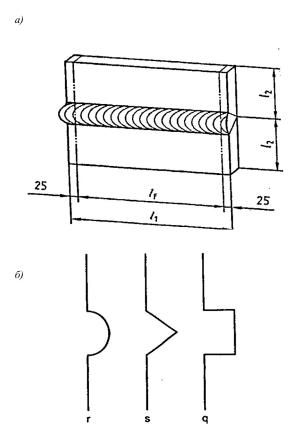
В случае применения испытаний на излом проба сварного соединения должна быть разрезана на образцы равной ширины с выделением зачетной длины шва и образцов в отход концов пластины согласно рис. 4.4.4.2-1, а. При этом вся зачетная длина пробы должна быть испытана путем разрушения изгибом образцов с размерами согласно рис. 4.4.4.2-1, в таким образом, чтобы излом составлял единое целое.

В случае применения односторонней сварки без остающихся подкладок половина зачетной длины пробы должна быть испытана на образцах с приложением нагрузки со стороны верхней части шва, а другая половина — со стороны корня шва согласно рис. 4.4.4.2-2.

В случае применения контроля сплошности металла шва путем проведения испытаний на изгиб схема вырезки и количество контрольных образцов

Таблица 4.4.4.1 Метолы контроля проб сварных соединений при практических испытаниях сваршиков

IVIСТОД	ы контроля	проо съг	трных соеди	інении прі	практич	сских испы	таниях св	варщиков		
Методы контроля	Тип пробы сварного соединения									
	P ₁		P ₃		Р ₂ и Р ₄	Р ₅ и Р ₆		P ₇	P ₈	
	3 ≤ <i>t</i> < 12	<i>t</i> ≥ 12	3 ≤ <i>t</i> < 12	<i>t</i> ≥ 12		3 ≤ <i>t</i> < 12	<i>t</i> ≥ 12		С ₁ и С ₂	С3 и С4
Визуальный и измерительный	+	+	+	+	+	+	+	+	+	+
Радиографический Ультразвуковой	+ ^{1, 2} + ²	_ _	+ ^{1, 2} + ²	+ ^{1, 2} + ²	+	+ +	_ _			
Испытание на Корень и верх изгиб (4 обр.) шва	+1, 3	_	+3, 5	_	_	+1, 3, 5	_	_	_	_
Боковой	_	+1, 3	_	+1, 3, 5	_	_	+1, 3, 5	_	_	_
Испытание на излом	+1, 3	$+^{1, 3}$	+1, 3, 5	+1, 3, 5	$+^{4}$	+1, 3, 5	+1, 3, 5	_	_	_
Осмотр макрошлифов	_	_	_	_	+4	+	+	+	+	_
Магнитопорошковый или капиллярный	_	_	_	_	+4	1 шт. —	1 шт. —	3 IIIT. +	3 IIIT. +	_


¹Для контроля сплошности металла сварных соединений применяется радиографический контроль или испытания на статический излом (или изгиб), но не оба метода одновременно.

²По согласованию с Регистром для толщин 8 мм и более радиографический контроль может быть заменен на ультразвуковой за исключением аустенитных и аустенитно-ферритных сталей (группы 8 и 10, соответственно), а также алюминиевых и медных сплавов.

³В том случае, если качество металла шва контролируется радиографическим или ультразвуковым методом (а не испытаниями на излом или изгиб) для бесшлаковых способов сварки 131, 135, 136, 137 (оба только для порошковых проволок с металлическим наполнителем – М), 141 и 311 обязательным является проведение испытаний на изгиб или излом.

⁴ По согласованию с Регистром допускается вместо испытаний сварного шва на излом контролировать его качество магнитопорошковым или капиллярным методами в сочетании с контролем макрошлифов.

 $^{^5}$ Для проб стыковых соединений труб с наружным диаметром $D \leqslant 25$ мм испытания на изгиб или излом могут быть заменены испытанием на растяжение пробы сварного соединения с отверстиями (см. рис. 4.4.4.4-2).

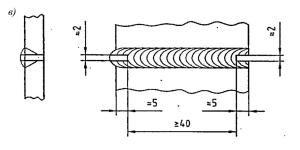


Рис. 4.4.4.2-1Испытания на излом образцов из пробы стыкового соединения пластин P_1 :
а) схема вырезки образцов (зачетная длина шва l_f делится на четное число образцов);
б) профили надрезов при изготовлении образцов на излом по ИСО 9017;
в) образец для испытаний на излом с боковыми надрезами типа «q»

зависят от их типа (поперечные или образцы на боковой изгиб).

При проведении испытаний на поперечных образцах вся зачетная длина шва должна быть разделена на образцы равной ширины, и все они подвергнуты испытаниям. При этом половина зачетной длины пробы испытывается с растяжением корня шва, а другая — верха шва.

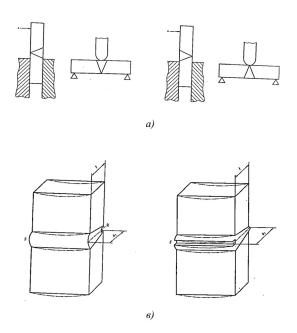
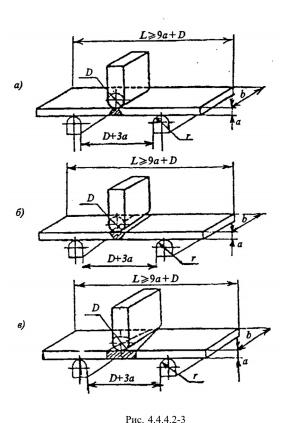
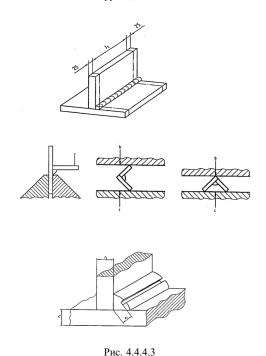


Рис. 4.4.4.2-2 Схема проведения испытаний на излом образцов из пробы стыкового соединения пластин P_1 :


а) с растяжением со стороны корня шва;

б) с растяжением со стороны усиления шва;


в) альтернативные типы образцов для испытаний на излом с продольным надрезом по центру шва типа «q» с растяжением со стороны корня и усиления шва

В случае выполнения испытаний только на боковой изгиб должно быть подвергнуто испытаниям не менее четырех образцов с равномерным расположением вдоль зачетной длины пробы. Один из образцов на боковой изгиб должен быть взят из зоны соответствующей операции «стоп-старт». Размеры образцов и схема испытаний на изгиб должны соответствовать требованиям 4.2.3.2.3 части XIV «Сварка» Правил классификации и постройки морских судов и рис. 4.4.4.2-3.

4.4.4.3 Пробы тавровых соединений пластин P_2 . Сплошность металла шва проб тавровых соединений пластин должна проверяться путем испытаний на излом образцов согласно рис. 4.4.4.3. Для проведения испытаний проба должна быть разрезана на несколько образцов с выделением зачетной длины шва и отрезкой в отход концов пластин на расстоянии 25 мм от каждого края согласно рис. 4.4.4.3, a, каждый образец должен быть подвергнут испытаниям в соответствии со схемой рис. 4.4.4.3, δ и проверен после разрушения. Для инициирования разрушения образцов по центру шва, особенно для вязких материалов (например, алюминий и медь), на образцы могут быть нанесены продольные надрезы квадратного или остроугольного сечения (см. рис. 4.4.4.3, δ). При этом

Размеры образцов и схема проведения испытаний на статический изгиб с растяжением поверхности шва (a), корня шва (b) и на боковой изгиб (a) из проб стыковых соединений листов P_1 и труб P_3 , P_5 и P_6

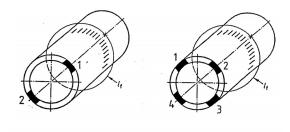
Испытания на излом образцов из пробы таврового соединения пластин P_2 :

а) схема вырезки образцов (I_7 – зачетная длина шва);

б) возможные схемы проведения испытаний;
 в) образец для испытаний с продольным надрезом по центру шва типа «а».

толщина углового шва на контролируемой пробе должна составлять не менее 80 % от первоначального значения. В отдельных случаях допускается применение предварительного охлаждения образцов для перехода металла шва в хрупкое состояние.

По согласованию с Регистром допускается вместо испытаний сварного шва на излом контролировать его качество магнитопорошковым или капиллярным методом контроля в сочетании с контролем макрошлифов. В этом случае должно быть изготовлено не менее двух макрошлифов. Один макрошлиф должен быть взят из положения, соответствующего операции «стоп-старт» на длине пробы.


4.4.4.4 Пробы стыковых соединений труб Р₃. Сплошность металла шва проб стыковых соединений труб должна контролироваться радиографическим методом, а по согласованию с Регистром для толщин не менее 8 мм и при возможности выполнения допускается применение ультразвукового контроля. При этом для бесшлаковых методов сварки 131, 135, 136, 137 (два последних только для проволок с металлическим наполнителем – М), 141 и 311 число дополнительных образцов на излом или поперечный изгиб зависит от положения сварки при аттестации. Для пространственных положений РА и РС должны быть подвергнуты испытаниям по одному образцу для изгиба корня и верха шва (см. рис. 4.4.4.4-1, а). Для всех других положений сварки должны быть подвергнуты испытаниям по два дополнительных образца для изгиба корня и верха шва (см. рис. 4.4.4.4-1, б).

Альтернативно неразрушающему контролю для проверки сплошности металла шва могут применяться испытания на излом или статический изгиб. При испытаниях на излом должна быть подвергнута контролю вся зачетная длина пробы (см. рис. 4.4.4.4-1, а), для чего должно быть испытано не менее четырех образцов с размерами согласно рис. 4.4.4.4-1, в. Если диаметр трубы слишком мал (зачетная длина шва менее 150 мм) и не позволяет изготовить требуемое число образцов, то должны быть изготовлены и подвергнуты испытаниям дополнительные пробы согласно указаниям 4.4.2.4.

Для обеспечения разрушения образцов на излом по металлу шва допускается снятие усиления шва с нанесением надреза с обоих концов образца согласно рис. 4.4.4.4-1, 6.

В случае применения технологии односторонней сварки без остающихся подкладок половина зачетной длины пробы должна быть испытана на образцах с приложением нагрузки со стороны верхней части шва, а другая половина — со стороны корня шва согласно рис. 4.4.4.2-2.

При применении контроля сплошности металла шва путем проведения испытаний на изгиб схема вырезки и количество образцов зависят от их типа и

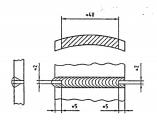
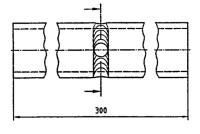



Рис. 4.4.4.4-1 Схема вырезки образцов из проб стыковых соединений труб P_3 , P_5 и P_6 : а) для положений сварки P_4 и P_5 (1, 2 — места отбора образцов на излом или изгиб; l_f — зачетная длина шва); б) для положений сварки P_5 , P_6 , H-L045 и J-L045 (1, 2, 3, 4 — места отбора образцов на излом или изгиб; l_f — зачетная длина шва); в) образец для испытаний на излом с боковым надрезом типа « q_9 ».

 $t \ge 1.8 \text{ mm}$: d = 4.5 mmt < 1.8 mm: d = 3.5 mm

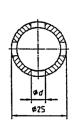


Рис. 4.4.4.4-2 Образец для испытаний на растяжение стыковых соединений труб с наружным диаметром $D\leqslant 25$ мм

регламентируются аналогично требованиям 4.4.4.2 для стыковой пробы пластин. При этом при выполнении испытаний только на боковой изгиб места вырезки образцов принимаются согласно рис. 4.4.4.4-1, δ .

Для проб стыковых соединений труб с наружным диаметром $D \le 25$ мм испытания на излом или изгиб могут быть заменены на испытания на растяжение пробы сварного соединения с отверстиями и снятым усилением шва согласно рис. 4.4.4.4-2. При этом отверстия не должны располагаться в зоне шва соответствующей операции «стоп-старт», а для инициирования плоскости разрушения по центру

металла шва допускается вместо отверстий или дополнительно к ним применять круговой надрез типов (q) или (s) согласно ИСО 9017 (см. рис. 4.4.4.2-1, δ).

4.4.4.5 Пробы соединений труб угловым швом P₄. Сплошность металла шва проб соединений труб угловым швом должна проверяться путем испытаний на излом не менее четырех образцов согласно рис. 4.4.4.5. По согласованию с Регистром допускается вместо испытаний углового шва на излом выполнять контроль его качества магнитопорошковым или капиллярным методами в сочетании с контролем макрошлифов. Для положений сварки PA, PB и PD достаточно изготовления и испытаний, по крайней мере, двух макрошлифов (один из зоны соответствующей операции «стоп-старт»), а для положений сварки PF и PG макрошлифы в количестве четырех штук должны быть изготовлены из участков шва, соответствующих положениями 0°, 90°, 180° и 270°.

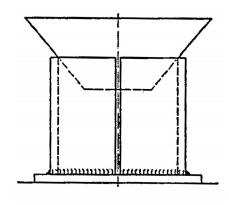


Рис. 4.4.4.5 Подготовка и схема проведения испытаний на излом образцов пробы соединения труб угловым швом P_4

4.4.4.6 Пробы стыковых соединений труб в условиях ограниченного доступа P_5 и P_6 . Контроль проб, имитирующих сварку стыковых соединений труб в условиях ограниченного доступа к шву, должен выполняться аналогично испытаниям проб стыковых соединений P_3 (см. 4.4.4.4).

При этом для пробы P_5 требуется дополнительно изготовить один макрошлиф в районе вырезки от 225° до 270° .

Вырезка образцов из пробы P_6 должна выполняться в соответствии с указаниями рис. 6 приложения 1.

4.4.4.7 Проба узла сочленения труб P_7 . Контроль сплошности сварных соединений узла сочленения труб должен выполняться по всей зачетной длине шва следующими методами:

магнитопорошковая или капиллярная (для немагнитных материалов) дефектоскопия;

ультразвуковой или радиографический контроль (в зависимости от технической возможности применения каждого метода).

Кроме того, из участков сварного соединения, соответствующих положениям 135° , 180° и 225° , должны быть изготовлены три макрошлифа.

4.4.4.8 Проба-имитатор ремонта поковок и отливок P_8 . Сплошность металла швов C_1 и C_2 пробы (см. рис. 8 приложения 1), имитирующих исправление протяженного и точечного дефектов, должна контролироваться по всей их протяженности следующими методами контроля:

радиографическим;

ультразвуковым;

осмотром макрошлифов, изготовленных в количестве 2 шт. из шва C_1 и 1 шт. из шва C_2 .

4.4.5 Критерии оценки результатов практических испытаний сварщиков.

4.4.5.1 Оценка качества сварных соединений при контроле внешним осмотром и измерением.

4.4.5.1.1 Общие требования.

Контролю внешним осмотром и измерением подвергается непосредственно поверхность шва и прилегающая к нему зона основного металла на расстоянии не менее 20 мм от границы сплавления по всей протяженности сварного соединения.

Визуальный контроль обычно следует выполнять без применения специальных оптических приборов. В сомнительных случаях допускается применение луп не более чем с десятикратным увеличением.

Если при визуальном контроле сварного соединения обнаружены трещины или их признаки, то дальнейшую дефектоскопию пробы рекомендуется проводить с применением:

магнитопорошкового метода контроля или капиллярной дефектоскопии;

шлифовки поверхности с последующим травлением реактивом, применяемым для выявления макроструктуры.

Глубину подрезов, высоту бугристости и чешуйчатости следует проверять сравнением швов с эталонами при помощи специальных шаблонов или путем снятия слепка. Последний разрезают таким образом, чтобы проверяемый размер находился в плоскости надреза. При этом измерения западаний между валиками и между швом и основным металлом следует производить на базе 12 мм, бугристости и чешуйчатости — между вершинами бугров и чешуек.

Измерения сварных соединений должны производиться в местах, где при внешнем осмотре предполагаются отклонения от установленных размеров. На длине пробы сварного сокдинения, должно быть выполнено не менее трех замеров геометрических параметров сварного соединения. Для измерения должны применяться универсальные

или специальные шаблоны (годен/не годен) по согласованию с инспектором Регистра.

4.4.5.1.2 Критерии оценки дефектов.

К недопустимым наружным дефектам контрольных сварных соединений относятся:

трещины в шве и околошовной зоне, непровары, прожоги, свищи, наплывы, скопления пор и включений, выходящие на поверхность, не заваренные кратеры и пятна коротких замыканий на поверхности окончательно выполненного шва и на поверхности основного металла;

несоответствие формы и размеров шва, выходящие за рамки ограничений соответствующих национальных стандартов;

отдельные поры размером более 0,1 минимальной толщины свариваемых деталей при толщине до 20 мм и поры размером более 2,0 мм при толщине деталей 20 мм и более, а также поры этого и меньшего размера, если их количество превышает 3 шт. на любом участке шва длиной 100 мм и 6 шт. на участке шва длиной 300 мм;

подрезы основного металла глубиной более 0,3 мм при толщине металла до 20 мм включительно и более 0,5 мм при толщине металла более 20 мм. Максимальная длина единичного подреза не должна превышать 0,5 толщины свариваемого металла, при этом суммарная протяженность подрезов не должна превышать 10 % длины шва;

утяжка в корне одностороннего шва более 0,1 толщины свариваемого металла при толщине свариваемых кромок до 10 мм и 1 мм при толщине деталей более 10 мм;

западания между валиками, а также между швом и основным металлом (неплавность перехода шва к основному металлу), превышающие 1,5 мм.

Допуски на размеры шва должны находиться в пределах требований Спецификации процесса сварки и, в любом случае, не выходить за рамки требований национальных стандартов.

4.4.5.2 Оценка качества сварных соединений при радиографическом контроле.

4.4.5.2.1 Общие требования по контролю.

Для контроля проб сварных соединений предпочтительным является применение рентгенографического метода. При этом, должны выполняться требования табл. 4.4.5.2.1 к чувствительности контроля, оцененной с помощью индикатора качества изображения проволочного типа.

Геометрические параметры радиографического контроля должны обеспечивать выполнение следующих требований:

относительное увеличение радиографической толщины на длине одного снимка не должно превышать 6 %;

геометрическая нерезкость изображений дефектов на снимках не должна превышать половины значения чуствительности контроля;

Таблица 4.4.5.2.1 Требования к абсолютной чувствительности радиографического контроля (индикатор качества изображения проволочного типа установлен со стороны источника излучения)

Радиационная толщина W , мм	Чувствительность (минимальный видимый диаметр), мм			
$ \begin{array}{c} 0 < W \leqslant 1,5 \\ 1,5 < W \leqslant 2,5 \\ 2,5 < W \leqslant 4 \\ 4 < W \leqslant 6 \\ 6 < W \leqslant 8 \\ 8 < W \leqslant 12 \\ 12 < W \leqslant 20 \\ 20 < W \leqslant 30 \\ 30 < W \leqslant 35 \\ 35 < W \leqslant 45 \\ 45 < W \leqslant 65 \\ 65 < W \leqslant 120 \end{array} $	0,05 0,063 0,08 0,100 0,125 0,16 0,20 0,25 0,32 0,40 0,50 0,63			

оптическая плотность радиографического снимка должна находиться в пределах от 2Б до 3Б. Допустимым является увеличение оптической плотности снимка до 3,5Б в случае применения негатоскопов с яркостью свечения экрана не менее 30000 кД/м^2 .

Примечание. Допустимым считается изменение оптической плотности снимка в пределах от -15~% до +~30~% от значения, соответствующего месту установки индикатора качества изображения.

4.4.5.2.2 При назначении допустимых размеров дефектов, соответствующих баллам III и IIIAl, оценка качества сварных соединений по результатам радиографического контроля должна выполняться согласно требованиям 4.3 для сварных соединений из стали и 4.4 для сварных соединений из алюминиевых сплавов части XIV «Сварка» Правил классификации и постройки морских судов.

Примечания: 1. При оценке баллом III в сварном шве отсутствуют внутренние дефекты или имеются:

отдельные газовые или металлические (вольфрамовые) включения, каждое размером до 0,1 толщины шва, но не более

отдельные шлаковые включения, каждое размером до 0,3 толщины шва, но не более 3 мм и площадью не более 5 мм². Число указанных выше дефектов в среднем не должно быть более одного на 100 мм длины шва.

При оценке баллом IIIA1 в сварном шве отсутствуют внутренние дефекты или имеются:

отдельные поры с максимальным диаметром (0,1t+0,55), мм, но не более 2,5 мм. Максимальная суммарная площадь пор на любых 100 мм контролируемого участка шва должна быть не более 2t, мм²:

отдельные шлаковые или окисные включения с максимальной длиной до 0.2t, мм, но не более 5 мм или вольфрамовые включения максимальной длиной до 0.05t, мм, но не более 0.8 мм. Количество включений не должно быть более одного на 100 мм протяженности контролируемого участка шва.

4.4.5.3 Оценка качества сварных соединений по результатам ультразвукового контроля.

Ультразвуковой контроль должен выполняться согласно признанным Регистром национальным стандартам или по согласованным методикам.

При этом требования к нормам допустимых дефектов, обнаруженных при ультразвуковом контроле, подлежат согласованию с Регистром в индивидуальном порядке.

4.4.5.4 Оценка качества сварных соединений по результатам испытаний на статический изгиб.

При испытаниях образцов сварных соединений из судостроительных и высокопрочных сталей на статический изгиб следует руководствоваться требованиями табл. 4.4.5.4-1. Для случаев, не регламентированных требованиями табл. 4.4.5.4-1, необходимо руководствоваться следующими указаниями:

Таблица 4.4.5.4-1 Требования к проведению испытаний на статический изгиб для судостроительных и высокопрочных сталей

Категория основного металла	Соотношение d/t_s	Угол загиба, град.
AE A32F32 A36F36 A40F40 A420F420 A460F460 A500F500	4 4 4 4 5 5	180 180 180 180 180 180
A550F550 A620F620 A690F690	6 6 6	180 180 180 180

для сталей с номинальным значением относительного удлинения $A_5 \! \ge \! 20$ % диаметр пуансона или внутреннего ролика d должен быть равен $4t_s$ и угол загиба 180° , а для основного металла с относительным удлинением $A_5 < 20$ % следует руководствоваться зависимостью

$$d = (100/A_5 - 1)t_s,$$

где d – диаметр пуансона или внутреннего ролика, мм;

 t_s — толщина гибового образца, мм;

 ${
m A_5-}$ минимальное значение относительного удлинения при растяжении согласно спецификации на материал (номинальное значение), %;

для меди и медных сплавов диаметр пуансона или внутреннего ролика должен составлять $4t_s$, а угол загиба 180° , если низкая пластичность основного металла или металла шва не налагает других ограничений;

для судостроительных алюминиевых сплавов диаметр пуансона или внутреннего ролика определяется требованиями табл. 4.4.5.4-2.

После выполнения изгиба образца на требуемый угол на его поверхности не должно возникать дефектов протяженностью более 3,0 мм. Образовавшиеся на кромках образца дефекты длиной до 3,0 мм не принимаются во внимание и не вносятся в протокол испытаний.

4.4.5.5 Оценка качества сварных соединений по результатам испытаний на излом.

4.4.5.5.1 После проведения испытаний на излом стыковых сварных соединений должен быть выполнен контроль внешним осмотром и измерением поверхности излома. Недопустимыми следует считать выходящие на поверхность излома дефекты шва, если их тип, количество и размеры не удовлетворяют критериям, установленным в 4.4.5.1 для внутренних дефектов шва при радиографическом контроле.

4.4.5.5.2 При испытании на излом тавровых сварных соединений, выполненных однопроходным угловым швом, должно быть подтверждено отсутствие недопустимых внутренних дефектов, включая недостаточный провар корневой части шва. Незначительные дефекты типа мелких пор и шлаков могут быть допущены, если их относительная площадь не превышает 6 % контролируемого сечения.

Примечание. Незначительными считаются поры и шлаки, наибольший линейный размер которых в плоскости разрушения не превышает 0,2 Z, но не более 2,0 мм (где Z – катет углового шва).

4.4.5.6 Контроль макрошлифов.

Макрошлифы должны быть изготовлены таким образом, чтобы их рабочая поверхность захватывала всю площадь шва и прилегающий к линии сплавления участок основного металла шириной не менее 15 мм. Реактив, применяемый для травления, должен позволять четко идентифицировать границы

 ${\rm Ta\, fi\, fi\, d\, id\, a}\ 4.4.5.4-2$ Требования к проведению испытаний на статический изгиб для судостроительных алюминиевых сплавов

Категория	Co	Угол загиба,			
алюминиевого сплава	O/H111	H112; H116; H32; H34; H36	T4	T5; T6	град.
Международные сплавы					
5754	3	4	_	_	180
5086; 5083; 5383; 5456; 5059	6	6	_	_	180
6005A; 6061; 6082	4	_	6	7	180
Национальные сплавы					
1530	3	4	_	_	180
1550; 1561; 1575	6	6	_	_	180

шва и отдельных валиков, линию сплавления, зону термического влияния, а также прилегающий участок основного металла. При осмотре макрошлифов подлежат контролю:

форма и геометрические размеры шва;

форма и размер провара основного металла;

наличие подрезов основного металла и утяжки в корне одностороннего шва;

наличие внутренних недопустимых дефектов в шве и околошовной зоне на расстоянии 10 мм от границы зоны термического влияния.

На шлифах может быть допущено наличие дефектов, тип и размеры которых не выходят за рамки требований 4.4.5.1 и 4.4.5.2. При этом, сумма проекций всех дефектов (наружных и внутренних) в направлении расчетной толщины не должна превышать 0.15t или 0.15a, но не более 4.0 мм для всех групп сталей и алюминиевых сплавов.

4.4.6 Порядок проведения повторных испытаний.

- 4.4.6.1 В тех случаях, когда аттестационной комиссией достоверно установлено, что неудовлетворительный результат первичных практических испытаний обусловлен причинами, не связанными с квалификацией сварщика (например, неисправности сварочного оборудования, дефекты покрытия сварочных электродов и т. п.), то сварщик должен быть допущен к повторным испытаниям на том же количестве проб. При этом качество основного и сварочных материалов, а также исправность сварочного оборудования должны быть тщательно проверены членами аттестационной комиссии.
- 4.4.6.2 Если установлено, что неудовлетворительный результат первичных испытаний связан с недостаточной квалификацией сварщика и обусловлен неудовлетворительными результатами испытаний более чем на одном образце, то сварщик может быть допущен к повторной аттестации после дополнительного обучения и тренировок общей продолжительностью не менее одной недели.
- 4.4.6.3 Если результаты испытаний одного из испытанных образцов не удовлетворяют установленным для данного вида испытаний требованиям, то должно быть изготовлено и испытано удвоенное количество образцов данного вида. Образцы для дополнительных испытаний могут быть отобраны из запаса имеющейся пробы или должна быть сварена новая проба в аналогичных условиях.
- **4.4.6.4** В том случае, если два дополнительных образца, изготовленные согласно требованиям 4.4.6.3, показали удовлетворительные результаты, то испытания считаются выполненными с удовлетворительной оценкой.

При получении неудовлетворительных результатов повторных испытаний хотя бы для одного из дополнительных образцов сварщик признается не

выдержавшим практических испытаний и должен быть подвергнут повторным испытаниям в установленном порядке.

- **4.4.6.5** При дополнительных испытаниях образцов на изгиб, а также шлифов, изготовленных из неповоротных стыковых соединений труб (положения PF, PG и H-L045, J-L045 для проб P_3 и P_5 , а также пробы P_6 и P_7), следует сохранять место отбора образцов из пробы, соответствующее положению сектора сварки, для которого были получены неудовлетворительные результаты при первоначальных испытаниях.
- 4.4.6.6 В том случае, если объем первоначальных испытаний предусматривал изготовление нескольких проб (одного типа для разных пространственных положений или различного типа), а неудовлетворительные результаты были получены только для одной из этих проб, то повторные испытания согласно 4.4.6.2 могут проводиться только применительно к пробе, на которой был получен отрицательный результат. При этом, по требованию Регистра объем повторных испытаний может быть увеличен до удвоенного по сравнению с первоначальным.
- 4.4.6.7 При неудовлетворительных результатах повторных практических испытаний сварщик считается не прошедшим аттестацию. Порядок допуска сварщика к новой аттестации решается аттестационной комиссией в индивидуальном порядке с учетом установленных профессиональных недостатков. В любом случае, время для тренировок и приобретения необходимых практических навыков между аттестациями должно составлять не менее одного месяца.

4.5 ОБЛАСТЬ ОДОБРЕНИЯ ПО РЕЗУЛЬТАТАМ ИСПЫТАНИЙ

- **4.5.1** Оценка квалификационных навыков сварщиков при проведении практических испытаний и при определении области одобрения СДС основывается на следующих основных переменных параметрах технологического процесса сварки:
 - .1 способ и процесс сварки;
 - .2 тип изделия/конструкция (пластина и труба);
 - .3 тип шва (стыковой и угловой);
 - .4 группа основного материала;
 - .5 сварочный материал;
- **.6** конструктивные размеры сварного соединения (толщина материала и наружный диаметр трубы);
 - .7 пространственные положения сварки;
- .8 особенности технологического процесса сварки (наличие подкладок, односторонняя сварка, двусторонняя сварка, однослойная сварка, многослойная сварка, левосторонняя и правосторонняя сварка).

При этом по требованию Регистра в самостоятельные виды дополнительных испытаний могут выделяться:

сварка труб в условиях ограниченного доступа (см. 4.4.3.7);

сварка узлов сочленений труб (см. 4.4.3.6 и 4.4.3.8);

ремонт дефектов отливок и поковок (см. 4.4.3.9).

Сварка проб сварных соединений выполняется, как правило, с применением для каждого практического испытания одного значения всех из перечисленных выше основных переменных параметров технологического процесса сварки. Исключение составляют комбинация двух или более способов сварки на одной пробе (см. 4.5.2), а также размеры пробы и пространственные положения сварки (см. 4.5.7 и 4.5.8).

4.5.2 Каждое практическое испытание, как правило, ограничивается областью одобрения для одного процесса/способа сварки, обозначаемого индексами согласно требованиям 4.3.2.1 и 4.3.2.2.

Изменение способа сварки при производстве продукции требует проведения новых испытаний по допуску сварщиков. Исключением является изменение дуговой сварки сплошной проволокой в среде активного защитного газа (способ 135) на дуговую сварку порошковой проволокой с металлическим наполнителем (индекс М) в активном

защитном газе (способ 136) и наоборот, которое не требует новых испытаний по одобрению (см. также табл. 4.5.6).

В том случае, если в производственных условиях сварка конкретного соединения выполняется одним сварщиком с применением комбинации из двух и более способов сварки, то практические испытания по допуску могут проводиться следующими способами:

- .1 изготовление пробы при испытаниях производится с применением комбинации двух или более способов сварки аналогично производственной практике (например, корень шва односторонняя сварка без подкладок неплавящимся электродом в среде инертного газа, заполнение разделки ручная сварка покрытыми электродами);
- .2 при испытаниях по допуску выполняется сварка двух проб для раздельной аттестации сварщика на каждый способ сварки.

Область одобрения по толщинам основного металла для комбинации двух способов/процессов сварки приводится в табл. 4.5.2 (см. также табл. 4.5.7.1).

Следует учитывать, что применение любого из вариантов аттестации для комбинации двух или более способов/процессов сварки не должно приводить к снижению требований к объему контроля проб сварных соединений, установ-

Таблица 4.5.2 Диапазон толщин основного металла, подлежащих одобрению для комбинации двух процессов/способов сварки стыковых соединений

Схема сварки (комбинации процессов сварки) при проведении испытаний	Диапазон толщин для одобрения			
	Каждого процесса/способа сварки	Комбинации двух процессов/способов сварки		
1 — процесс сварки 1 (nb) 2 — процесс сварки 2 (mb)	В соответствии с табл. 4.5.7-1 Для процесса сварки 1: $t = s_1$ Для процесса сварки 2: $t = s_2$	В соответствии с табл. 4.5.7-1 $t = s_1 + s_2$		
3 2 — процесс сварки 2 3 — сварка с полкладками (mb)	В соответствии с табл. 4.5.7-1 Для процесса сварки 1: $t=t_1$ Для процесса сварки 2: $t=t_2$	В соответствии с табл. 4.5.7-1 $t=t_1+t_2$ Процесс сварки 1: только для сварки корневой области шва		
3 – сварка с подкладками (mb) 4 – сварка без подкладок (nb) /₁≥3mm 1 – процесс сварки 1				

ленному требованиями табл. 4.4.4.1 для испытаний на изгиб.

Примечание. Изготовление и испытание проб с применением комбинации из двух или более способов сварки одним или разными сварщиками вариантами, отличными от 4.5.2.1 и 4.5.2.2, является предметом специального рассмотрения Регистром.

- **4.5.3** Тип пробы для практических испытаний в соответствии с указаниями 4.4.3 назначается в зависимости от типа изделия/конструкции (пластина или труба) на сварку которого допускается сварщик. При этом следует руководствоваться указаниями табл. 4.5.8 по области одобрения СДС с учетом следующего:
- **.1** одобрение на сварку труб с наружным диаметром D > 25 мм распространяется на сварку пластин;
- **.2** одобрение на сварку пластин распространяется на сварку труб:
- с наружным диаметром $D \geqslant 150$ мм для положений сварки РА, РВ и РС;
- с наружным диаметром $D\!\geqslant\!500\,$ мм для всех положений сварки.
- **4.5.4** Область одобрения СДС по типу шва (стыковой или угловой) должна определяться с учетом изложенных ниже указаний.
- **4.5.4.1** Одобрение сварщика на сварку стыковых швов может быть распространено на сварку всех видов стыковых соединений и швов за исключением случаев, требующих проведения дополнительных видов испытаний (см. 4.5.1).
- **4.5.4.2** Одобрение сварщика на сварку стыковых швов, как правило, может быть распространено на сварку угловых швов. Проведение отдельных испытаний по сварке угловых швов на пробах P_2 или P_4 требуется в следующих случаях:
- .1 сварщик согласно заявке предприятия (изготовителя), аттестуется только для этих видов соединений;
- **.2** по требованию Регистра в том случае, если в производственной практике основной объем работ выполняется сварщиком на угловых швах.

Примечание. Данное требование не распространяется на сварку угловых швов с частичным или полным проваром, когда предусмотрена разделка кромок под сварку. Условием для допуска к сварке таких швов является, как правило, распространение области одобрения СДС на сварку стыковых швов для идентичных условий.

- **4.5.4.3** Область одобрения СДС для дополнительных видов испытаний определяется в общем порядке по всем основным переменным параметрам с учетом следующих уточнений:
- .1 одобрение для стыковых соединений труб для пробы P_6 распространяется на сварку узлов сочленений труб (патрубков) с углом между осями не менее 60° ;

- **.2** для узлов сочленений труб (патрубков) область одобрения СДС определяется в зависимости от их наружного диаметра и толщины стенки согласно 4.5.7.
- **4.5.4.4** В тех случаях, где тип сварного шва не может быть одобрен посредством типовых проб (например, сварка трубных досок и т. п.) должны применяться особые виды проб.
- **4.5.5** С целью уменьшения количества испытаний по аттестации сварщиков материалы со сходными характеристиками объединяются в группы в соответствии со стандартом CR ISO/TR 15608 (см. табл. 4.3.3.1-1, 4.3.3.1-2 и 4.3.3.1-3).

Испытания, выполненные с применением любой конкретной марки материала одной из групп, имеют область одобрения СДС на все другие материалы данной группы, а также других групп согласно табл. 4.5.5-1, 4.5.5-2 и 4.5.5-3.

Область одобрения СДС для разнородных соединений (разных групп) определяется в соответствии со следующими требованиями:

- .1 сварщик может быть допущен к сварке разнородных соединений в любом сочетании групп основного металла, к сварке которых он допускается согласно табл. 4.5.5-1, 4.5.5-2 и 4.5.5-3. При этом сварочный материал должен соответствовать группе для одного из соединяемых материалов;
- .2 в случае если для разнородного соединения применяются сварочные материалы, предназначенные для аустенитных (группа 8) или аустенитноферритных (группа 10) нержавеющих сталей, то допускаются любые сочетания материалов групп 8 или 10 с материалами всех остальных групп.

Испытание по одобрению, выполненное на деформируемом материале группы, имеет область одобрения СДС также для литого материала и сочетания литого и деформируемого металла в пределах этой группы.

Для основных материалов, не подпадающих под классификацию по группам согласно CR ISO/TR 15608, для допуска сварщиков должны выполняться отдельные испытания по аттестации.

4.5.6 При назначении области одобрения СДС должны учитываться тип покрытия электродов и тип наполнителя порошковой проволоки, которые применялись для сварки проб при проведении практических испытаний.

Соответствующие области одобрения СДС по типам покрытия электродов и наполнителя порошковой проволоки приведены в табл. 4.5.6.

Испытания по одобрению, выполненные с применением присадочного материала, например для способов сварки 141, 15 и 311, имеют область одобрения СДС для того же способа сварки без присадочного металла, но не наоборот.

0.5	Таблица 4.5.5-1
Область одобрения СДС по группам основного металла (стали)	

Группа материала ¹		Область одобрения по результатам испытаний											
контрольных проб	1.1;1.2;	1.3	2	3	4	5	6	7	8		9	10	11
	1.4									9.1	9.2+9.3		
1.1;1.2;1.4	×		_	_	_	_	_	_	_		_	_	_
1.3	×	×	×	×	_	_	_	_	_	×		_	×
2	×	×	×	×	_	_	_	_	_	×	_	_	×
3	×	×	×	×		_	_	_	_	×	_	_	×
4	×	×	×	×	×	×	×	×	_	×	_	_	×
5	×	×	×	×	×	×	×	×		×	_		×
6	×	×	×	×	×	×	×	×		×			×
7	×	×	×	×	×	×	×	×	_	×	_	_	×
8	_	_	_	_	_	_	_	_	×	_	×	×	_
9 9.1	×	×	×	×	_	_	_	_	_	×	_	_	×
9.2 + 9.3	×		_	×	_	_	_	_	_		×	_	_
10	_					_	_	_	×	_	×	×	_
11	×	×	_	_	_	_	_	_	_	_		_	×

¹ Группы материала соответствуют стандарту CR ISO/TR 15608.

Условные обозначения:

Таблица 4.5.5-2 Область одобрения СДС по группам основного металла (алюминиевые сплавы)

Группа материала ¹		Область одобрения по результатам испытаний							
контрольных проба	21	22	23	24	25	26			
21	×	×	_	_	_	_			
22	×	×	_	l —	_	_			
23	×	×	×	×	×	×			
24	×	×	_	×	×	×			
25	×	×	_	×	×	×			
26	×	×		×	×	×			
¹ Аналогично табл. 4.5.5-1. Условные обозначения: аналогично табл. 4.5.5-1.									

4.5.7 Область одобрения СДС должна назначаться, исходя из следующих конструктивных размеров сварного соединения:

толщина основного металла и сварного шва; наружный диаметр свариваемых труб.

Также должна учитываться расчетная толщина углового шва (см. табл. 4.5.9-2).

Каждое практическое испытание по допуску сварщика должно иметь область одобрения СДС в соответствии с требованиями табл. 4.5.7-1, 4.5.7-2 и 4.5.7-3.

В случае соединения сочленения труб (патрубков) применяются критерии табл. 4.5.7-1 и табл. 4.5.7-2 с выполнением следующих правил:

Таблица 4.5.5-3 Область одобрения СДС по группам основного металла (медь и медные сплавы)

(медь и медиые силивы)									
Группа материала ¹		Область одобрения по результатам испытаний							
контрольных проб	31	32	33	34	35	36	37	38	
31	×	_	×	×	×		_	_	
32	_	×	_	_	_	×	_	_	
33	_	_	×	_	_	_	_	_	
34	_	_	_	×	×	_	_		
35	_	_	_	_	×	_	_	_	
36	_	×			_	×			
37	_	_	_	_	_	_	×	_	
38	_	_	_	_	_	_	×	×	

¹ Аналогично табл. 4.5.5-1.

Условные обозначения: аналогично табл. 4.5.5-1.

для накладного (глухого) соединения толщина и наружный диаметр принимаются по приварной трубе;

для проходного (сквозного) соединения толщина определяется по основной трубе или оболочке, а наружный диаметр принимается по приварной (присоединяемой) трубе.

Для проб сварных соединений с различным наружным диаметром труб и толщиной основного материала область одобрения СДС определяется раздельно:

[«]х» - отмечает группы основного металла, для работы с которыми сварщик допускается по результатам испытаний.

^{«—» —} отмечает группы основного металла, для работы с которыми сварщик не допускается по результатам испытаний.

Таблица 4.5.	.6
Область одобрения по типам сварочных материалов ¹	

Способ сварки		Сварочные Область одобрения по результатам испытаний						
	примен пр испыта	И	A, RA, I RC, RR		В	С		
111	A, RA, RB, RC, RR, R		×		_	—		
	В		×		×	_		
	C	!	_		_	×		
_	_	=	Сплошная проволока	ердечника порошковой проволоки				
			(S)	(M)	(B)	(R, P, V, W, Y, Z)		
131 135	Сплоі проволо		×	×	_	_		
136 141	Тип серде-	(M)	×	×	_	_		
136	чника (В)		_	_	×	×		
114 136	порош- ковой (R, F прово- локи Y, Z)		_	_	_	×		

¹ Условные обозначения типов сварочных материалов соответствуют 4.3.2.3.

Условные обозначения:

 $\times\times$ » — отмечает типы сварочных материалов (покрытие электродов, сердечник порошковой проволоки), для работы с которыми сварщик допускается по результатам испытаний.

«—» — отмечает типы сварочных материалов (покрытие электродов, сердечник порошковой проволоки), для работы с которыми сварщик не допускается по результатам испытаний.

для самой тонкой и самой большой толщины материала согласно табл. 4.5.7-1;

для наименьшего и наибольшего наружного диаметра труб согласно табл. 4.5.7-2.

4.5.8 Область одобрения СДС по пространственным положениям сварки в зависимости от условий проведения практических испытаний определяется в соответствии с требованиями табл. 4.5.8.

Сварка проб при практических испытаниях должна выполняться при номинальных значениях углов положений сварки к горизонту в соответствии с ИСО 6947 (см. приложение 2).

Положения сварки J-L045 и H-L045 для сварки труб при практических испытаниях имеют область одобрения СДС для всех углов наклона труб.

Сварка двух труб с одинаковым наружным диаметром, одна в положении PF и одна в

Таблица 4.5.7-1 Область одобрения СДС по толщинам основного материала и металла шва для стыковых соединений

Материал ¹	Толщина металла проб при испытаниях t , мм	Область одобрения по толщинам основного материала и металл шва, мм
Стали	$t \le 3$ $3 < t \le 20$ $t > 20$	от t до $2t^2$ свыше 3 до $2t^3$ свыше 3
Алюминий и его сплавы	$t \le 6$ $6 < t \le 15$	$ 0.7t - 2.5t \\ 6 < t \leqslant 40^4 $
Медь и медные сплавы	t	от 0,5 <i>t</i> до 1,5 <i>t</i> ⁵

 1 Для комбинации двух способов сварки S_{1} и S_{2} принимается согласно указаниям табл. 4.5.2.

 2 Для газовой (ацетиленокислородной) сварки — от t до 1,5t. 3 Для газовой (ацетиленокислородной) сварки — от 3 мм до 1.5t.

⁴При толщине основного материала более 40 мм требуется отдельная аттестация, которая должна быть отмечена в СДС и в протоколе испытаний.

⁵Для газовой (ацетиленокислородной) сварки испытания должны проводиться для минимальной и максимальной толщин основного металла, к сварке которых допускается сварщик в производственной практике.

Таблица 4.5.7-2 Область одобрения СДС по наружному диаметру свариваемых труб

Материал	Наружный диаметр трубы пробы сварного соединения, мм	Область одобрения по наружному диаметру свариваемых труб, мм
Стали	$D \le 25 25 < D \le 150 D > 150$	от D до $2D$ от $0,5D$ до $2D$, но не менее 25 от $0,5D$ и выше
Алюминий и его сплавы	$D \leqslant 125$ $D > 125$	от $0,5D$ до $2D$ от $0,5D$ и выше
Медь и медные сплавы	$D \leqslant 25$ $25 < D \leqslant 150$	от D до $2D$ 0,5 D до $2D$, но не менее 25

 Π р и м е ч а н и е. Для пустотелых строительных конструкций коробчатого сечения размер «D» определяется по размеру наименьшей стороны.

Таблица 4.5.7-3 Область одобрения по толщинам основного материала для угловых сварных швов

Толщина материала контрольной пробы <i>t</i> , мм	Область одобрения по толщинам основного материала, мм
t < 3	От <i>t</i> до 3
t ≥ 3	От 3 и выше

Примечания: 1. Толщина углового шва должна находиться в пределах $0.5t \le a \le 0.7t$.

2. См. также ограничения согласно табл. 4.5.9-2.

² Тип сварочных материалов, используемых при испытаниях по допуску к сварке корневых проходов без подкладок с обратным формированием шва (SS nb), является типом сварочных материалов, на которые распространяется одобрение на сварку корневых проходов в производстве.

Таблица 4.5.8 Область одобрения СДС по пространственным положениям сварки

Положение сварки при проведении испытаний		Область одобрения по результатам испытаний $^{\mathrm{1}}$											
проведении испытании	PA	PB ²	PC	PD ²	PE	РF (лист)	РF (труба)	РG (лист)	РG (труба)	H- L045	J- L045		
PA	×	×	_	_	_	_	_	_	_	_	_		
PB^2	×	×	_	_	_	_	_	_	_	_	_		
PC	×	×	×	_	_	_	_	_	_	_	_		
PD^2	×	×	×	×	×	×	_		_	_	_		
PE	×	×	×	×	×	×	_	_	_	_	_		
PF (лист)	×	×	_	_	_	×	_	_	_	_	_		
PF (труба)	×	×	_	×	×	×	×	_	_	_	_		
РG (лист)	_	_	_	_	_	_	_	×	_	_	_		
РG (труба)	×	×	_	×	×	_	_	×	×	_	_		
H-L045	×	×	×	×	×	×	×	_	_	×	_		
J-L045	×	×	×	×	×	_	_	×	×	_	×		

¹Должны учитываться дополнительные требования согласно 4.5.3 и 4.5.4.

Условные обозначения:

положении PC, также имеет область одобрения СДС на сварку труб в положении H-L045.

Сварка двух труб с одинаковым наружным диаметром, одна в положении PG и одна в положении PC, также имеет область одобрения СДС на сварку труб в положении J-L045.

Трубы с наружным диаметром $D \geqslant 150$ мм допускается сваривать в двух положениях сварки с использованием только одной пробы сварного соединения: РF или PG-2/3 окружности и PC-1/3 окружности.

4.5.9 При назначении области одобрения СДС по технологическим особенностям выполнения сварных соединений (см. 4.3.3.2) следует руководствоваться требованиями табл. 4.5.9-1 и 4.5.9-2.

Для газопламенной (ацетиленокислородной) сварки изменение способа технологии сварки с правого на левый и наоборот требует проведения новых испытаний по одобрению.

Таблица 4.5.9-1 Область одобрения СДС по технологии выполнения стыковых сварных соединений

Технология выполнения	Область одобрения					
стыковых сварных швов при проведении испытаний	Сварка односторонним швом/ сварка без подкладок (ss nb)	Сварка односторонним швом/ сварка с применением подкладок (ss mb)	Сварка двусторонним швом (bs)			
Сварка односторонним швом/сварка без подкладок (ss nb)	×	×	×			
Сварка односторонним швом/сварка с применением подкладок (ss mb)	_	×	×			
Сварка двусторонним швом (bs)	_	×	×			

Условные обозначения:

«×» — отмечает сварные соединения, для работы с которыми сварщик допускается по результатам испытаний;

Таблица 4.5.9-2 Область одобрения СДС в зависимости от технологии выполнения сварки угловых швов

Технология сварки проб сварных соединений ¹	Область одобрения по результатам испытаний	
	Однослойная сварка (sl)	Многослойная сварка (ml)
Однослойная сварка (sl) Многослойная сварка (ml)	× ×	

¹Толщина углового шва должна находиться в пределах $0.5t \le a \le 0.7t$.

Условные обозначения:

« × » - отмечает технологию сварки, для работы с которой сварщик допускается по результатам испытаний.

²Положения сварки РВ и РD, используемые только для угловых сварных швов, имеют область одобрения СДС только для угловых швов, выполняемых в других пространственных положениях.

^{« × » -} отмечает пространственные положения сварки, для работы в которых сварщик допускается по результатам испытаний.

^{«—» —} отмечает пространственные положения сварки, для работы в которых сварщик не допускается по результатам испытаний.

^{«—» —} отмечает сварные соединения, для работы с которыми сварщик не допускается по результатам испытаний.

^{«—» —} отмечает технологию сварки, для работы с которой сварщик допускается по результатам испытаний.

4.6 ОФОРМЛЕНИЕ, УСЛОВИЯ ДЕЙСТВИЯ И ПРОДЛЕНИЯ СДС

- **4.6.1** По результатам проведения теоретических и практических испытаний сварщиков аттестационная комиссия оформляет протокол по форме, рекомендуемой в приложении 3.
 - 4.6.2 К протоколу аттестации прилагаются:

копия свидетельства о присвоении квалификации сварщика и справка отдела кадров предприятия о стаже работы сварщика по специальности (при первичной аттестации) или копия удостоверения сварщика при других видах аттестации;

копия документа учебного заведения о прохождении сварщиком специального обучения;

копии сертификатов на основной и сварочные материалы;

акты, заключения и другие документы о результатах контроля качества проб сварных соединений.

Примечание. Допускается оформление одного протокола в виде таблицы на группу сварщиков с включением всех требуемых сведений и данных, указанных в приложении 3.

- **4.6.3** Протокол аттестации сварщика оформляется в двух экземплярах. Один экземпляр хранится в экзаменационном центре, второй экземпляр передается в подразделение Регистра, осуществляющее техническое наблюдение за проведением испытаний.
- **4.6.4** На основании протокола аттестации сварщиков и при условии выполнения всех указанных выше требований Регистр оформляет и выдает СДС (форма 7.1.30).
- 4.6.5 Свидетельство по форме 7.1.30 оформляется и выдается подразделением Регистра, непосредственно осуществляющим техническое наблюдение за постройкой судов или конструкций. Документ подписывается начальником подразделения Регистра и заверяется круглой печатью с якорем. Учет и регистрация СДС (форма 7.1.30) ведется в подразделениях по месту выдачи. Копии выданных документов могут представляться в ГУР только по отдельному требованию последнего.
- 4.6.6 Выданное СДС остается действительным в течение двух лет при условии его подтверждения каждые шесть месяцев ответственным персоналом предприятия-работодателя. Отметка о подтверждении, проставляемая в соответствующих графах СДС, является подтверждением работодателем выполнения следующих требований в процессе трудовой деятельности сварщика за подотчетный период времени:

сварщик должен быть постоянно занят на сварочных работах в течение текущего периода одобрения. При этом перерывы в работе продолжительностью более шести месяцев не допускаются;

сварочные работы, которые выполняет сварщик в производственных условиях, должны соответ-

ствовать по сложности области одобрения, указанной в СДС;

в процессе работы не должно возникать вопросов относительно уровня квалификации и знаний сварщика.

В случае несоблюдения любого из этих условий СДС утрачивает силу. При этом, вопрос о его возобновлении или выдаче нового Свидетельства решается индивидуально в каждом конкретном случае.

Примечание. В соответствии с принятой национальным законодательством практикой сварщик должен проходить периодические медицинские освидетельствования и иметь положительное заключение медицинской комиссии о профессиональной пригодности.

- 4.6.7 Действие СДС может быть продлено (пролонгировано) Регистром на следующий период до двух лет без проведения новых практических испытаний и без изменения области одобрения. Продление действия СДС на следующий двухлетний период выполняется Регистром при условии соблюдения требований, перечисленных в 4.6.6, на основании протокола (заключения) аттестационной комиссии, в котором должно быть отражено соблюдение всех основных переменных параметров технологического процесса сварки (см. 4.5.1) с обязательным приложением подтверждающих документов. При этом необходимо привести доказательства выполнения следующих требований:
- .1 все протоколы и документы, используемые для подтверждения продления действия СДС, имеют отношение к конкретному сварщику и тождественны спецификациям процесса сварки (СПС), которые применялись в производстве;
- .2 качество сварных швов, выполненных сварщиком в производственных условиях, удовлетворяет требованиям разд. 3 части XIV «Сварка» Правил классификации и постройки морских судов;
- .3 документы, используемые для поддержания пролонгации СДС, должны быть волюмометрического характера (радиографический или ультразвуковой контроль), а для разрушающих испытаний (излом или статический изгиб) должен быть выполнен контроль не менее двух швов за период предыдущих шести месяцев. Документы, относящиеся к продлению СДС, необходимо хранить, как минимум, в течение двух лет;
- .4 результаты указанных выше испытаний (см. 4.6.7.3) должны свидетельствовать, что работы сварщиком выполнялись в условиях, идентичных условиям проведения испытаний по первоначальному одобрению за исключением конструктивных размеров сварного соединения (толщина материала и наружный диметр трубы).

Примечание. Для пролонгации СДС допускаются следующие отличия от условий проведения первоначальных испытаний:

толщина материала может варьироваться в пределах первоначальной области одобрения СДС;

наружный диаметр труб должен находиться в пределах $\pm\,50$ % от диаметра при первоначальных испытаниях.

4.6.8 Выполнение текущего контроля производственной деятельности сварщика должно выполнять предприятие-работодатель, которое должно назначить ответственное лицо (исполнителя), несущего ответственность за выполнение этой работы.

Картотека на каждого аттестованного сварщика должна содержать:

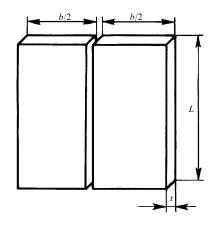
копию документа об образовании;

копию документа о специальной подготовке;

справку о непрерывном стаже работы по сварке; протоколы о сдаче экзаменов с указанием состава аттестационной комиссии, дополнительных вопросов, выставленных оценок, даты проведения экзаменов, результатов практического экзамена;

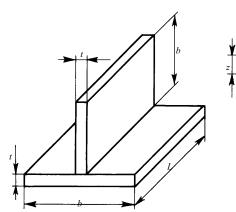
заключение комиссии по результатам экзаменов; копии протоколов испытаний сварных соединений, выполненных сварщиком за подотчетный период, с заключением ответственного лица предприятия-работодателя о возможности продления СДС на очередные 6 месяцев.

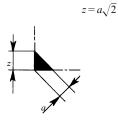
Любой из перечисленных выше документов должен предъявляться инспектору Регистра по первому требованию.


- **4.6.9** По согласованию с Регистром для предприятий-работодателей, имеющих одобренную Регистром систему обеспечения качества продукции, продление срока действия СДС может выполняться в рамках очередного освидетельствования системы качества предприятия в целом.
- **4.6.10** В том случае, если сварщик должен быть допущен к работам, выходящим за пределы первоначальной области одобрения согласно СДС (форма 7.1.30), требуется проведение новых испытаний по допуску в соответствии с требованиями, изложенными выше.

В случае появления любых вопросов, касающихся квалификации или знаний сварщика (см. 4.6.6 и 4.6.7), инспектор Регистра может принять решение об утрате силы действующего СДС и/или потребовать проведения внеочередных испытаний по допуску.

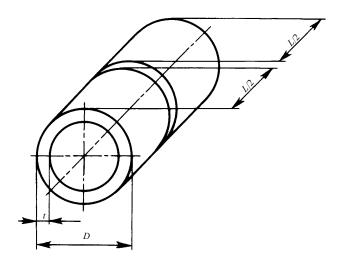
- **4.6.11** Продление срока действия СДС согласно требованиям 4.6.7 на очередной двухлетний срок может выполняться не более двух раз подряд. Периодическая аттестация сварщика в полном объеме должна проводиться по истечение трех двухлетних сроков действия СДС (т. е. проводится при замене бланка СДС).
- **4.6.12** Практические рекомендации по заполнению бланка Свидетельства приведены в приложении 4.


ПРИЛОЖЕНИЕ 1 (Обязательное)


ТИПЫ ПРОБ СВАРНЫХ СОЕДИНЕНИЙ, ПРИМЕНЯЕМЫЕ ПРИ ПРАКТИЧЕСКИХ ИСПЫТАНИЯХ ПО ДОПУСКУ СВАРЩИКОВ

Процесс	Размеры	пробы, мм
сварки	L	b
MW, SA,	≥350 ≥800	$\geqslant 250 (300)^1$ $\geqslant 300 (400)^1$
1 В скобках приведены значения b для аллюминия и его сплавов.		

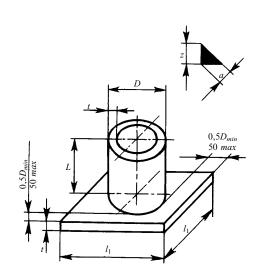
 $\label{eq:Puc.1} \mbox{Проба стыкового соединения пластин P_1}$



$t \geqslant 6$ mm, $a \leqslant 0.5t$	
$t < 6$ MM, $0.5t \leqslant a \leqslant t$	ť
$(z \approx 0.7t)$	

Процесс	Размеры пробы, мм	
сварки	L	b
MW, SA,	≥350	≥125 (150) ¹
A	≥800	$\geqslant 125 (200)^1$
¹ B	скобках	привелены

 1 В скобках приведены значения b для аллюминия и его сплавов.

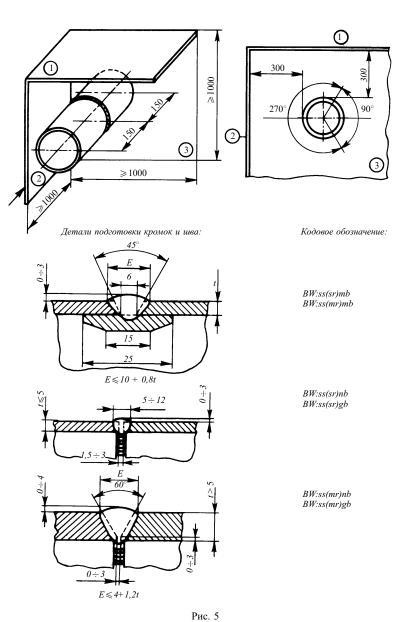

Рис. 2 Проба таврового соединения пластин ${\bf P}_2$

Процесс	Размеры пробы, мм	
сварки	D	L
MW, SA,	€25	≥150
A ¹	$25 < D \le 150$ > 150	$\geqslant 250 (300)^2$ $\geqslant 300 (400)^2$

 $^{^{1}}$ Размер пробы должен быть достаточным для стабильной работы оборудования. 2 В скобках приведены значения L

Рис. 3 Проба стыкового соединения труб P_3

— <i>и</i>	√ ²
	$t \geqslant 6$ мм, $a \leqslant 0,5t$
	$t \le 6$ mm, $0.5t \le a \le t$
	$(z \approx 0.7t)$


Процесс	Размеры пробы, мм	
сварки	D	L
MW, SA,	€25	\geqslant 75 $(100)^2$
A^1	$25 < D \leqslant 150$	
	> 150	$\geq 150 (200)^2$

¹ Размер пробы должен быть достаточным для стабильной работы оборудования

 $\label{eq:Puc.4} \mbox{Проба соединения труб угловым швом P_4}$

 $^{^{-2}}$ В скобках приведены значения L для аллюминия и его сплавов.

работы оборудования. 2 В скобках приведены значения L для аллюминия и его сплавов.

Проба стыкового соединения труб с ограниченным доступом к зоне сварки P_5

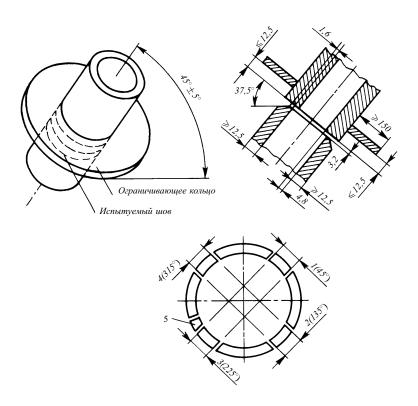
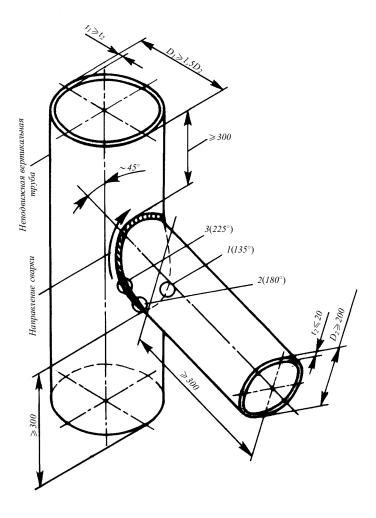



Рис. 6 Проба стыкового соединения труб с ограничивающим кольцом P_6 : $1,\,2,\,3,\,4$ — места для отбора образцов на статический изгиб; 5 — место для отбора макрошлифа

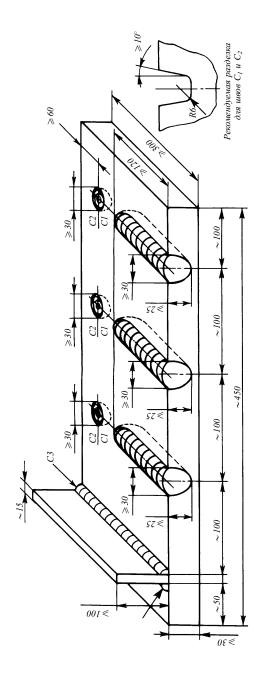
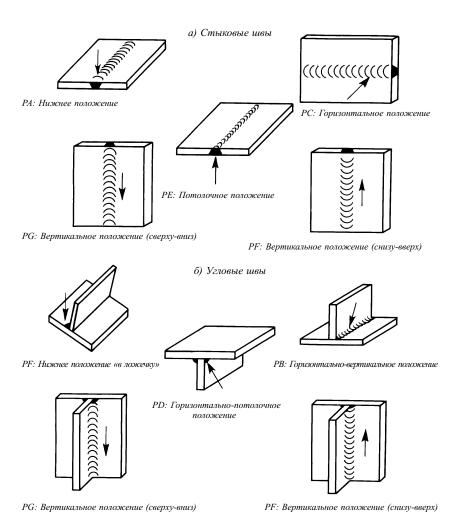
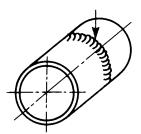
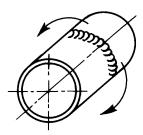


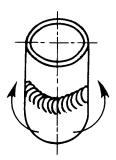
Рис. 8 Проба – имитатор ремонта отливок и поковок P_8

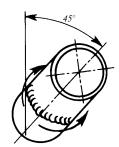
ПРИЛОЖЕНИЕ 2 (Справочное)

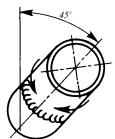
УНИФИЦИРОВАННЫЕ ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ СОГЛАСНО СТАНДАРТУ ИСО 6947

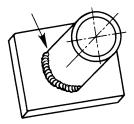

Рис. 1 Положения при сварке пластин


PA: Нижнее положение труба: поворачивается ось: горизонтальная

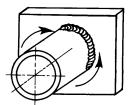

PF: Вертикальное положение (снизу-вверх) труба: неподвижная ось: горизонтальная


PG: Вертикальное положение (сверху-вниз) труба: неподвижная ось: горизонтальная

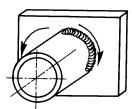
РС: Горизонтальное положение труба: неподвижная ось: вертикальная

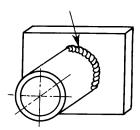


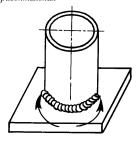
H-L045: Наклонное положение (снизу-вверх) труба: неподвижная ось: наклонная

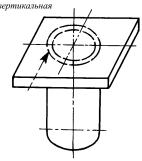


J-L045: Наклонное положение (сверху-вниз) труба: неподвижная ось: неподвижная


 $\label{eq:Puc.2} \mbox{Положения при сварке труб (стыковые швы)}$


РА: Нижнее положение «в угол» труба: поворачивается ось: наклонная


PF: Вертикальное положение (снизу-вверх) труба: неподвижная ось: горизонтальная


PG: Вертикальное положение (сверху-вниз) труба: неподвижная ось: горизонтальная

РВ: Горизонтально-вертикальное положение труба: поворачивается ось: горизонтальная

РВ: Горизонтально-вертикальное положение труба: неподвижная ось: вертикальная

PD: Горизонтально-потолочное положение труба: неподвижная ось: вертикальная

Рис. 3 Положения при сварке труб (угловые швы)

ПРИЛОЖЕНИЕ 3 (Рекомендуемое)

ПРОТОКОЛ ЗАСЕДАНИЯ АТТЕСТАЦИОННОЙ КОМИССИИ

(наименование аттестационного органа)

	от «» 200 г.		
	Уомиссия в составе:		
	ROMINGED B COCTUBE.		
пред	седатель комиссии		
•	(фамилия, инициалы)		
	члены комиссии		
	(фамилия, инициалы)		
	рассмотрела вопрос: <i>Аттестация сварщиков</i>		
	(наименование НД, в соответствии		
1	с которыми проводится аттестация)		
1	Фамилия		
	Отчество		
2	Год рождения		
3 Номер документа о присвоении квалификации сварщика или номер предыдущего удостоверения			
	об аттестации		
4	Стаж работы по сварке		
5	Вид аттестации		
6	Характеристика контрольного сварного соединения:		
6.1	Маркировка образца (клеймо)		
6.2	Способ сварки		
6.3	Вид свариваемых деталей		
<i>c</i> 1	(пластина (Р) или труба (Т))		
6.4	Тип шва, вид и характеристика		
65	Сварного соединения		
6.5 6.6	Положения при сварке Предварительный и сопутствующий подогрев		
0.0	(да, нет)		
6.7	Термическая обработка		
	(да, нет)		
7	Материал образца:		
7.1	Марка и группа		
7.2	Толщина образца (мм)		
7.3	Наружный диаметр трубы (мм)		
8	Сварочные материалы:		
8.1	Электрод или присадочная проволока		
0.2	(марка и тип)		
8.2	Защитный газ или флюс (марка)		
	(марка)		

характер допуска)

(подпись, фамилия, инициалы)

(подпись, фамилия, инициалы)

Срок периодической аттестации

Председатель комиссии

Члены комиссии

13

ПРИЛОЖЕНИЕ 4 (Обязательное)

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ЗАПОЛНЕНИЮ ФОРМЫ 7.1.30 «СВИДЕТЕЛЬСТВО О ДОПУСКЕ СВАРЩИКА»

1. Как правило, для каждого конкретного варианта основных переменных параметров технологического процесса сварки должно оформляться отдельное СДС. В том случае, если при аттестации сварщика было испытано более одной пробы, то допустимым для объединения в одном СДС является изменение только одного из перечисленных ниже основных переменных параметров:

тип шва;

пространственное положение сварки;

конструктивные размеры сварного соединения (толщина материала и наружный диаметр трубы).

- В этом случае СДС оформляется на сочетание областей одобрения для каждой испытанной пробы.
- 2. Для способов сварки в среде защитных газов условия проведения испытаний и область одобрения СДС устанавливаются согласно следующим требованиям:

для способов сварки 135 и 136 испытания по аттестации выполняются на одном из составов защитных газов групп С или М, наиболее широко применяемого в производстве, и распространяются на все составы газов этих двух групп (С1, С2, Мl, М2 и М3);

для способов сварки 131, 137, 141 и 15 испытания по аттестации выполняются на одном из составов защитных газов группы I, наиболее широко применяемых в производстве, и распространяются на все составы газов этой группы (I1, I2, I3).

Примечание. Защитные газы групп R и F для применяемых в судостроении материалов, как правило, не находят применения и, соответственно, не используются при проведении испытаний по аттестации сварщиков.

- 3. Для способов сварки с применением сварочных флюсов область одобрения СДС не регламентируется. В соответствующей графе СДС указывается обозначение (торговая марка) и способ изготовления (индексы F, А или М согласно 4.3.2.5) флюса, применяемого при испытаниях по аттестации, а в графе область одобрения ставится прочерк.
- **4.** Примеры заполнения СДС по форме 7.1.30 приведены в Руководстве по техническому наблюдению за применением сварки в судостроении и судоремонте. Ниже приводятся разъяснения по заполнению отдельных позиций формы 7.1.30.
- **5.** В графе «Предприятие» указывается полное название предприятия, на котором работает сварщик и по заявке которого он проходит аттестацию.

6. В графе «Правила/стандарт на испытания» указываются правила Российского морского регистра судоходства и делается ссылка на соответствующий стандарт.

После указания последних приводится кодированное обозначение условий проведения практических испытаний для каждой изготовленной пробы согласно 4.3.5.

Примеры обозначений:

- **.1** Правила PC, EN287-1:2004:111 P (P₁) BW 1.3 B t12 PF bs для одной пробы и одного способа сварки.
- .2 Правила PC, EN 287-1:2004:141/135 T (P₃) BW 1.2 S t20 (5/15) D200 PA ss nb для одной пробы с комбинацией двух способов сварки.
 - .3 Правила PC, EN 287-1:2004
 - :111 P (P₁) BW 2.1 B t13 PA ss nb
- :111 $P(P_2)$ FW 2.1 B t13 PB ml для двух проб (типов шва) и одного способа сварки.
 - .4 Правила PC, EN 287-1:2004
 - :141 T(P₃) BW 5.2 S t 5,0 D60 PF ss nb
- $:141T(P_3)$ BW 5.2 S t 5,0 D60 PC ss nb для двух проб (пространственных положений шва) и одного способа сварки.
- 7. Разъяснения и указания по заполнению основной таблицы «область испытаний и одобрения» приведены в таблице.
- 8. Таблица «Результаты испытаний» СДС оформляется следующим образом. Результаты практических испытаний и экзамена по профессиональным знаниям сварщика должны обозначаться посредством терминов «Принято» («Accepted») или «Не испытывалось» («Not tested»).
 - 9. Таблица «Действие и продление допуска».

Левая половина таблицы заполняется ответственным лицом предприятия-работодателя согласно указаниям 4.6.6 и 4.6.8 настоящей части.

В правой стороне таблицы инспектор Регистра должен делать отметку о продлении срока действия СДС согласно 4.6.7 и 4.6.9. Подпись о продлении (пролонгации) СДС на очередной срок удостоверяется личным штампом инспектора Регистра.

10. В графе «Место выдачи и дата выдачи» указывается наименование аттестационного центра, в котором выполнялись испытания по допуску сварщика. Дата выдачи определяется началом действия аттестации квалификации сварщика, которая начинается с даты сварки пробы (проб) сварного соединения, если при ее испытаниях были получены удовлетворительные результаты.

Таблица

Наименование граф ф. 7.1.30	Сведения о сварке проб	Область одобрения
1 Спецификация процесса сварки	Указывается № соответствующей СПС (WPS), если она оформлялась для сдачи практических испытаний (в противном случае ставится прочерк)	Ставится прочерк
2 Процесс сварки	Указывается кодированное обозначение процесса сварки (см. 4.3.2.2)	Указывается кодированное обозначение процесса и его полное название
3 Способ сварки	Указывается кодированное обозначение способа сварки (см. 4.3.2.1)	Указывается полное наименование способа сварки и его сокращенное буквенное обозначение (см. табл. 6.2.2.1 части XIV «Сварка» Правил классификации и постройки морских судов)
4 Пластина или труба	Указывается кодированное обозначение Р или Т (см. 4.3.4.1)	Указывается кодированное обозначение типа изделия согласно 4.5.3 и делается ссылка «см. положения сварки»
5 Тип соединения	Указывается полное кодированное обозначение типа шва соединения пробы, включая особенности технологического процесса сварки. Возможные варианты обозначений: BW: ss nb; ss mb; bs FW: sl; ml	Указывается кодированное обозначение типа сварного соединения и технологических особенностей его выполнения согласно 4.5.4 и 4.5.9. Возможные варианты заполнения: ВW: ss nb, ss mb, bs; FW: sl, ml BW: ss mb, bs; FW: sl, ml FW: sl FW: sl, ml
6 Основной металл: класс/обозначение	Указывается обозначение подгруппы (группы) основного металла (см. табл. 4.3.3.1-1, 4.3.3.1-2 и 4.3.3.1-3), а для судостроительных материалов через знак «/» приводится обозначение категории согласно части XIII «Материалы» Правил классификации и постройки морских судов. Для прочих материалов факультативно может приводиться обозначение марки в соответствии с национальными стандартами	Указываются обозначения подгрупп (групп) основного металла согласно 4.5.5 (см. табл. 4.5.5-1, 4.5.5-2 и 4.5.5-3)
7 Тип присадочного металла: класс/обозначение	В числителе указывается наличие присадочного металла: wm — сварка с присадочным металлом; nm — сварка без присадочного металла. В знаменателе указывается тип присадочного материала: E — покрытые электроды; S — сплошная проволока; FW — порошковая проволока; SR — прутки сплошного сечения; FR — прутки порошковой проволоки. Для сварки без присадочного металла ставится прочерк	Указывается область одобрения СДС по наличию и типу присадочного материала с учетом расширения области одобрения согласно 4.5.6 для конкретных способов сварки
8 Состав защитного газа/флюс	Указывается группа состава защитного газа при испытаниях по допуску (см. 4.3.2.4). Для способов сварки 121 и 125 указывается торговая марка флюса и способ его изготовления (см. 4.3.2.5)	Заполняется согласно требованиям п. 2 и п. 3 настоящего приложения
9 Тип флюса или электродного покрытия	Указывается обозначение типа электродного покрытия или наполнителя порошковой сварочной проволоки при проведении испытаний (см. 4.3.2.3)	Указывается область одобрения СДС согласно требованиям табл. 4.5.6

Продолжение табл.

Наименование граф ф. 7.1.30	Сведения о сварке проб	Область одобрения
10 Вспомогательные материалы	Вносятся сведения о вспомогательных материалах, применяемых для сварки проб, а именно: тип и материал подкладок, различные пасты и флюсы для ацетиленокислородной сварки, состав защитного газа для поддува с обратной стороны шва и т. п.	Указывается область одобрения СДС по однотипным с применяемыми при испытаниях вспомогательными материалами или делается прочерк (при отсутствии таковых)
11 Толщина основного материала	Указывается фактическая толщина основного металла свариваемых проб (см. также табл. 4.5.2 для комбинации способов сварки на одной пробе)	Указывается диапазон толщин основного металла, к сварке которых допускается сварщик согласно 4.5.7. Для комбинации способов сварки диапазон толщин приводится раздельно по каждому способу и их сочетанию. Например: $141:3 \text{ мм} \leqslant t \leqslant 10 \text{ мм}$ 1355 мм или $141/135:t \leqslant 5 \text{ мм}$
12 Наружный диаметр трубы	Указываются фактические значения наружных диаметров труб свариваемой пробы	Указывается диапазон диаметров труб, к сварке которых допускается сварщик согласно 4.5.7
13 Положения сварки / тип пробы	В числителе через знак «/» указываются унифицированные согласно Стандарту ИСО 6947, пространственные положения в которых была выполнена сварка проб (см. приложение 2). В знаменателе указывается обозначение типа пробы согласно приложения 1.	Указываются пространственные положения, к сварке которых допускается сварщик согласно 4.5.8 (для пластин и труб раздельно). Для сокращения допускается запись: «Все, за исключением»

ПРИЛОЖЕНИЕ 5 (Обязательное)

ПОЛОЖЕНИЕ О ЦЕНТРАХ ПО АТТЕСТАЦИИ СВАРЩИКОВ (АТТЕСТАЦИОННЫХ ЦЕНТРАХ)

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1 Настоящее положение устанавливает организационно-правовую форму, права и обязанности аттестационных центров; порядок их признания Регистром и основные требования к их работе, а также к учебно-испытательной базе.

Положение предназначено для применения:

подразделениями Регистра, осуществляющими техническое наблюдение за работами по допуску сварщиков;

организациями или предприятиями, которые претендуют на признание их в качестве аттестационных центров;

аттестационными центрами в своей практической деятельности.

2 ОБЩИЕ ПОЛОЖЕНИЯ

- 2.1 Статус аттестационного центра может быть предоставлен Регистром самостоятельной организации/предприятию, представляющей собой юридическое лицо любой организационно-правовой формы и формы собственности при условии выполнения ею всех требований, установленных настоящим Положением и Правилами классификации и постройки морских судов.
- **2.2** Признание полномочий аттестационных центров производится Регистром в следующем порядке:

предоставление в региональное подразделение Регистра заявки, содержащей регламентированные в 2.3 сведения и приложения;

проведение Регистром экспертизы заявки и документов, регламентирующих деятельность аттестационного центра;

освидетельствование Регистром учебно-испытательной базы аттестационного центра;

устранение заявителем выявленных несоответствий в документации и учебно-испытательной базе:

выдача Регистром документов о признании полномочий аттестационного центра и непосредственное участие в его работе.

2.3 В заявке на признание аттестационного центра должны содержаться:

наименование и полные реквизиты (почтовые и финансовые) аттестационного центра;

ФИО руководителя и ответственного за связь с Регистром исполнителя;

перечень способов сварки, по которым будет выполняться аттестация сварщиков, и номенклатура групп типового состава основного металла;

гарантии оплаты услуг Регистра.

К заявке должны быть приложены следующие документы:

копия Устава аттестационного центра;

проект Положения об аттестационном центре;

комплекты программ подготовки к аттестации и сборников экзаменационных вопросов, а также практических заданий по всем видам проводимых экзаменов.

2.4 Положение о центре должно содержать: сведения о наличии помещений для проведения теоретических и практических экзаменов;

сведения об организационной структуре центра; сведения об имеющихся в центре нормативных документах;

сведения о материальной базе, включающие справки об имеющемся сварочном оборудовании, станочном парке и оснастке, используемых при аттестации, оборудовании и средствах контроля качества сварных соединений, компьютерной технике;

сведения о персонале центра, включая экзаменаторов и аттестованных специалистов по неразрушающим методам контроля;

сведения об организации аттестационной работы; сведения о порядке подачи и рассмотрения апелляций;

порядок ведения реестра аттестованных сварщиков и архива.

- **3.1** Управление деятельностью аттестационного центра осуществляет руководитель, назначаемый на контрактной основе, либо на основании приказа учредителя(ей) в порядке, установленном законодательством РФ.
- **3.2** В состав аттестационного центра входят аттестационные комиссии для проведения теоретических и практических экзаменов.

Основными задачами аттестационной комиссии являются:

организация и контроль подготовки сварщиков к аттестации;

разработка программ специальной теоретической и практической подготовки сварщиков к аттестапии:

определение сроков проведения аттестации;

создание благоприятных условий для проведения испытаний сварщиков;

подготовка необходимой учебно-испытательной базы;

подготовка сборника экзаменационных вопросов по способам сварки и типу основного металла;

определение порядка проведения теоретического экзамена;

проведение теоретического экзамена и оценка его результатов;

разработка СПС на выполнение контрольных сварных соединений;

контроль материалов, которые применяются для практических испытаний сварщиков;

контроль выполнения сварщиками сварных соединений и их маркировки;

организация проведения контроля качества сварных соединений и оценка их качества в соответствии с требованиями правил РС;

составление протокола и принятие решения о результатах аттестации сварщиков;

подготовка предложений для совершенствования НД по вопросам аттестации сварщиков.

Аттестационная комиссия имеет право:

отстранять сварщиков от аттестации, если ими не выполняются требования технологии сварки или нарушается установленный порядок проведения испытаний;

давать заключение о возможности продления срока действия СДС;

создавать рабочие группы для проведения анализа деятельности подразделений, обеспечивающих на предприятиях контроль работы сварщиков;

вносить предложения по совершенствованию порядка аттестации сварщиков.

3.3 Персональный состав аттестационной комиссии утверждается руководителем аттестационного центра и согласовывается с региональным подразделением Регистра.

В состав аттестационной комиссии входят:

председатель и его заместитель, являющиеся дипломированными специалистами в области сварки;

уполномоченный представитель Регистра;

аттестованный специалист по неразрушающему контролю с правом подписи заключений по результатам контроля внешним осмотром и измерением, а также по рентгенографическому или ультразвуковому контролю.

К работе аттестационной комиссии также могут привлекаться на постоянной или временной основе (в зависимости от статуса аттестационного центра) следующие лица:

ответственный за координацию сварочных работ на предприятии-работодателе (главный сварщик, начальник сварочного бюро и т. д.);

ответственный за текущий контроль производственной деятельности сварщиков на предприятииработодателе;

уполномоченный представитель службы технического контроля предприятия-работодателя;

высококвалифицированные специалисты в области отдельных способов сварки или по группам типового состава основного металла (например, специалисты по сварке цветных металлов и их сплавов и т. п.).

3.4 В состав аттестационных центров входит учебно-испытательная база, которая обеспечивает возможность проведения теоретических и практических испытаний по допуску сварщиков.

Как правило, для нормального функционирования учебно-испытательной базы необходимы следующие помещения:

сварочная мастерская с рабочими местами для проведения практических испытаний;

помещение для подготовки деталей под сварку; помещение для энергообеспечения (газо- и электрообеспечение, вентиляция и отопление);

помещение для учебных занятий (лекций); бытовые помещения;

помещения для механических испытаний и контроля качества сварных соединений.

3.5 Основными функциями аттестационного центра являются аттестация сварщиков, а также ведение делопроизводства и учета аттестованных сварщиков

При проведении аттестации центр обеспечивает: составление программ аттестации сварщиков; формирование аттестационных комиссий;

проведение аттестации по конкретным способам сварки и группам типового состава основного металла;

поддержание в рабочем состоянии учебноиспытательной базы;

контроль соблюдения единства требований и объективности оценки результатов экзаменов.

Ведение делопроизводства предусматривает ведение картотеки на каждого аттестованного сварщика, содержащей следующие документы:

заявку на аттестацию;

копию документа об образовании;

копию документа о специальной подготовке;

справку об общем стаже работы по сварке (выписку из трудовой книжки);

справку о состоянии здоровья;

экзаменационные листы;

копии протоколов контроля качества сварных соединений;

протокол о сдаче экзаменов аттестуемым лицом с заключением аттестационной комиссии;

фотографию размеров 3 х 4 и образец подписи аттестованного сварщика;

копию СДС.

 Π р и м е ч а н и е . Для аттестационных центров, образованных при предприятиях и обслуживающих работников этого предприятия, объем картотеки может быть сокращен.

Данные об аттестованных сварщиках должны храниться в течение двух сроков действия СДС после проведения последней аттестации.

В случае несдачи экзаменов сведения о сварщике хранятся в центре в течение одного года со времени принятия решения аттестационной комиссией.

ПРИЛОЖЕНИЕ 6 (Рекомендуемое)

РАЗДЕЛЫ И ВОПРОСЫ ДЛЯ ПРОВЕДЕНИЯ ЭКЗАМЕНА ПО ПРОВЕРКЕ ПРОФЕССИОНАЛЬНЫХ ЗНАНИЙ СВАРЩИКА

Изложенные в настоящем приложении разделы и вопросы предлагаются в качестве стандартного минимума при сдаче экзамена по проверке профессиональных знаний сварщика. Фактические вопросы могут отличаться от предлагаемых и составляются в индивидуальном порядке экзаменационной комиссией, но, в любом случае, перечень разделов, по которым должен быть проэкзаменован сварщик, должен соответствовать приведенным ниже а вопросы должны ограничиваться случаями, относящимися к способу сварки, применяемому для практических испытаний.

Раздел 1. Сварочное оборудование

- 1.1 Газовая (ацетиленокислородная) сварка:
- **.1** идентификация (маркировка) газовых баллонов, баллонные вентили и редукторы;
- .2 идентификация, устройство и сборка основных компонентов поста для газовой (ацетиленокислородной) сварки;
- **.3** выбор и регулировка сварочных горелок и наконечников (мундштуков).
 - 1.2 Дуговая сварка:
- **.1** идентификация и сборка основных компонентов и оборудования поста дуговой сварки;
 - .2 тип сварочного тока и его регулировка;
- .3 источники питания для дуговой сварки и их внешние характеристики для конкретных способов сварки;
- **.4** правильное подсоединение обратного сварочного кабеля и способы устранения магнитного дутья.

Раздел 2. Способы сварки (особенности и общие сведения)

- 2.1 Газовая (ацетиленокислородная) сварка:
- .1 давление газа и его расход;
- .2 выбор типа сварочного наконечника (мундштука);
- .3 тип газового пламени;
- .4 левый и правый способы сварки;
- .5 эффект перегрева.
- 2.2 Дуговая сварка покрытыми электродами:
- правила обращения и прокалки (сушки) электродов;
 - .2 типы электродных покрытий.
 - 2.3 Сварка самозащитной порошковой проволокой:
 - .1 типы и размер электродов;
- .2 тип, размер и обслуживание токоподводящих наконечников;
 - .3 выбор и границы видов переноса металла;
 - .4 защита сварочной дуги от сквозняков.

- **2.4** Сварка в среде защитных газов сплошной и порошковой проволокой, сварка неплавящимся электродом в среде инертных газов, плазменная сварка:
 - .1 типы и размер электродов;
 - .2 классификация защитных газов и их расход;
- .3 тип, размер и обслуживание сопел и контактных наконечников;
 - .4 выбор и границы видов переноса металла;
 - .5 защита сварочной дуги от сквозняков.
 - 2.5 Дуговая сварка под слоем флюса:
 - .1 типы и размер электродов;
- .2 прокалка, подача и правила регенерации флюса;
- правила настройки и перемещения сварочной головки.

Раздел 3. Основные металлы

- **3.1** Классификация основных металлов и сплавов.
- **3.2** Методы и контроль температуры предварительного подогрева.
 - 3.3 Контроль межпроходной температуры.

Раздел 4. Сварочные материалы

- **4.1** Классификация и идентификация сварочных материалов.
- **4.2** Хранение, правила обращения и подготовка к применению сварочных материалов.
- **4.3** Выбор правильного размера присадочного материала.
- **4.4** Чистота поверхности сварочной проволоки и прутков.
- **4.5** Контроль и мониторинг уровня расхода защитного газа и качества защиты.

Раздел 5. Меры безопасности

- 5.1 Обшие положения:
- **.1** безопасная сборка, подключение и отключение сварочного оборудования;
- **.2** меры безопасности и средства защиты от сварочного аэрозоля и газов;
 - .3 средства индивидуальной защиты;
 - .4 источники пожарной опасности;
 - .5 сварка в замкнутых пространствах;
 - .6 меры предосторожности в зоне сварки.
 - 5.2 Газовая (ацетиленокислородная) сварка:
- **.1** безопасное хранение, обслуживание и применение сжатых газов;
 - .2 обнаружение течи в газовых шлангах и арматуре;
- .3 меры безопасности при обратном ударе газового пламени.

- 5.3 Все процессы дуговой сварки:
- **.1** зона повышенной опасности от поражения электрическим током;
 - .2 тепловое и световое излучение дуги;
 - .3 другие опасные факторы дугового процесса.
 - 5.4 Дуговая сварка в среде защитных газов:
- **.1** безопасное хранение, правила обращения и применения сжатых газов;
- **.2** обнаружение течи в газовых шлангах и арматуре.

Раздел 6. Спецификация процесса сварки

Понимание требований спецификации процесса сварки и влияния параметров технологического процесса сварки на формирование, свойства и сплошность металла шва.

Раздел 7. Подготовка кромок и сборка под сварку

- **7.1** Подготовка кромок и сборка деталей под сварку в соответствии с требованиями спецификации процесса сварки.
 - 7.2 Зачистка шва и прилегающей поверхности.

Раздел 8. Дефекты шва

- 8.1 Классификация и виды дефектов.
- 8.2 Причины возникновения дефектов.
- **8.3** Предупреждение возникновения дефектов и корректирующие действия.

Раздел 9. Квалификация сварщика

Сварщик должен знать область одобрения квалификации по всем существенным переменным параметрам технологического процесса сварки.

ПРИЛОЖЕНИЕ 7 (Справочное)

ОПИСАНИЕ ТИПОВ НАПОЛНИТЕЛЯ ПОРОШКОВОЙ СВАРОЧНОЙ ПРОВОЛОКИ

1. R тип

Порошковые проволоки R типа характеризуются струйным переносом металла, малыми потерями на разбрызгивание, а рутилово-основной шлак полностью закрывает валик сварного шва. Эти порошковые проволоки предназначены для одно- и многопроходной сварки в нижнем и горизонтальновертикальном положении. Порошковые проволоки R типа обычно предназначены для применения в сочетании с двуокисью углерода в качестве защитного газа. Тем не менее, может использоваться смесь аргона и двуокиси углерода для улучшения переноса и уменьшения разбрызгивания, если это рекомендовано изготовителем.

2. Р тип

Порошковые проволоки Р типа похожи на порошковые проволоки типа R, но рутиловоосновной шлак приспособлен для быстрого затвердевания, что позволяет выполнять сварку во всех положениях. Эти порошковые проволоки обычно производятся в малых диаметрах и при применении в качестве защиты двуокиси углерода обладают струйным переносом. Рабочие характеристики могут быть улучшены при применении смеси аргона и двуокиси углерода, если это рекомендовано изготовителем.

3. В тип

Порошковые проволоки В типа характеризуются крупнокапельным переносом металла, немного выпуклой формой валика, и шлак в некоторых случаях может не покрывать всю поверхность валика.

Сварной шов, выполненный этими сварочными проволоками, обладает лучшими ударными свойствами и сопротивлением трещинам.

4. М тип

Порошковые проволоки М типа характеризуются мелкокапельным струйным переносом и минимальным количеством флюсового наполнителя. Состав наполнителя этих порошковых проволок состоит из металлических компонентов (ферросплавов) и железного порошка, которые вместе с другими усилителями дуги дают возможность получить высокий коэффициент наплавки с невосприимчивостью к несплавлениям. Эти порошковые проволоки в основном используются в смеси защитных газов аргона и двуокиси углерода в нижнем и вертикально-горизонтальном положениях. Тем не менее, для сварных швов в других положениях допускается использование короткозамкнутого или импульсного методов дугового переноса.

5. V тип

Порошковые проволоки V типа используются без газовой защиты и обладают мелкокапельным струйным переносом металла. Рутиловый или основной (фтористый) шлак этих порошковых проволок содержит диапазон от медленно — до быстротвердеющих шлаков. Порошковые проволоки с медленнотвердеющим шлаком используются для однопроходной сварки оцинкованных сталей во всех положениях сварки. Порошковые проволоки с быстротвердеющим шлаком предназначены для автоматической сварки на больших скоростях. Эти порошковые проволоки используются для однопроходной сварки в нижнем, горизонтальновертикальном и, ограниченно, в наклонном положениях. Некоторые проволоки V типа рекомендованы для толщины основного металла $t \leqslant 5$ мм. Некоторые порошковые проволоки данного типа в основном предназначены для корневых проходов сварных швов по периметру трубы для всех толщин труб.

6. W тип

Порошковые проволоки W типа используются без газовой защиты и обладают квазиструйным переносом металла. Их основной (фтористый) шлак обеспечивает получение самого высокого коэффициента наплавки. Некоторые порошковые проволоки содержат металлический порошок в наполнителе и обеспечивают лучшую производительность. Наплавленный металл шва содержит мало серы и имеет высокое сопротивление к образованию трещин. Порошковые проволоки этого типа используются для одно- и многопроходной сварки в нижнем и горизонтально-вертикальном положениях. С некоторыми проволоками данного типа возможна сварка в вертикальном положении «сверху-вниз».

7. Ү тип

Порошковые проволоки Y типа используются без газовой защиты и обладают квазиструйным переносом. Основной (фтористый) шлак этих порошковых проволок предназначен для одно- и многопроходной сварки во всех положениях. Они обладают хорошим сопротивлением к трещинам и высокими свойствами при испытаниях на ударный изгиб при низких температурах.

8. Z тип

Другие типы порошковых проволок, которые в настоящей классификации не рассматриваются.

5 СВАРОЧНЫЕ МАТЕРИАЛЫ. ТРЕБОВАНИЯ К КАЧЕСТВУ ИЗГОТОВЛЕНИЯ, ПРОВЕДЕНИЮ ИСПЫТАНИЙ И ПРОЦЕДУРЕ ОДОБРЕНИЯ

5.1 ТРЕБОВАНИЯ К СИСТЕМЕ КАЧЕСТВА ИЗГОТОВИТЕЛЕЙ СВАРОЧНЫХ МАТЕРИАЛОВ

5.1.1 Термины и определения.

5.1.1.1 Фирмы и компании, занимающиеся производством и сбытом сварочных материалов, классифицируются как изготовители, поставщики, дистрибьюторы и субподрядчики согласно приведенным ниже определениям.

Изготовитель — компания, которая осуществляет весь цикл производства сварочных материалов или осуществляет конечную стадию изготовления, которая определяет их качество.

Фирмы, закупающие вышеупомянутые изделия в виде полуфабрикатов или в виде готовой продукции, но предоставляющие полную гарантию в отношении химического состава, качества и свойств этих изделий, также рассматриваются как изготовители.

Поставщик – компания, которая закупает сварочные материалы у изготовителя и поставляет их под принадлежащим ему товарным знаком.

Дистрибьютор — компания, которая получает сварочные материалы от изготовителя или поставщика и далее занимается их сбытом под торговой маркой изготовителя или поставщика.

Субподрядчик — компания, которая по заказу изготовителя может осуществлять частичный или полный цикл производства сварочного материала, а также, по поручению изготовителя или поставщика, может обеспечить сервисное обслуживание и предоставление услуг.

5.1.1.2 Приведенные в настоящем разделе требования могут применяться как к изготовителям сварочных материалов, так и к компаниям, являющимся поставщиками, дистрибьюторами и субподрядчиками.

5.1.2 Общие положения.

5.1.2.1 Изготовитель или поставщик должен установить и поддерживать документированную систему качества как средство, гарантирующее соответствие сварочных материалов установленным требованиям. Система качества должна включать подготовку и выполнение процедурных требований и/или инструкций, а также проведение периодической внутренней проверки для определения эффективности системы.

5.1.2.2 Система качества должна обеспечивать следующее:

соответствие выпускаемых материалов требованиям правил Регистра, а также других контрактных документов, включая национальные стандарты;

однородность продукции, гарантирующей идентичность свойств и характеристик всех выпускаемых материалов тем показателям, которые были достигнуты при аттестации под техническим наблюдением Регистра;

исключение возможности попадания на склад готовой продукции и отпуска потребителям продукции, не отвечающей установленным контрактной документацией требованиям.

5.1.2.3 Изготовитель и поставщик должны установить и поддерживать процедуры, регламентирующие порядок проверок и контроля. Каждое процедурное требование должно быть проверено на соответствие того, что:

требования четко сформулированы;

установленные контрактные требования на продукцию могут быть в полном объеме удовлетворены.

5.1.2.4 Изготовитель должен установить и поддерживать методы прослеживаемости путем идентификации в процессе всех стадий производства и поставки продукции потребителю.

Процедуры по поставке материалов должны быть установлены и должны поддерживать идентификацию на всех стадиях.

5.1.2.5 Все производственные мощности и применяемые изготовителем производственные процессы должны обеспечивать стабильность производства и однородность качества сварочных материалов.

5.1.3 Организационная структура.

5.1.3.1 Изготовитель или поставщик должен назначить уполномоченного представителя руководства, который, независимо от других обязанностей, должен иметь установленные полномочия и должностные обязанности в отношении качества и нести ответственность за должное поддержание и выполнение требований к системе качества.

В частности, он должен нести ответственность за следующее:

координацию и мониторинг системы качества; выявление и устранение любых несоответствий в системе:

своевременное и эффективное выполнение действий соответствующим подразделением для обеспечения соответствия установленным требованиям к сварочным материалам.

5.1.3.2 Изготовитель или поставщик должен разработать внутренние инструкции и требования, обеспеченные соответствующими техническими ресурсами, а также назначенным и обученным персоналом для выполнения соответствующих действий по проверке и контролю.

5.1.3.3 Руководство изготовителя или поставщика должно проводить периодические внутренние проверки системы качества таким образом, чтобы обеспечивалась их непрерывность, применимость и эффективность. Отчеты о таких проверках должны храниться согласно 5.1.10.

5.1.4 Управление документами.

5.1.4.1 Изготовитель и поставщик должны разработать и поддерживать понятные и исчерпывающие процедуры в отношении процесса производства, проведения инспекционных проверок и испытаний для каждой операции.

Управление данными документами должно обеспечивать:

наличие соответствующих документов на всех рабочих местах, где выполняются важные для качества операции;

немедленное изъятие устаревших документов из всех мест применения.

5.1.4.2 Изменения документов должны быть проверены и одобрены уполномоченным персоналом. Исполнители должны иметь доступ к относящейся к делу вспомогательной информации или первоисточникам, особенно к спецификациям или стандартам на поставку и изготовление материалов.

5.1.5 Закупки.

- **5.1.5.1** Изготовитель и поставщик должны гарантировать, что все предполагаемые к закупке продукты, сырьевые материалы или услуги отвечают установленным требованиям.
- **5.1.5.2** Изготовитель и поставщик могут заключать субконтрактные договоры на частичное изготовление продукции или оказание услуг, которые имеют отношение к качеству готовых сварочных материалов. Оценка субподрядчиков в отношении их способности отвечать субконтрактным требованиям должна производиться непосредственно изготовителем или поставщиком или путем одобрения/сертификации субподрядчиков третьей стороной.

Должна поддерживаться процедура регистрации субподрядчиков, предусматривающая запись сведений об их одобрении.

5.1.5.3 Изготовителем должны быть установлены и одобрены уполномоченным персоналом спецификации на закупку, содержащие четкие требования к продукту, сырьевому материалу или услуге. Они должны включать, где это технически возможно:

тип, класс, категорию или другую точную идентификацию с использованием признанных стандартов;

название или другую точную идентификацию и применимость, исходя из спецификаций, требований процесса производства, инструкций для инспекционных проверок и других, имеющих отношение к делу технических документов.

Такие спецификации должны включать, если это касается прутков, проволоки, ленты, порошков и растворов, определенные аналитическим путем предельные значения физико-химических показателей, которые могут гарантировать соответствие конечного продукта установленным требованиям.

5.1.6 Контроль процесса производства.

5.1.6.1 Изготовитель и его субподрядчики должны идентифицировать и планировать производственные процессы, которые непосредственно влияют на качество, таким образом, чтобы гарантировать выполнение этих процессов в контролируемых условиях.

В понятие «контролируемые условия» должны быть включены:

документированные рабочие инструкции для всех операций и процессов, где их отсутствие может неблагоприятно повлиять на качество;

производственные мощности, которые должны быть в должном объеме оснащены контрольноизмерительными средствами;

спецификации, рабочие инструкции или процедуры для производственных процессов.

5.1.6.2 Контроль процесса производства посредством мониторинга должен, как минимум, включать следующие ключевые операции:

составление рецептуры;

взвешивание;

смешивание;

подачу проволоки, очистку и отжиг, а также поверхностную термическую обработку, если применимо;

опрессовку электродов, выплавку или грануляцию флюса;

сушку и прокалку;

маркировку и упаковку.

5.1.7 Контроль и испытания.

5.1.7.1 Изготовитель и поставщик должны осуществлять контроль состояния, проверять и поддерживать в исправном состоянии контрольно-измерительные средства, а также испытательное оборудование, которое применяется на всех стадиях производственного процесса для демонстрации соответствия продукции установленным требованиям. Перечень такого оборудования должен быть составлен, как минимум, для следующих ключевых операций:

взвешивания;

контроля размеров;

химического анализа;

сварки;

измерения температуры;

механических испытаний.

5.1.7.2 Изготовитель и поставщик не должны использовать, обрабатывать или поставлять сырьевые и расходные материалы до тех пор, пока они не будут

проконтролированы или их качество не будет удостоверено другим способом как соответствующее требованиям спецификации.

Подтверждение качества на всех стадиях процесса производства должно выполняться согласно документированным процедурам.

5.1.7.3 Изготовитель должен проводить проверку в процессе изготовления продукции по всем установленным спецификацией характеристикам, которые не могут быть проконтролированы на более поздних стадиях.

Изготовитель должен гарантировать обязательность проведения предписанных проверок процессов производства и их эффективность.

Идентификация проверок и статус испытания — необходимые требования ко всему производству, так как они являются гарантией того, что только продукция, выдержавшая проверку и испытание, поставляется потребителю или используется в производстве.

- **5.1.7.4** Документированные процедуры для выпуска продукции должны содержать требования, чтобы все установленные проверки и испытания, включая те, которые установлены или по получению продукции, или в процессе изготовления, были выполнены, и что их результаты отвечают установленным требованиям.
- **5.1.7.5** Поставщик должен разработать и поддерживать протоколы, которые являются доказательством того, что продукция выдержала проверки и/или испытания по установленным критериям приемки.

Материалы не должны отгружаться до тех пор, пока документы на их отпуск не будут подписаны уполномоченным персоналом.

5.1.8 Несоответствующие материалы и корректирующие действия.

- 5.1.8.1 Изготовитель и поставщик должны разработать и поддерживать процедуры, гарантирующие предотвращение неумышленного или случайного использования сырьевых, расходных или сварочных материалов, несоответствующих установленным спецификацией требованиям, непосредственно перед изготовлением, в процессе изготовления или после изготовления, транспортировки и хранения.
- **5.1.8.2** Несоответствующие материалы, полуфабрикаты или сварочные материалы, если это возможно, могут быть разбракованы или утилизированы, или переработаны таким образом, чтобы отвечать установленным требованиям. Переработанный материал должен быть повторно проверен в соответствии с документированной процедурой.
- **5.1.8.3** Изготовитель и поставщик должны разработать и поддерживать процедуры:

рассмотрения случаев несоответствий и претензий покупателей, а также анализа несоответствий в отношении качества;

инициирования эффективных корректирующих действий по предотвращению возвратов, где бы они ни осуществлялись;

оценки эффективности корректирующих действий и изменений в процедуре.

5.1.9 Погрузочно-разгрузочные операции, упаковка и хранение.

- **5.1.9.1** Изготовитель и поставщик должны установить, документировать и поддерживать процедуры для всех стадий и участков производства, где применяются операции погрузкиразгрузки, упаковки и хранения сварочных материалов.
- **5.1.9.2** Изготовитель и поставщик должны разработать методы погрузочно-разгрузочных работ, которые предотвращают повреждение сварочных материалов.
- **5.1.9.3** Изготовитель и поставщик должны контролировать упаковку, включая применение упаковочных материалов, с тем, чтобы предотвратить возможность повреждения сварочных материалов, а также гарантировать их соответствие установленным спецификацией требованиям.

Маркировка на упаковке должна отвечать требованиям соответствующих национальных стандартов и правил.

5.1.9.4 Изготовитель и поставщик должны обеспечить необходимые площади и/или помещения для хранения материалов в заданных условиях.

Поскольку температура и влажность могут оказать существенное влияние на состояние материалов, то эти факторы должны быть учтены в соответствующих документированных процедурах. Условия хранения продукции на складе должны контролироваться и фиксироваться через соответствующие интервалы времени, но не реже одного раза в сутки.

5.1.10 Отчеты по качеству.

- **5.1.10.1** Изготовитель и поставщик должны, там, где это необходимо, поддерживать надлежащую отчетность по производству и по всем выполненным инспекционным проверкам и испытаниям, чтобы иметь возможность привести необходимые доказательства соответствия материалов и условий их изготовления установленным требованиям.
- **5.1.10.2** Отчеты по качеству должны включать, но не ограничиваться, сведениями, необходимыми для обеспечения:

идентификации всех видов сырьевых материалов, полуфабрикатов и комплектующих изделий, применяемых в процессе производства;

идентификации партии и, если необходимо, плавки;

доказательства соответствия результатов испытаний установленным требованиям;

идентификации несоответствий;

подтверждения выполненных корректирующих действий.

Если требованиями спецификации не оговорено иное, время хранения документов по качеству должно составлять 5 лет.

5.2 ОСВИДЕТЕЛЬСТВОВАНИЕ ИЗГОТОВИТЕЛЕЙ СВАРОЧНЫХ МАТЕРИАЛОВ

5.2.1 Общие указания.

5.2.1.1 Процедура одобрения Регистром сварочных материалов должна включать освидетельствование предприятия (изготовителя).

Освидетельствование, предшествующее первоначальному одобрению, должно предусматривать проведение следующих основных проверок:

наличия и технического состояния производственного оборудования, которое должно обеспечивать стабильное протекание производственного процесса и однородность конечной продукции установленного качества:

наличия производственных инструкций и контроля их соблюдения на основных стадиях процесса изготовления сварочных материалов;

соблюдения всех установленных требований по входному контролю материалов и полуфабрикатов, а также условий их хранения и запуска в производство;

полноты приемочного контроля готовой продукции, а также условий ее хранения на складе и порядка отпуска потребителям;

метрологического обеспечения всех видов испытаний и проверок, включая освидетельствование участков сварки, изготовления и испытаний образцов;

освидетельствование системы качества предприятия (изготовителя) в целом выполняется в соответствии со специальными требованиями 5.1 и общими требованиями согласно разд. 5 и 6 Положения о подтверждении систем качества организаций-поставщиков услуг Регистра.

5.2.1.2 При ежегодных освидетельствованиях в период действия Свидетельства об одобрении сварочных материалов (СОСМ) объем проверок может быть сокращен по усмотрению инспектора Регистра до 50 % от первоначального согласно указаниям 5.2.2.2, 5.2.3.3, 5.2.4.3, но возобновляющие проверки с периодичностью не реже одного раза в 5 лет (при замене СОСМ) должны выполняться в полном объеме согласно 5.2.2.1, 5.2.3.2, 5.2.4.2, 5.2.5.1 и 5.2.5.2.

5.2.1.3 Конкретная схема освидетельствования и его объем должны устанавливаться с учетом типа сварочных материалов, принятой у изготовителя схемы производства и доли субподрядных поставок в формировании готовой продукции, особенностей

технологии изготовления продукции и производственного оборудования, системы обеспечения качества и наличия ее одобрения (признания) Регистром. Объем проверок должен формироваться в каждом конкретном случае на основании изложенных ниже указаний применительно к изготовлению следующих типов сварочных материалов:

сварочных покрытых электродов;

сварочной проволоки и прутков сплошного сечения с выделением производств проволоки малого и большого диаметров в самостоятельные группы;

порошковой сварочной проволоки и прутков;

сварочных флюсов с выделением в самостоятельные группы производства плавленых и керамических флюсов.

5.2.1.4 В отдельную подгруппу выделяются, если они имеются в наличии у изготовителя, следующие технологические процессы:

дробление, размол и подготовка сыпучих сырьевых материалов для электродного и флюсового производств;

изготовление катанки для производства сварочной проволоки;

варка и подготовка жидкого стекла для изготовления электродов и керамических флюсов.

Для этих технологических процессов объем освидетельствований допускается снижать до уровня входного контроля контрагентских поставок.

5.2.1.5 Оформление СОСМ.

5.2.1.5.1 СОСМ с Приложением (формы 6.5.33 и 6.5.33.1, соответственно), если иное не оговорено дополнительно, оформляется подразделением Регистра, осуществлявшим освидетельствование предприятия (изготовителя) и техническое наблюдение за проведением испытаний сварочных материалов.

5.2.1.5.2 СОСМ оформляется на основании Акта освидетельствования (форма 6.3.18), отражающего результаты выполненных проверок производства в соответствии с требованиями 5.2.2, 5.2.3, 5.2.4, 5.2.5, а также испытаний сварочных материалов в объеме требований 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 и 4.8 части XIV «Сварка» Правил классификации и постройки морских судов с учетом требований 5.4. При необходимости, в приложении к Акту должен быть приведен перечень протоколов и документации, согласованной с Регистром.

5.2.2 Освидетельствование производства сварочных покрытых электродов.

5.2.2.1 Освидетельствование производства сварочных покрытых электродов при первоначальном одобрении должно включать следующие производственные участки и ключевые операции:

склад сыпучих сырьевых материалов с проверкой журнала входного контроля;

склад сварочной проволоки или катанки с проверкой журнала входного контроля;

участок подготовки сырьевых материалов с проверкой журналов операционного контроля;

участок волочения/правки и рубки электродных стержней и выборочного контроля из бункера (длина, чистота реза, диаметр, кривизна и волнистость);

участок дозировки сухой шихты;

участок варки/подготовки жидкого стекла с проверкой журнала технологического контроля;

операции сухого и мокрого смешивания компонентов; участок опрессовки электродов, включая контрольную проверку эксцентричности и качества обмазки на выходе из пресса;

участок прокалки и сушки электродов;

участок сортировки и упаковки продукции;

участок сварки образцов;

участок изготовления и испытаний образцов; склад готовой продукции.

5.2.2.2 При ежегодном освидетельствовании производства с целью подтверждения Свидетельства об одобрении сварочных материалов объем проверок по усмотрению инспектора Регистра может быть сокращен до 50 % от предусмотренных в 5.2.2.1. При этом проверка должна включать, как минимум, следующие производственные участки:

склад сырьевых материалов;

склад сварочной проволоки или катанки;

участок опрессовки электродов;

участок сортировки с отбором контрольной выборки для испытаний продукции;

участок сварки образцов с проведением испытаний аттестуемых электродов;

участок изготовления и испытаний образцов с проведением контрольных испытаний аттестуемой продукции.

5.2.2.3 На участке сортировки и упаковки электродов инспектором Регистра и представителем службы технического контроля предприятия (изготовителя) должен быть выполнен отбор проб готовой продукции согласно 5.4.1.3. Технические требования к качеству изготовления электродов подлежат проверке согласно 5.3.

Изготовление проб и методы испытаний должны отвечать соответствующим указаниям 5.4.

5.2.3 Освидетельствование производства сварочной проволоки сплошного сечения.

5.2.3.1 При освидетельствовании производства сварочной проволоки сплошного сечения должны учитываться конкретные условия ее изготовления, которые, в общем, определяются следующими факторами:

чувствительностью металла исходной заготовки к наклепу, которая определяется допустимой степенью утяжки при волочении без снятия напряжений (отжига);

особыми требованиями к режиму термической обработки, что особенно актуально для высоколегированных сталей и цветных сплавов;

необходимостью дополнительного травления/ очистки проволоки после промежуточного отжига, что определяется химической активностью металла и средой, в которой выполняется отжиг (воздух, инертный газ, вакуум, расплав солей и т. п.);

очередностью применения омеднения проволоки в процессе волочения (промежуточное и финишное омеднение);

требованиями к состоянию поверхности и допуском на диаметр готовой продукции;

видом поставки (мотки, обойма, катушка) и особыми требованиями к рядности намотки сварочной проволоки;

наличием операции рубки-правки применительно к поставке сварочных прутков;

наличием окончательной химической очистки при поставке проволоки или прутков из алюминиевых сплавов.

5.2.3.2 Применительно к изготовлению сварочной проволоки из нелегированной и низколегированной стали первоначальное освидетельствование производства должно предусматривать контроль следующих участков и операций:

склада неочищенной катанки с проверкой журнала входного контроля и мер, предусмотренных для прослеживаемости исходной заготовки в дальнейшем производстве;

участка травления катанки с выборочным контролем поверхности очищенной катанки;

участка первичного волочения и завершающей обработки сварочной проволоки больших диаметров;

участка промежуточного отжига сварочной проволоки (только применительно к сварочной проволоке малых диаметров);

участка очистки проволоки после отжига и предварительного омеднения, если последнее применяется (только применительно к сварочной проволоке малых диаметров);

участка чистового волочения и омеднения сварочной проволоки малых диаметров;

операции намотки и упаковки сварочной проволоки;

проверки контрольных операций, выполняемых при приемке продукции и в процессе изготовления;

проверки условий хранения продукции, проведения погрузочно-разгрузочных работ и оформления документов при отпуске продукции.

5.2.3.3 При ежегодном освидетельствовании производства сварочной проволоки из нелегированной и низколегированной стали объем проверок по усмотрению инспектора Регистра может быть сокращен до следующего минимума:

участка первичного волочения и чистовой обработки сварочной проволоки больших диаметров;

участка чистового волочения и омеднения сварочной проволоки малых диаметров;

проверки контрольных операций, выполняемых при приемке продукции и в процессе изготовления;

проверки условий хранения продукции, проведения погрузочно-разгрузочных работ и оформления документов при отпуске продукции.

5.2.3.4 В процессе освидетельствования производства инспектором Регистра и представителем службы технического контроля предприятия (изготовителя) должен быть осуществлен отбор проб готовой продукции согласно 5.4.1.5. Технические требования к качеству изготовления проволоки подлежат проверке согласно 5.3, остальные характеристики – согласно 5.4.

5.2.4 Освидетельствование производства сварочной порошковой проволоки.

5.2.4.1 При освидетельствовании производства сварочной порошковой проволоки должны учитываться конкретные условия ее изготовления, которые в общем случае определяются следующими факторами:

соотношением диаметров исходной заготовки и готовой проволоки;

допустимой степенью утяжки без отжига материала оболочки в составе проволоки;

видом исходной заготовки (лента или трубка) и, соответственно, способом ее заполнения шихтой;

видом и типом материала сердечника (бесшлаковые и шлакообразующие компоненты различного типа);

возможностью сепарации шихты при заполнении и, соответственно, мер, принимаемых для исключения этого явления;

наличием чистовой обработки поверхности проволоки;

наличием рубки-правки применительно к поставке сварочных прутков.

5.2.4.2 Применительно к изготовлению порошковой сварочной проволоки, получаемой формированием из нелегированной низкоуглеродистой ленты, первоначальное освидетельствование производства должно предусматривать контроль следующих участков и операций:

склада сыпучих сырьевых материалов с проверкой журнала входного контроля;

склада исходной заготовки ленты с проверкой журнала входного контроля;

участка подготовки сырьевых материалов с проверкой журналов операционного контроля;

операции резки ленты с выборочным контролем качества реза и размеров заготовки;

участка дозировки и смешивания компонентов сердечника проволоки;

участка формирования и волочения проволоки; участка/операции промежуточного отжига (если последний применяется) и чистового волочения проволоки;

операции намотки и упаковки сварочной порошковой проволоки;

проверки контрольных операций, выполняемых при приемке продукции и в процессе изготовления;

участка сварки образцов с проведением испытаний аттестуемой проволоки;

участка изготовления и испытаний образцов с проведением контрольных испытаний аттестуемой продукции;

склада готовой продукции.

5.2.4.3 При ежегодном освидетельствовании производства порошковой сварочной проволоки объем проверок по усмотрению инспектора Регистра может быть сокращен.

При этом в обязательном порядке должны быть проверены следующие участки, операции и характеристики качества продукции:

участок дозировки и смешивания компонентов сердечника проволоки;

операция формирования и первичного волочения проволоки;

операция промежуточного отжига и чистового волочения проволоки;

операция намотки и упаковки сварочной проволоки; проверка контрольных операций, выполняемых при приемке продукции и в процессе изготовления;

проверка условий хранения продукции, проведения погрузочно-разгрузочных работ и оформления документов при отпуске продукции.

5.2.4.4 В процессе освидетельствования производства инспектором Регистра и представителем службы технического контроля предприятия (изготовителя) должен быть осуществлен отбор проб готовой продукции согласно 5.4.1.5.

Технические требования к качеству изготовления проволоки подлежат проверке согласно 5.3, остальные характеристики – согласно 5.4.

5.2.5 Освидетельствование производства сварочных флюсов.

5.2.5.1 Освидетельствование производства сварочных плавленых флюсов при первоначальном одобрении должно включать следующие проверки:

контроль сырьевых материалов и подготовку их к выплавке, включая дозировку шихты;

выборочный контроль соблюдения требований технологического процесса изготовления на стадиях выплавки, грануляции, сушки и упаковки;

освидетельствование испытательной базы, выполняющей испытания и контрольные анализы в процессе изготовления и приемки продукции;

выборочный контроль качества готовой продукции согласно 5.3.3.4 и 5.4.4.

5.2.5.2 Применительно к изготовлению агломерированных (керамических) сварочных флюсов освидетельствование производства при первоначальном одобрении должно включать проверки следующих производственных участков и операций:

склада сырьевых материалов с проверкой журнала входного контроля;

участка подготовки и дозировки шихтовых (сырьевых) материалов с проверкой журнала операционного контроля;

участка варки (подготовки связующего/жидкого стекла):

операции грануляции и сушки-прокалки флюса; операции упаковки флюса и порядок контроля готовой продукции;

условий хранения продукции на складе и порядок ее отпуска потребителям;

освидетельствования испытательной базы, выполняющей испытания и контрольные анализы в процессе изготовления и приемки продукции;

выборочного контроля качества готовой продукции согласно 5.3.3.4 и 5.4.4.

5.3 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К КАЧЕСТВУ ИЗГОТОВЛЕНИЯ И ПОСТАВКИ СВАРОЧНЫХ МАТЕРИАЛОВ ПРИ ИХ ОДОБРЕНИИ РЕГИСТРОМ

5.3.1 Общие положения.

- 5.3.1.1 Технические требования к качеству изготовления и условиям поставки сварочных материалов должны быть документированы в форме подписанных уполномоченным персоналом технических условий или спецификаций. В общем, технические условия или спецификации на поставку сварочных материалов должны отвечать требованиям соответствующих национальных стандартов, контрактной документации и правил Регистра.
- **5.3.1.2** В настоящей главе приводятся минимальные требования, которые должны выполняться при изготовлении и поставке продукции под техническим наблюдением Регистра, дополняющие, но не заменяющие требования, установленные другими нормативными или контрактными документами
- **5.3.1.3** Изготовитель или поставщик сварочных материалов несет перед потребителем и Регистром полную ответственность за соблюдение установленных в настоящей главе технических требований.

5.3.2 Маркировка продукции.

5.3.2.1 Маркировка материалов.

5.3.2.1.1 Покрытые электроды должны быть замаркированы стойкой краской на покрытии около зажимного конца. Маркировка должна включать, по крайней мере, обозначение собственного отличительного наименования (кодового обозначения) марки материала производителя или поставщика. Рекомендуется также приводить в маркировке обязательную часть индексов классификации материала в соответствии с применяемым стандартом на электроды.

Для маркировки должны применяться краски только такого состава, который не оказывает отрицательного влияния на результат сварки.

 Π р и м е ч а н и е . В дополнение к маркировке на покрытии рекомендуется выполнять также маркировку термостойкой краской непосредственно на зажимном конце электрода. При этом цвет маркировки должен быть указан на упаковке.

- 5.3.2.1.2 Сварочная проволока, порошковая проволока и сварочная лента, поставляемые на катушках или в мотках, должны быть замаркированы стойким к внешнему воздействию способом на каждой катушке или мотке с обозначением собственного отличительного наименования (кодового обозначения) марки материала производителя или поставщика.
- 5.3.2.1.3 Каждый пруток для сварки неплавящимся электродом и плазменно-дуговой сварки должен иметь вытесненный штамп, который однозначно идентифицирует продукцию для одного производителя или поставщика. У материалов, которые не допускают выполнения маркировки штамповкой, допускается выполнять маркировку с применением наклеивающихся флажков (бирок).

Примечание. Если это требуется применяемым стандартом, трубчатые полые прутки и прутки для кислородногазовой сварки должны быть замаркированы описанным выше образом.

5.3.2.2 Маркировка на упаковке.

На внешней стороне каждой упаковочной единицы продукции должна быть ясно указана перечисленная ниже информация:

наименование изготовителя или поставщика; товарный знак;

обозначение собственного отличительного наименования (кодового обозначения) марки материала производителя или поставщика;

обозначение на штампе (только для сварочных прутков);

обозначение в соответствии с соответствующими национальными стандартами;

размеры в соответствии с требованиями соответствующих национальных стандартов;

номер партии и, если необходимо, номер плавки; тип сварочного тока, если необходимо;

рекомендуемые режимы сварки (диапазон по току) для покрытых электродов;

число единиц продукции в упаковке или вес нетто;

указания по повторной прокалке или сушке, если применимо (покрытые электроды, сварочные флюсы):

одобрения классификационных обществ и органов технического надзора, где имеются;

требования по охране здоровья и безопасному обращению, если необходимо.

5.3.3 Технические требования на условия поставки сварочных материалов.

5.3.3.1 Общие указания.

5.3.3.1.1 Ниже приводятся минимальные требования, которые могут применяться Регистром:

при рассмотрении технических условий или спецификаций изготовителя на поставку сварочных материалов;

при оценке результатов выборочного контроля продукции в процессе освидетельствования производства.

В том случае, если национальными стандартами, контрактными требованиями или спецификациями изготовителя установлены более строгие критерии приемки продукции, то при выборочном контроле продукции Регистром следует руководствоваться последними.

5.3.3.1.2 По согласованию сторон, а также по требованию Регистра, каждая партия сварочных материалов может сопровождаться сертификатом качества изготовителя, который на основании выполненных проверок и испытаний подтверждает соответствие продукции техническим требованиям на условия поставки.

5.3.3.2 Технические требования на поставку сварочных электродов.

5.3.3.2.1 Покрытие электродов должно быть свободно от каких-либо неровностей, вмятин, рисок, шероховатостей, пор, трещин и других поверхностных дефектов, которые могут оказать неблагоприятное влияние во время сварки. Допустимым является наличие изъянов поверхности в пределах ограничений согласно 5.3.3.2.2.

5.3.3.2.2 На поверхности покрытия электродов могут быть допущены следующие отдельные лефекты:

поверхностные продольные трещины и местные сетчатые растрескивания числом не более одного на электрод при протяженности каждой трещины или участка растрескивания не более 10 мм;

местные вмятины глубиной не более 50 % толщины покрытия числом не более двух при суммарной протяженности до 20 мм на одном электроде. При этом две местные вмятины, расположенные с двух сторон электрода в одном поперечном сечении, могут быть приняты за одну, если их суммарная глубина не превышает 50 % толщины покрытия;

местные задиры протяженностью не более 15 мм при глубине не более 25 % номинальной толщины покрытия и числом не более двух на одном электроде;

на отдельном электроде могут быть допущены дефекты одного вида из числа указанных выше, если их размер близок к максимально допустимому. В остальных случаях допускается комбинация дефектов различного вида при условии, что их

число не превышает двух, а суммарная протяженность не превышает 20 мм.

Общее число электродов, имеющих указанные выше допустимые дефекты покрытия, не должно превышать 10~% от числа электродов, подвергшихся контрольной выборке.

5.3.3.2.3 Размеры электродов и длина зачищенного конца должны соответствовать указаниям табл. 5.3.3.2.3 и рис. 5.3.3.2.3.

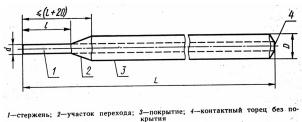


Рис. 5.3.3.2.3

Таблица 5.3.3.2.3 Размеры и допуски на покрытые электроды со стержнем из низкоуглеродистой или легированной проволоки

Схема определения номинальных размеров электрода

Номинальный диаметр электрода d , мм, определяемый диаметром стержня	Номинальная длина электрода L , мм (предельное отклонение ± 3 мм)	от покрытия конца l , мм (предельное
1,6	200 250	
2,0	250 300	20
2,5	250 300 350	
3,0 и 3,21	300 350 450	
4,0	350 450 ²	25
5,0 и 6,01	450 ²	

¹Допускается изготавливать электроды с номинальным диаметром стержня 3,15 и 6,3 мм.

5.3.3.2.4 Покрытие электродов должно быть концентричным и однородным по длине, чтобы предотвратить асимметричное расплавление при сварке с образованием «козырьков». Разность толщины покрытия — эксцентричность в любом сечении по длине рабочей части электрода — не должна превышать значений, указанных в табл. 5.3.3.2.4.

5.3.3.2.5 Покрытие электродов не должно разрушаться при свободном падении электрода на гладкую стальную плиту с высоты:

²Для особого применения (например, гравитационной сварки) длина электродов может быть увеличена до 900 мм включительно.

Таблица 5.3.3.2.4

Номинальный	Значения эксцентричности покрытия, мм				
диаметр электрода <i>d</i> , мм	Электроды со средним и толстым покрытием (с обмазкой типов R, RR, RC, RA, A и В)	Электроды с тонким покрытием (с обмазкой типа С)			
1,6	0,04	_			
2,0	0,06	_			
2,5	0,08	0,04			
3,0; 3,15 и 3,20	0,10	0,06			
4,0	0,14	0,08			
5,0	0,18	0,10			
6,0 и 6,3	0,20	_			

1 м — для электродов диаметром 3,25 мм и менее; 0,75 м — для электродов диаметром 4,0 и 5,0 мм; 0,5 м — для электродов диаметром 6,0 и 6,3 мм.

При этом допускаются частичные откалывания покрытия общей протяженностью до 5 % длины покрытой части электрода. Измерение обнаруженных отколов выполняется с точностью до 1 мм.

5.3.3.2.6 Электроды в состоянии после штатной (рекомендованной изготовителем) прокалки должны иметь остаточную влажность покрытия, не выходящую за рамки следующих ограничений:

не более 0.1~% – для электродов с покрытием типов В и RB;

не более 0.3 % – для электродов с покрытием типов R, RR, RA и A;

для электродов с покрытием типов С и RC остаточная влажность покрытия регламентируется технической документацией изготовителя.

Остаточная влажность покрытия должна измеряться путем доведения до постоянной массы снятого с одного контролируемого электрода покрытия при температурах:

 400 ± 10 °C – для покрытий типов В и RB;

 $180\pm10~^{\circ}\text{C}$ — для покрытий типов R, RR, RA и A; $110\pm5~^{\circ}\text{C}$ — для покрытий типов C и RC.

Содержание остаточной влаги B_w , %, вычисляют по формуле

$$B_w = \frac{m_1 - m_2}{m_1},\tag{5.3.3.2.6}$$

где m_1 – исходная масса покрытия, г; m_2 – постоянная масса покрытия, г.

5.3.3.2.7 Для одной марки электродов аналитические допуски по содержанию основных легирующих элементов и примесей в наплавленном металле в соответствии с техническими условиями или спецификациями изготовителя или поставщика должны, как правило, находиться в пределах, установленных требованиями табл. 5.3.3.2.7.

Таблица 5.3.3.2.7 Максимально допустимое содержание легирующих элементов и примесей в наплавленном металле, % от массы

Леги- рующие элементы и	сталей повыше	оды для і нормаль енной про крытием	ьной и очности	Электроды для сварки стали высокой прочности с покрытием типа
примеси	B, RB R, RR, C RA, A		С	В
С	≤0,10 ≤0,12 ≤0,18			≤0,10
Si	±0,20			±0,15
Mn		±0,25		±0,25
P		≤0,030		≤0,025
S		≤0,030		≤0,020
Cr		_	·	± 0,20
Ni	_			±0,25
Mo	_			± 0,10
V		_	·	± 0,1

5.3.3.2.8 Показатели механических и специальных свойств металла шва, наплавленного металла или сварного соединения электродов каждой партии должны отвечать требованиям:

национальных стандартов применительно к классификации электродов, установленной техническими условиями или спецификацией;

правил Регистра для категории сварочных материалов, указанной в Свидетельстве об одобрении сварочных материалов (СОСМ);

установленным контрактным условиям, документации на поставку, а также документации в отношении особых свойств или характеристик, превышающих регламентированные стандартами значения.

5.3.3.2.9 Упаковка электродов должна, как минимум, предотвращать возможность их повреждения в условиях обычной транспортировки и хранения в сухих помещениях.

Как правило, электроды должны быть упакованы по одному из следующих вариантов:

в герметичные пластмассовые коробки;

в коробки из картона толщиной не менее 0,7 мм с последующей герметичной упаковкой каждой коробки в полиэтиленовую пленку;

в коробки из картона толщиной не менее 0,8 мм, имеющие влагозащитное покрытие.

Высота укладки коробок с электродами на транспортные поддоны или крупногабаритные ящики не должна, как правило, превышать 600 мм.

5.3.3.3 Технические требования на поставку сварочной проволоки и прутков для сварки.

5.3.3.3.1 Изложенные ниже требования распространяются на сварочную проволоку и прутки сплошного сечения, порошковую сварочную проволоку и прутки, ленточные электроды сплошного сечения и пустотелые электроды.

5.3.3.3.2 Поверхность сварочных материалов должна быть свободна от загрязнений и поверхностных дефектов, которые неблагоприятно влияют на сварку. Допускается любая окончательная обработка поверхности при условии, что она обеспечивает выполнение операции сварки и не оказывает отрицательного влияния на свойства металла шва. Все полые сварочные материалы должны иметь распределение заполняющих полость

ингредиентов по всей их длине с такой однородностью, чтобы избежать отрицательного влияния на применение материалов, химический состав и свойства наплавленного металла.

5.3.3.3.3 Проволочные и ленточные электроды, а также порошковая сварочная проволока должны поставляться в мотках или намотанными на катушки в соответствии с рис. 5.3.3.3.3 и табл. 5.3.3.3.3. Они не должны иметь перекручиваний, волнистости,

Таблица 5.3.3.3.3 Размеры и допуски на кольцевые обоймы, катушки и мотки сварочной проволоки, мм

Тип	Стандартные	Внешний	Внутренний	Внешняя	Осевой	Цап	пфовое отверстие		
(см. рис. 5.3.3.3.3)	размеры	диаметр d_1	диаметр d_2	ширина <i>b</i>	диаметр на катушке	Диаметр	Расстоян	ие от оси	
					d_3	d_4	d_5	l_1	
S	S100	100 ± 2	_	45 ⁰ ₋₂	16,5 ₀ ⁺¹	_	_	_	
S	S200	200 ± 3	_	55^{0}_{-3}	$50,5_0^{+2,5}$	10_0^{+1}	_	$44,5 \pm 0,5$	
S	S300	300 ± 5	_	103^{0}_{-3}	$50,5_0^{+2,5}$	10_0^{+1}	_	$44,5 \pm 0,5$	
S	S350	350 ± 5	_	103_{-3}^{0}	$50,5_0^{+2,5}$	10_0^{+1}	_	$44,5 \pm 0,5$	
S	S760	760^{0}_{-10}	_	200^{+10}_{-1}	$40,5_0^{+1}$	25_0^{+1}	35_0^{+1}	65 ± 1	
R	R435	435 ± 5	300_0^{+15}	90^{0}_{-15}	_	_	_	_	
В	B300	300^{0}_{-5}	180 ± 2	100^{+3}_{-3}	_	_	_	_	
В	B450	450 макс.	300 ± 5	100^{+3}_{-3}	_	_	_	_	
BS	BS300	300 ± 5	_	103^{0}_{-3}	$50,5_0^{+2,5}$	_	_	_	
С	C435	435 макс.	300_0^{+15}	90^{0}_{-15}	_	_	_	_	
С	C450	450 макс.	300^{+15}_{-5}	100^{+10}_{-5}	_	_	_	_	
С	C800	800 макс.	600_0^{+20}	120^{+10}_{-5}	_	_	_	_	

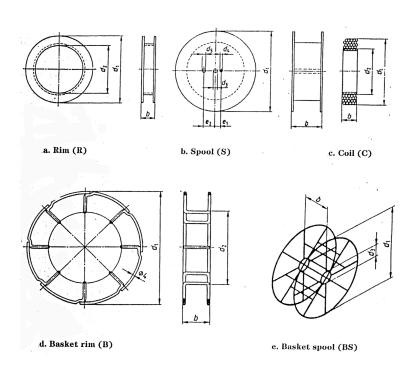


Рис. 5.3.3.3.3 Виды намотки сварочной проволоки для поставки потребителям: a — кольцевая обойма (R); b — катушка (S); c — моток квадратного сечения (C); d — корзинчатая кольцевая обойма (B); e — корзинчатая катушка (BS)

резких изгибов или других недостатков, которые могут повлиять на непрерывность подачи проволоки.

5.3.3.4 В каждом мотке или катушке сварочная проволока должна иметь непрерывную намотку, а ее начало и конец выведены, закреплены и обезопашены.

Сварочные материалы, поставляемые в мотках без формирующей катушки, должны быть перевязаны, по крайней мере, в четырех местах.

- **5.3.3.3.5** Стандартизированные размеры и допуски для сварочной проволоки и прутков должны соответствовать указаниям табл. 5.3.3.3.5. При этом, по согласованию сторон, могут применяться другие размеры диаметров (промежуточные), для которых применимы указанные в табл. 5.3.3.3.5 требования к допускам на точность изготовления.
- **5.3.3.3.6** Для ленточных электродов сплошного сечения должны применяться требования табл. 5.3.3.3.6 к типоразмерам и допускам на точность изготовления. Для полых ленточных электродов допуски подлежат согласованию между сторонами.

Электроды

Номинальная толшина

Номинальная ширина

- 5.3.3.3.7 Сварочная проволока для сварки стали не должна иметь спиральность выше приведенных ниже значений. Спиральность проволоки определяется как перпендикулярное разделение между любой частью одной петли проволоки, расположенной свободно на плоской поверхности, в одной плоскости. Спиральность должна быть не более 25 мм для катушек, имеющих наружный диаметр до 200 мм (S200), и не более чем 50 мм для катушек, имеющих диаметр более чем 200 мм (см. табл. 5.3.3.3.3).
- **5.3.3.3.8** Распушенность (диаметр отдельных витков проволоки, расположенных свободно на плоской поверхности), спиральность и условия поставки всех видов сварочной проволоки должны быть такими, чтобы проволока была пригодна для равномерной непрерывной подачи на оборудование для полуавтоматической сварки.

5.3.3.3.9 Химический состав сварочной проволоки и прутков для сварки по содержанию легирующих элементов и примесей должен отвечать

Таблица 5.3.3.3.5 Диаметры сварочной проволоки и отклонения по диаметрам, мм

Способ	Пров	олока сплошного	сечения	Порошковая проволока	Прут	ки для сі	зарки	
сварки	131, 135, 141	12	111 (для электродов)	136, 114, 12		141, 31		
Номинальный диаметр	П	редельные отклон	онения номинального диаметра отклонения Длина отклоне				Предельные отклонения длины	
0,6 0,8 0,9 1,0	+ 0,01 -0,03 + 0,01 -0,04	_	_	+ 0,02 - 0,05	±0,1	от 500		
1,2 1,4 1,6 1,8 2,0		± 0,04	-0,06 -0,06	+ 0,02 - 0,06	_ ,	до 1000	±5	
2,4 2,5 2,8 3,0 3,2	$^{+}$ 0,01 $_{-}$ 0,07		-0,06 $-0,08$ $-0,08$					
4,0 5,0 6,0	_	± 0,06	-0,10	+0.02 -0.07 $+0.02$ -0.08				

Размеры и допуски для ленточных электродов, мм

> 100

Примечание. Цифровые обозначения способов сварки соответствуют Стандарту ИСО 4063.

 Размеры
 Допуски

 $\leqslant 1,0$ $\pm 0,05$
 $\leqslant 100$ + 0,50

Таблица 5.3.3.3.6

+0.80

требованиям национальных стандартов на проволоку конкретной классификации, а также дополнительным ограничениям технических условий или спецификаций изготовителя на поставку сварочных материалов.

5.3.3.3.10 Показатели механических и специальных свойств металла шва, наплавленного металла или сварного соединения каждой партии сварочной проволоки или прутков для сварки должны отвечать требованиям:

национальных стандартов применительно к классификации сварочного материала, установленной техническими условиями или спецификацией;

правил Регистра для категории сварочных материалов, указанной в СОСМ;

контрактных условий, а также документации на поставку.

5.3.3.3.11 Упаковка сварочной проволоки должна предотвращать возможность ее повреждения и утраты сварочных характеристик в условиях обычной транспортировки и хранения. При этом особые меры, включая помещение в вакуумную упаковку с контролирующим сорбентом, должны применяться к видам сварочной проволоки, которые в процессе хранения при естественной влажности могут полностью или частично утратить способность к применению по назначению. К таким видам сварочных материалов относится, например, порошковая сварочная проволока с флюсосодержащим сердечником.

5.3.3.4 Технические требования к поставке сварочных флюсов.

5.3.3.4.1 Изложенные ниже требования распространяются на плавленые, керамические, а также спекаемые флюсы или смеси.

5.3.3.4.2 Техническая документация на поставку и изготовление флюсов должна содержать требования к следующим характеристикам:

строению и цвету зерен;

однородности;

химическому составу;

гранулометрическому составу;

влажности и содержанию диффузионного водорода в наплавленном металле;

объемному весу;

сварочно-технологическим свойствам;

показателям механических и специальных свойств металла шва, наплавленного металла или сварного соединения.

5.3.3.4.3 Однородность, как правило, является приемочной характеристикой для плавленых флюсов. Однородность определяется путем просмотра при увеличении не менее 10 раз пробы в 10 г флюса. В пробе не должно содержаться более 3 % зерен и инородных частиц, имеющих видимые отличия по цвету и строению от регламентированных

документацией на поставку требований для этих характеристик.

5.3.3.4.4 Гранулометрический состав флюса определяется путем просева через соответствующее сито пробы флюса массой не менее 100 г и сравнения полученных значений с контрольными значениями, указанными в технических условиях на поставку. Изготовитель или поставщик флюса должен информировать потребителя о гранулометрическом составе флюса путем приведения на каждой упаковочной единице символов, соответствующих указаниям табл. 5.3.3.4.4. Как минимум, должны быть приведены символы для обозначения наибольшего и наименьшего размера частиц флюса.

Таблица 5.3.3.4.4 Символы для обозначения размера зерен флюса на упаковке продукции

Размер частиц флюса, мм	2,5	2,0	1,6	1,25	0,8	0,5	0,315	0,2	0,1	< 0,1
Символ	25	20	16	12	8	5	3	2	1	D

5.3.3.4.5 Влажность флюса определяется путем прокалки и доведения до постоянной массы пробы флюса массой около $100~\rm r.$ При определении влажности измерения должны быть выполнены на трех пробах, масса которых не должна отличаться друг от друга более чем на $5~\rm r.$ Температура прокалки составляет $300~\pm~10~\rm ^{\circ}C$ для плавленых флюсов и $350~\pm~10~\rm ^{\circ}C$ для керамических, спекаемых флюсов и смесей. Время прокалки пробы должно составлять не менее $2~\rm ^{\circ}C$ влажность флюсов, применяемых в судостроении, как правило, не должна превышать $0.05~\rm ^{\circ}M$.

5.3.3.4.6 Показатели химического состава, объемного веса и сварочно-технологических свойств флюса должны отвечать требованиям технических условий или спецификаций изготовителя (поставщика), одобренных Регистром.

5.3.3.4.7 Показатели механических и специальных свойств металла шва, наплавленного металла или сварного соединения каждой партии флюса должны отвечать требованиям:

национальных стандартов применительно к классификации сварочного материала, установленной техническими условиями или спецификацией;

правил Регистра для категории сварочных материалов, указанной в СОСМ;

контрактных условий, а также документации на поставку.

5.3.3.4.8 Упаковка сварочных флюсов должна предотвращать возможность их повреждения и утраты характеристик качества в условиях обычной транспортировки и хранения. При этом особые меры, включая помещение в полностью герметичную упаковку, включая жесткую, должны применяться к

видам сварочных флюсов, которые в процессе хранения и транспортировки могут утратить способность к применению. К таким видам флюсов относятся керамические флюсы, в особенности керамические флюсы однородной грануляции, которые могут утратить исходный гранулометрический состав при транспортировке в бумажных мешках.

5.3.3.5 Технические требования к защитным газам и их смесям.

5.3.3.5.1 Защитные газы для сварки классифицируются на группы стандартного состава в зависимости от их химической активности по отношению к расплавленному металлу согласно указаниям табл. 5.3.3.5.1-1 и 5.3.3.5.1-2.

Отклонения по содержанию отдельных компонентов в смеси от значений, указанных в специфи-

кации на поставку производителя, не должны выходить за пределы следующих ограничений:

 \pm 0,5 % от объема смеси при содержании компонента в смеси менее 5 % об.;

 $\pm\,10\,\%$ от номинального значения при содержании компонента в смеси от 5 % об. до 50 % об.

5.3.3.5.2 Значение максимальной температуры точки росы, а также минимальная чистота защитных газов (ограничение по суммарному содержанию в них примесей) для групп стандартного состава должны соответствовать табл. 5.3.3.5.2.

Для специальных газовых смесей требования к точке росы, чистоте и влажности должны соответствовать газу основы или используемой газовой смеси аналогично указаниям табл. 5.3.3.5.2.

Таблица 5.3.3.5.1-1 Классификация защитных газов для дуговой сварки и резки согласно Стандарту EN 439

	классификация защитных газов для дуговой сварки и резки согласно Стандарту для 459										
	начение става ³		Обычная область применения								
Группа	Кодовый номер	Окисл	іяющие	Инертные		Восстанавли- вающие	Малоактивные	(по способам сварки)			
	номер	CO ₂	O_2	Ar	Не	H ₂	N ₂				
R	1	_	_	Основа ^{1, 2}	_	> 0 - 15	_	141, 15, защита			
K	2	_	-	Основа ^{1, 2}	-	>15 - 35	-	корня шва			
	1	_	-	100	-	_	_	131, 137, 141, 15			
I	2 3	-	_	- 2	100	-	_	защита корня шва			
-		_	_	Основа2	0 – 95	_	_				
	1 2	> 0 - 5 > 0 - 5	_	Основа ^{1, 2} Основа ^{1, 2}	_	> 0 - 5	_	135 и 136			
M1	3	- 0 - 3	> 0 - 3	Основа 1, 2	_	_	_				
	4	> 0 - 5	> 0 - 3	Основа1, 2	-	-	_				
	1	> 5 - 25	_	Основа1, 2	-	_	_	135 и 136			
M2	2 3	-	> 3 - 10	Основа ^{1, 2}	_	-	-				
1,12	4	> 0 - 5 > 5 - 25	> 3 - 10 > 0 - 8	Основа ^{1, 2} Основа ^{1, 2}	_	_	_				
	1	> 25 - 50	_	Основа ^{1, 2}	_	_	_	135 и 136			
M3	2	-	> 10 -15	Основа1, 2	_	-	_				
	3	> 5 - 50	> 8 - 15	Основа1, 2	_	_					
C	1	100	- 20	-	-	-	-	135 и 136			
	2	Основа	> 0 - 30	_	-	_	_				
F	1	-	-	_	-	_	100	Защита корня шва			
	2	_	_	_	_	> 0 - 50	Основа				

¹До 95 % аргона может быть заменено гелием. Доля гелия указывается дополнительным кодовым индексом после обозначения состава согласно табл. 5.3.5.1-2.

Кодовые индексы для групп R и M, содержащих гелий

Таблица 5.3.3.5.1-2

Кодовый индекс	Содержание гелия в смеси газов, % об.
(1)	> 0 - 33
(2)	> 33 - 66
(3)	> 66 - 95

²Одобрение действительно только для смесей защитных газов с аналогичным или более высоким содержанием гелия по отношению к номинальному составу смеси при испытаниях по одобрению.

³При применении смесей газов, которые не приведены в таблице, они обозначены индексом S с последующей расшифровкой состава. Одобрение действует только в пределах номинального состава смеси, применяемой при испытаниях по одобрению.

Для некоторых активных металлов (например, титана и тантала) могут потребоваться защитные газы и смеси более высокой чистоты, чем указано в табл. 5.3.3.5.2. В этом случае требования на поставку газов подлежат дополнительному одобрению поставщиком и потребителем.

Та	б.	***		5	2	2	5	1
ı a	ΟЛ	иц	ı a	Э.	٠.	. J.		. 4

Группа состава	Чистота, % об.	Точка росы при давлении 1,013 бар, макс., °С	Влажность, p.p.m, макс., (промилле)
R	99,95	- 50	40
I	99,99	- 50	40
M1	99,70	- 50	40
M2	99,70	- 44	80
M3	99,70	- 40	120
C	99,70	- 35	200
F	99,50	- 50	40
Кислород	99,50	- 35	200
Водород	99,50	- 50	40

5.3.3.5.3 Защитные газы могут поставляться в газообразном состоянии в баллонах под давлением или в сжиженном состоянии. Баллоны и танкидьюары должны иметь отличительную окраску и маркировку, отвечающую требованиям национальных стандартов.

5.4 ПОРЯДОК ПРОВЕРКИ И ИСПЫТАНИЙ СВАРОЧНЫХ МАТЕРИАЛОВ ПРИ ИХ ОДОБРЕНИИ

5.4.1 Отбор образцов готовой продукции.

5.4.1.1 В рамках освидетельствования предприятия (изготовителя) в присутствии инспектора Регистра должны быть отобраны образцы сварочных материалов, подлежащих проверке и испытаниям. Отбор образцов сварочных материалов может осуществляться:

с участка сортировки после приемки продукции контрольными службами предприятия (изготовителя), но до ее окончательной упаковки;

со склада готовой продукции, подготовленной для отправки потребителям.

По факту отбора образцов сварочных материалов составляется акт, который подписывается ответственным лицом предприятия (изготовителя) и инспектором Регистра.

5.4.1.2 При первоначальном одобрении предприятий (изготовителей) отбор образцов и дальнейшие проверки должны проводиться в следующем объеме для каждой марки материала:

для электродов – по одной партии для каждого диаметра, но всего не менее двух проверенных партий;

для флюсов — не менее двух проверенных партий; для сварочной и порошковой проволоки/ленты — по одной партии для каждого типоразмера, но всего не менее двух проверенных партий.

5.4.1.3 Для контроля каждой партии сварочных покрытых электродов следует выполнить десять отборов по 20 шт. электродов в каждом. Каждый отбор проб выполняется от разных упаковочных мест или альтернативно в процессе изготовления и приемки через равные промежутки времени.

Отобранные 200 шт. электродов подвергаются следующим видам проверок:

все отобранные электроды подвергаются контролю размеров и внешнего вида покрытия;

50 шт. отобранных электродов подвергаются контролю разности толщины покрытия;

30 шт. отобранных электродов подвергаются контролю прочности покрытия;

проверка на содержание влаги в покрытии выполняется по результатам трех замеров (по одному электроду на каждый замер);

50 шт. отобранных электродов подвергаются контролю кривизны.

Электроды, прошедшие вышеуказанные контрольные испытания, в дальнейшем используются для следующего:

проверки сварочно-технологических свойств из числа электродов, показавших максимальные значения эксцентричности покрытия;

определения химического состава наплавленного металла;

сварки проб наплавленного металла и стыковых соединений согласно программе испытаний.

5.4.1.4 Для проверки каждой партии флюса следует выполнить не менее шести отборов проб по 2,5 кг в каждой из разных упаковочных мест. После перемешивания отобранный флюс методом квартования доводят до массы 2,5 кг. При этом проба массой 0,5 кг используется далее для определения химического состава и влажности флюса, а проба массой 2,0 кг — для определения гранулометрического состава, однородности и объемного веса флюса.

Флюс, прошедший вышеуказанные проверки, в дальнейшем используется для следующего:

проверки сварочно-технологических свойств;

сварки проб наплавленного металла и стыковых соединений, если это требуется, согласно программе испытаний.

5.4.1.5 Для проверки каждой партии сварочной проволоки сплошного и трубчатого сечения отбираются следующие пробы и проводятся следующие испытания:

замеры диаметра и овальности в двух взаимно перпендикулярных направлениях не менее чем от 10 упаковочных мест по 2 замера в каждом. Места замера диаметра должны находиться не менее чем в 5 м друг от друга;

состояние поверхности проволоки определяется аналогично замеру диаметра, а также может контролироваться при намотке проволоки в кассеты, катушки или мотки;

не менее 10 упаковочных мест должны быть проверены по показателям спиральности, распушенности, а также по показателям, характеризующим качество намотки (требование применяется для сварочной проволоки, предназначенной для полуавтоматической сварки и роботизированных комплексов, где предъявляются требования к соблюдению разности намотки);

порошковая проволока трубчатого сечения должна быть проверена по показателю коэффициента заполнения на пробах, взятых не менее чем от пяти упаковочных мест;

омедненная сварочная проволока должна быть проконтролирована по показателю толщины/ относительной массы медного покрытия на пробах, взятых не менее чем от пяти упаковочных мест;

не менее чем от двух упаковочных мест должен быть выполнен контрольный химический анализ проволоки. Для этой цели от каждого упаковочного места должно быть отобрано по два образца проволоки на расстоянии не менее 10 м друг от друга;

для высоколегированной сварочной проволоки аустенитного и аустенитно-ферритного класса по требованию инспектора Регистра в дополнение к химическому составу может контролироваться содержание альфа-фазы (применимо для сталей категорий A-5, A-6, AF-8, A-9sp).

Для дальнейших проверок и испытаний должна быть отобрана одна проба сварочной проволоки массой не менее 5 кг, которая проверяется в объеме требований правил Регистра по согласованной программе испытаний с целью определения:

сварочно-технологических свойств при сварке в различных пространственных положениях (испытание применяется для проволоки, предназначенной для сварки в среде защитных газов);

химического состава наплавленного металла;

содержания диффузионного водорода в наплавленном металле (для порошковых проволок, а по отдельному требованию — для проволоки сплошного сечения с неомедненной поверхностью для сварки в среде защитного газа);

свойств наплавленного металла;

свойств стыкового сварного соединения.

5.4.2 Изготовление проб наплавленного металла и стыковых сварных соединений.

5.4.2.1 При изготовлении проб наплавленного металла и стыковых сварных соединений должны выполняться требования разд. 4 части XIV «Сварка» Правил классификации и постройки морских судов для соответствующих видов сварочных материалов. При этом рекомендуется руководствоваться изложенными ниже дополнительными указаниями, гармонизированными с соответствующими европейскими стандартами, которые применяются с

целью классификации сварочных материалов. Изложенные ниже указания распространяются на сварочные материалы, предназначенные для сварки сталей нормальной и повышенной прочности, обеспечивающие минимальные значения временного сопротивления разрыву наплавленного металла при выполнении сварки в стандартных условиях в диапазоне 440 — 560 Н/мм².

Примечание. В указанный диапазон попадают также сварочные материалы для сварки сталей высокой прочности, которые в соответствии с требованиями 4.6 части XIV «Сварка» Правил классификации и постройки морских судов могут быть идентифицированы по уровню прочности на категории (3Y/5Y)42 и (3Y/5Y)46.

5.4.2.2 В соответствии с положениями Стандарта EN499-1995 при сварке проб наплавленного металла с целью классификации покрытых электродов для ручной дуговой сварки должны выполняться нижеследующие стандартные требования.

Сварка выполняется без предварительного подогрева при комнатной температуре окружающего воздуха.

Межваликовая температура должна контролироваться в процессе сварки с применением цветных индикаторных мелков, поверхностных термометров или термопар и не должна превышать 250 °C. Если после выполнения очередного прохода температура пробы превысит заданное предельное значение, то проба должна быть охлаждена естественным путем на воздухе до требуемой температуры.

Сварка выполняется при значениях сварочного тока, соответствующих 90 % от максимального значения, регламентируемого изготовителем для сварки в нижнем положении.

Технология наложения валиков в разделке пробы должна соответствовать указаниям табл. 5.4.2.2.

Таблица 5.4.2.2

Диаметр электрода, мм	Технология наложения валиков					
	Номер слоя	Число проходов в слое	Число слоев			
4,0 5,0 и 6,0 ²	С первого по верхний С первого по верхний	2 ¹ 2 ¹	6 – 10 6 – 8			

 1 Два верхних слоя могут состоять из трех валиков. 2 Диаметры 5,0 и 6,0 мм стандартом не регламентированы.

Направление сварки каждого прохода в пределах одного слоя должно оставаться неизменным, а направление сварки при переходе на следующий слой – меняться на противоположное. В зависимости от типа электродного покрытия сварка выполняется на переменном токе, если электроды предназначены для сварки на постоянном и переменном токе. При

сварке на постоянном токе должны соблюдаться требования к полярности в соответствии с рекомендациями изготовителя сварочных материалов.

5.4.2.3 При сварке проб наплавленного металла в целях классификации сварочных проволок для сочетаний «проволока-флюс» и самих сочетаний «проволока-флюс» согласно требованиям Стандарта EN756:1996 должны соблюдаться изложенные ниже стандартные условия.

Сварка выполняется без предварительного подогрева при комнатной температуре окружающего воздуха. Межваликовая температура должна контролироваться в процессе сварки с применением цветных индикаторных мелков, поверхностных термометров или термопар и не должна превышать значений, указанных в табл. 5.4.2.3. Если после выполнения очередного прохода температура пробы превысит заданное предельное значение, то проба должна быть охлаждена естественным путем на воздухе до требуемого значения.

Таблица 5.4.2.3

1 a 0 3 H L a 3.1.2						
Условия сварки ¹	Диаметр проволоки, мм					
	3,2	4,0				
Длина пробы, мм Тип тока Сварочный ток, А Напряжение на дуге, В Скорость сварки, мм/мин Межваликовая температура, °С Вылет электрода, мм	Мин. 200 Постоянный 440 ± 20 27 ± 1 400 ± 50 150 ± 50 30 ± 5	Мин. 200 Постоянный 580 ± 20 29 ± 1 550 ± 50 150 ± 50 30 ± 5				

¹Если требуется применение на постоянном и переменном токе, то сварка пробы должна выполняться только на переменном токе.

Для выполнения сварки применяется сварочная проволока диаметром 4,0 мм или 3,2 мм (3,0 мм), в зависимости от того, какой больший размер поставляется.

Условия выполнения (одноэлектродной) сварки должны соответствовать указаниям табл. 5.4.2.3.

5.4.2.4 Стандартом EN 440:1995 предусмотрены следующие условия выполнения сварки проб наплавленного металла с применением сварочных проволок для сварки в среде защитных газов (сочетания «проволока–газ»).

Испытания проводятся с применением сварочной проволоки диаметром 1,2 мм. Предварительного подогрева при испытании не требуется. Требования к межваликовой температуре и ее контролю идентичны указаниям 5.4.2.2. Сварка должна выполняться при значениях силы сварочного тока 280 + 20 А и значении вылета сварочной проволоки 20 мм. Технология наложения валиков в разделке должна соответствовать указаниям табл. 5.4.2.4. Направление сварки каждого прохода в пределах одного слоя должно оставаться

Таблица 5.4.2.4

Диаметр	Технология наложения валиков						
электрода, мм	Номер слоя	Число проходов в слое	Число слоев				
1,2	С первого по верхний	21	6 – 10				
¹ Два верхних слоя могут состоять из трех валиков.							

неизменным, а направление сварки при переходе на следующий слой – меняться на противоположное.

5.4.2.5 В соответствии с указаниями Стандарта EN 758:1997 сварка проб наплавленного металла с применением порошковых сварочных проволок для сварки с дополнительной газовой защитой или без нее должна выполняться с соблюдением следующих условий.

Сварка выполняется без предварительного подогрева с применением сварочной проволоки диаметром 2,4 мм или другого максимального диаметра, выпускаемого производителем. Требования к межваликовой температуре и к ее контролю идентичны указаниям 5.4.2.2. Общее число проходов, число проходов в слое и число слоев должны соответствовать указаниям табл. 5.4.2.5. Направление сварки каждого прохода в пределах одного слоя должно оставаться неизменным, а при переходе на следующий слой – меняться на противоположное.

Таблица 5.4.2.5

Диаметр	Общее	Число прохо	одов в слое	Общее
электрода, мм	число проходов	Первый слой	Другие слои	число слоев
0.9 - 1.2 1.4 - 2.0 2.4 - 3.2	12 -19 10 - 17 7 - 14	1 или 2 1 или 2 1 или 2	2 или 3 2 или 3 2 или 3	6 - 9 $5 - 8$ $4 - 7$

5.4.3 Требования по одобрению сварочных флюсов, используемых для сварки в составе сочетаний «проволока-флюс».

5.4.3.1 Флюсы сварочные, подлежащие одобрению для применения в составе сочетаний «проволока-флюс», могут быть одобрены Регистром по следующим схемам:

аналогично сварочной проволоке, используемой для сварки в составе сочетаний «проволока-флюс», т.е. в объеме требований 4.2.6 части XIV «Сварка» Правил классификации и постройки морских судов для этого сочетания;

на соответствие требованиям национальных или международных стандартов. Как правило, эта форма одобрения применяется как дополнительная согласно заявке предприятия-изготовителя.

5.4.3.2 Объем испытаний сварочных флюсов в объеме требований 4.2.6 части XIV «Сварка» Правил классификации и постройки морских судов должен включать:

при первоначальном одобрении — определение свойств наплавленного металла и металла шва для всех марок сварочной проволоки, которые согласно заявке предприятия (изготовителя) подлежат включению в СОСМ;

при ежегодных испытаниях для подтверждения СОСМ — проверке в объеме требований 5.4.2.7.4, которой подвергается одна из марок сварочной проволоки, из числа включенных в СОСМ в сочетании с конкретной маркой флюса.

5.4.3.3 Объем испытаний сварочных флюсов при их одобрении на соответствие требованиям национальных или международных стандартов должен соответствовать требованиям этих стандартов. При первоначальном одобрении проверке подлежит весь комплекс свойств и характеристик флюса, предусмотренный соответствующими стандартами для их приемки и классификации.

При подтверждении одобрения, если отсутствуют факты, свидетельствующие о нестабильном качестве продукции или об изменении технологии ее изготовления, контрольные испытания могут быть сокращены до объема проверки обязательных характеристик, контролируемых для каждой партии согласно спецификации и/или соответствующим стандартам. Однако, в любом случае, должны быть проверены сварочно-технологические свойства флюса при сварке.

5.4.4 Объем испытаний по одобрению защитных газов для сварки.

5.4.4.1 Одобрение Регистром защитных газов и их смесей осуществляется посредством проверки их соответствия требованиям национальных или международных стандартов. Если с Регистром не согласовано иное, должны применяться изложенные ниже требования, унифицированные со Стандартом EN 439:1994, которые распространяются на защитные газы и их смеси, применяемые для:

сварки неплавящимся (вольфрамовым) электродом в среде инертного газа;

сварки плавящимся электродом в среде активных и инертных газов;

плазменно-дуговой сварки;

плазменно-дуговой резки;

дополнительной защиты корневой поверхности шва. Объем необходимых испытаний и проверок для защитных газов, применяемых для сварки активных металлов типа титана и тантала, может быть расширен по требованию Регистра.

5.4.4.2 При первоначальном одобрении каждой группы стандартного состава защитного газа объем проверки включает отбор контрольных образцов газа от транспортных единиц (баллон или танк-дьюар). Каждая отобранная проба защитного газа должна быть проверена:

на соответствие чистоты газа установленным требованиям;

на удовлетворение требований к точке росы и абсолютной влажности газа;

на точность дозировки отдельных компонентов газовой смеси.

При этом, если одобрение выполняется применительно к смесям защитных газов стандартного состава, то по требованию Регистра могут быть проконтролированы исходные компоненты, входящие в состав смеси.

5.4.4.3 При подтверждении СТО допускается ограничить объем проверки предприятия (изготовителя) анализом документов по проверке качества продукции, который выполняется в рамках принятой системы качества. При наличии несоответствий качества продукции систематического характера, изменении круга поставщиков и в других обоснованных случаях Регистр может потребовать расширения объема проверок до уровня первоначального одобрения.

5.4.5 Оценка возможности выполнения сварки в различных пространственных положениях при одобрении сварочных покрытых электродов и порошковой проволоки.

5.4.5.1 Нижеприведенные требования распространяются на проведение испытаний с целью определения возможности выполнения сварки в различных пространственных положениях при первоначальном одобрении Регистром сварочных покрытых электродов и порошковой проволоки для сварки с дополнительной газовой защитой или без нее. Настоящие требования гармонизированы со Стандартом EN 1597-3:1997 и могут применяться как при одобрении сварочных материалов на соответствие правилам Регистра, так и в целях классификации по соответствующим европейским стандартам.

5.4.5.2 Для проведения испытаний с целью определения возможности выполнения сварки в различных пространственных положениях должны применяться пробы тавровых соединений, соответствующие указаниям рис. 5.4.5.2-1. Приварная пластина должна быть зафиксирована с помощью прихваток, которые, как минимум, должны быть выполнены с обоих концов пробы. Длина пробы должна соответствовать указаниям рис. 5.4.5.2-2 и быть достаточной для полного использования, по крайней мере, одного покрытого электрода. Сварка должна выполняться однопроходным угловым швом без разделки кромок с применением диаметра электрода/порошковой проволоки в пространственных положениях согласно указаниям табл. 5.4.5.2.

В качестве материала для изготовления пробы должна применяться листовая сталь той категории (марки), для сварки которой одобряются сварочные материалы.

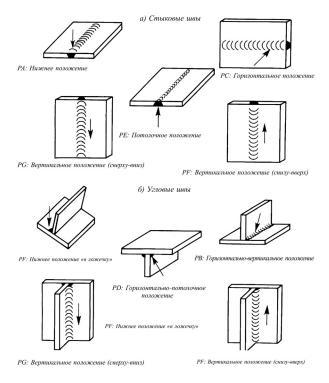


Рис.5.4.5.2-1 Пространственные положения сварки, регламентированные для сварки тавровой пробы (Стандарт ИСО 6947)

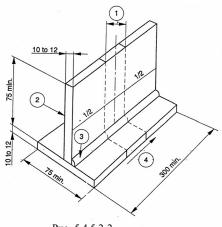


Рис. 5.4.5.2-2

Тавровая проба для проведения испытаний сварки в различных пространственных положениях:

- 1 место отбора макрошлифа, равное ≈25 мм;
- 2 приложение нагрузки при испытании на излом;
- 3 начало сварки шва; 4 направление сварки

5.4.5.3 После выполнения сварки каждая проба должна быть подвергнута визуальному осмотру и измерению для выявления недопустимых дефектов и определению размеров шва в целях установления их соответствия требованиям табл. 5.4.5.2. В сварном шве должны отсутствовать недопустимые дефекты, указанные в разд. 3 части XIV «Сварка» Правил классификации и постройки морских судов.

Таблица 5.4.5.2

						1 3.7.3.2
Индексы положений сварки для клас-сификации материалов ¹	электродов согласно	Положе- ния сварки ² , проб	Диаметр элект- рода ³ , мм	Размер углового шва ⁴ , мм	Разли- чие калиб- ров, мм	Выпук- лость шва, мм
1, 2	C RX^5 B T^6	PB	6,0 6,0 6,0 2,4	4,5 мин. 5,0 мин. 5,0 мин. 5,5 мин.	2,0 макс. 2,0 макс.	3,0 макс. 3,0 макс.
3	A PR T ⁶	РВ	6,0 6,0 2,4	5,0 мин. 5,0 мин. 5,5 мин.	2,0 макс.	3,0 макс.
5	R B T ⁶	PB	6,0 5,0 2,4 ⁷	4,5 мин. 4,5 мин. 5,5 мин.	1,5 макс.	2,5 макс.
1, 2	C RX^5 B T^6	PF		4,5 макс. 4,5 макс. 5,5 макс. 7,0 макс.	_	2,0 макс. 2,0 макс. 2,0 макс. 2,0 макс.
1, 2, 5	C RX ⁵ B T ⁶	PD		4,5 макс. 4,5 макс. 5,5 макс. 4,5 макс.	1,5 макс. 2,0 макс.	2,5 макс. 3,0 макс.
5	B T ⁶	PG	5,0 1,2 ⁹	5,0 мин. 4,5 мин.	_ _	1,5 макс. ¹⁰ 1,5 макс. ¹⁰

¹Индексы классификации материалов соответствуют Стандарту EN 499:

- 1 все пространственные положения;
- 2 все пространственные положения, кроме вертикального сверху-вниз;
- 3 нижнее положение для стыковых и угловых швов, а также положение РВ для угловых швов;
 - 4 только нижнее положение;
- 5 вертикальное положение сверху-вниз, а также положение сварки согласно индексу 3.

²Положения сварки проб соответствуют обозначениям Стандарта ИСО 6947 и приведены на рис. 5.4.5.2-1.

³Если наибольший диаметр, установленный производителем для положения сварки, меньше регламентированного в таблице, то следует применять этот наибольший типоразмер и установленные перерасчетом критерии оценки.

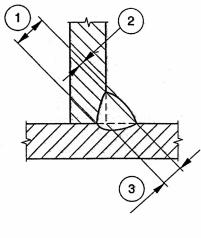
⁴За размер шва принимается расчетная толщина углового шва. ⁵RX включает типы покрытий R, RC, RA и RB.

⁶T – порошковая сварочная проволока трубчатого сечения.

⁷Или наибольший производственный диаметр до 2,4 мм.

⁸Максимальный диаметр, для которого производителем дается классификация по этому положению сварки.

⁹Или согласно рекомендациям изготовителя.


¹⁰Максимальная вогнутость (ослабление сечения).

Толщина и размер катета углового шва должны отвечать требованиям табл. 5.4.5.2, при этом измерения должны проводиться, по крайней мере, в трех сечениях.

Из средней части пробы должен быть изготовлен один макрошлиф шириной около 25 мм (см. рис. 5.4.5.2-2). Одна из поверхностей макрошлифа должна быть отшлифована и протравлена для выявления границ шва. Размеры шва, включая фактическую толщину, выпуклость или вогнутость, расчетную толщину, должны отвечать требованиям

табл. 5.4.5.2, при этом измерения должны проводиться с точностью до 0,5 мм.

Размеры угловых сварных швов указаны на рис. 5.4.5.3-1.

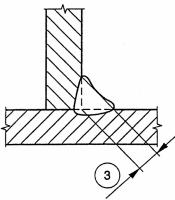
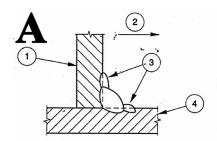
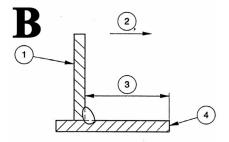


Рис. 5.4.5.3-1 Размеры угловых сварных швов: I — общая толщина углового шва; 2 — усиление углового шва; 3 — расчетная толщина углового шва

Для выявления внутренних несплошностей две части пробы, полученные после вырезки макрошлифа, должны подвергаться испытанию на излом сечения углового шва. Плоскость разрушения должна примерно совпадать с центром углового шва.


Для локализации плоскости разрушения в заданном сечении шва могут быть выполнены следующие действия:


произведена наплавка дополнительных усиливающих швов по кромкам основного согласно рис. 5.4.5.3.2;

перенесено место крепления приварной пластины от центра к краю (см. рис. 5.4.5.3.2);

нанесен надрез (надпил) на поверхности шва;

металл шва искусственно переведен в хрупкое состояние за счет охлаждения пробы до температуры ниже нуля градусов.

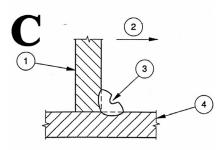


Рис. 5.4.5.3-2 Альтернативные методы локализации мест разрушения углового шва.

А. Выполнение дополнительных усиливающих швов:

1 — ребро; 2 — разрушающая нагрузка;

3 – усиливающие швы; 4 – фланец.

В. Несимметричная установка ребра на фланец:

1 – ребро; 2 – разрушающая нагрузка;

3 - 3/4 ширины фланца; 4 - фланец.

С. Нанесение продольного надреза:

1 – ребро; 2 – разрушающая нагрузка;

3 — максимальная глубина надреза = 1/2 фактической толщины углового шва; 4 — фланец

После излома поверхность шва подлежит визуальному осмотру с целью выявления недопустимых внутренних дефектов. Незначительные дефекты типа мелких пор и шлаков могут быть допущены, если их относительная площадь не превышает 1 % контролируемого теоретического сечения излома.

При этом незначительными считаются поры и шлаки, наибольший линейный размер которых в плоскости разрушения не превышает 0,2Z, но не более 20 мм (где Z – катет углового шва).

5.4.6 Определение содержания диффузионного водорода при одобрении сварочных материалов.

5.4.6.1 Общие указания.

5.4.6.1.1 Содержание диффузионного водорода должно определяться при первоначальных испытаниях в случаях, установленных требованиями 4.2.2.3.1 части XIV «Сварка» Правил классификации и постройки морских судов.

5.4.6.1.2 Определение содержания диффузионного водорода при ежегодных испытаниях сварочных материалов с целью подтверждения СОСМ может выполняться:

по требованию Регистра по истечении срока действия СОСМ, т.е. с периодичностью один раз в 5 лет:

по требованию Регистра при внесении изготовителем изменений в технологический процесс, рецептуру, спецификации на поставку сырьевых материалов и пр., которые могут оказать влияние на классификацию сварочных материалов по содержанию водорода;

по просьбе изготовителя сварочных материалов с целью изменения присвоенной ранее Регистром классификации сварочных материалов по диффузионному водороду.

5.4.6.1.3 При условии соблюдения содержащихся в настоящей главе требований для определения содержания диффузионного водорода допускается применение следующих методов:

ртутно-вакуумного метода по Стандарту ИСО 3690:1977, который предусматривает дегазацию образцов в вакууме при комнатной температуре. Название «ртутный» метод получил по роду запирающей жидкости, так как образец во время испытаний плавает на поверхности ртути, применяемой в качестве жидкого затвора (см. рис. 5.4.6.1.3-1), и манометрической жидкости;

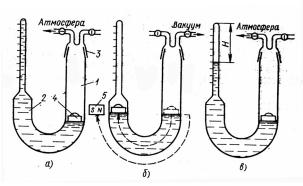


Рис. 5.4.6.1.3-1Ртутно-вакуумный метод (Международного института сварки — IIW) определения диффузионного водорода: a — исходное состояние; δ — начало испытаний; δ — окончание испытаний; I — стеклянная колба; 2 — ртуть; 3 — насадка с кранами; 4 — образец; 5 — магнит

вакуумного безртутного метода, основанного на дегазации образцов в вакууме при комнатной температуре и дающего результаты, сопоставимые с методом по Стандарту ИСО 3690:1977. Принципиальным отличием этого метода от метода по Стандарту ИСО 3690 является отказ от жидкого ртутного затвора и применения разборной вакуумной системы типа бюретки (см. рис. 5.4.6.5.1), куда помещается испытываемый образец, с последующим вакуумированием;

методов, основанных на дегазации образцов и сборе выделившегося водорода в среде глицерина при нормальном давлении и температуре 45 °C (Стандарты DIN 8570 и JIS Z3113). Выбор температуры испытаний обусловлен температурновязкостными свойствами глицерина, так как температура 45 °C соответствует минимальной, при которой возможно свободное всплытие пузырьков газа и образование правильной формы мениска в манометрической трубке, используемой для измерения объема газа;

методов, основанных на дегазации образцов в среде инертного газа (аргон), в число которых входят разновидности хроматографического метода, различающиеся температурой испытаний, временем экстракции водорода и размерами образцов (см. рис. 5.4.6.1.3-2). При этом сопоставимыми с методом по Стандарту ИСО 3690 считаются методы, при которых температура и время экстракции находятся в следующих соотношениях: комнатная температура х 5 суг., 45 °C х 48 ч и (100 — 150 °C) х 2 ч.

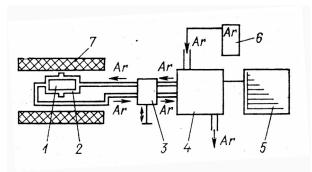


Рис. 5.4.6.1.3-2 Хроматографический метод ИЭС им. Е.О. Патона: – образец; 2 – реакционная камера; 3 – вентиль забора газа; 4 – хроматограф; 5 – самописец; 6 – аргон; 7 – печь

Применение других методов и методик определения диффузионного водорода является в каждом случае предметом специального рассмотрения Регистром.

5.4.6.1.4 При определении содержания диффузионного водорода должны соблюдаться изложенные ниже требования к аппаратуре, подготовке к проведению испытаний, проведению испытаний и обработке их результатов. Любые

возможные отклонения подлежат рассмотрению Регистром в индивидуальном порядке.

5.4.6.2 Образцы для испытаний.

5.4.6.2.1 Основной металл.

В качестве основного металла для изготовления заготовок образцов для испытаний должна применяться судостроительная сталь нормальной прочности любой категории, химический состав и состояние поставки которой отвечают следующим требованиям:

 $C \leq 0.20 \%$;

Si ≤ 0,35 %;

 $Mn \leq 0.80 \%;$

 $S \leq 0.035 \%$;

 $P \leq 0.035 \%$;

состояние поставки — нормализация (N).

 Π р и м е ч а н и е . В качестве альтернативы допускается применение некатегорийного листового проката, поставляемого по национальным стандартам и отвечающего указанным выше требованиям.

5.4.6.2.2 Требования к изготовлению и размерам образцов.

Из исходного листа посредством механической резки должны быть изготовлены пластинчатые образцы сечением 12×25 мм. Суммарная длина образцов и их конструктивное оформление зависят от метода определения диффузионного водорода и должны соответствовать рис. 5.4.6.2.2.

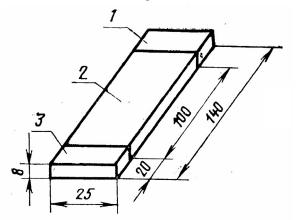


Рис. 5.4.6.2.2 Образец для определения содержания водорода: $I,\ 3$ — выводные планки; 2 — рабочая часть образца (может состоять из нескольких частей равной длины)

Образцы должны быть отшлифованы со всех сторон совместно с выводными планками (если последние применяются). Острые кромки и углы образцов должны быть скруглены и иметь радиус приблизительно 2 мм.

5.4.6.2.3 Требования к подготовке образцов.

После шлифовки и опиловки острых кромок каждый образец с выводными планками должен быть

однозначно идентифицирован при помощи маркировки. После маркировки образцы должны быть взвешены (погрешность взвешивания не должна превышать 0,1 г) и промыты в растворителях. Промывка осуществляется в следующей последовательности:

химически чистым толуолом с последующей протиркой фильтровальной бумагой;

химически чистым ацетоном;

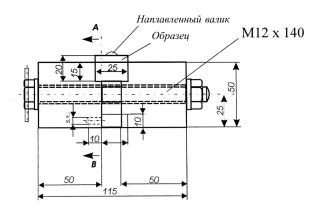
этиловым спиртом (степень чистоты — для медицинских целей) с последующей просушкой под электронагревательным прибором с температурой рабочей поверхности не менее $300\,^{\circ}\mathrm{C}$.

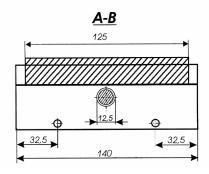
Подготовленные вышеописанным образом образцы должны храниться в герметично закрытом эксикаторе в присутствии влагопоглощающего вещества (силикагеля).

5.4.6.3 Сварка образцов для испытаний.

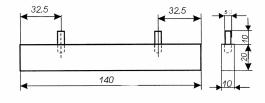
5.4.6.3.1 Сварочные материалы (включая покрытые электроды, сочетания «проволока—флюс» и порошковую проволоку), применяемые для испытаний, должны подвергаться прокалке согласно инструкциям изготовителя или другой нормативной документации, которая регламентирует эту операцию.

Сварочные материалы, которые поставляются в герметичной упаковке (вакуумная упаковка или металлическая тара), считаются годными к употреблению и должны подвергаться испытаниям в течение времени, не превышающего четырех часов после вскрытия упаковки.


Защитные газы, применяемые для сварки, должны контролироваться на точку росы или влажность для удостоверения соответствия этих показателей требованиям соответствующих стандартов (например, Стандарта EN 439:1994).


5.4.6.3.2 Наплавка испытуемого валика должна выполняться на сторону образца пластины шириной 25 мм вдоль ее осевой линии. В процессе сварки образец должен быть зажат в медном водоохлаждаемом приспособлении, конструкция которого показана на рис. 5.4.6.3.2.

Для испытаний каждой марки сварочного материала должно быть проведено четыре параллельных опыта. Все 4 образца должны быть сварены последовательно за общее время, не превышающее 30 мин, чтобы максимально ограничить влияние окружающей среды на полученный результат.


Шов должен начинаться и заканчиваться примерно в 5 мм от концов образца или выводных планок при ручной и полуавтоматической сварке или примерно в 15 мм при автоматической сварке под флюсом.

Примечание. Для получения удовлетворительного формирования шва при автоматической сварке под флюсом допускается начинать и заканчивать сварку на дополнительных приставных планках, выходящих за пределы водоохлаждающего приспособления.

Медное приспособление для зажима образцов, используемое при определении содержания диффузионного водорода

Планка для фиксирования зазора

Рис. 5.4.6.3.2 Медное водоохлаждаемое приспособление для сварки образцов

5.4.6.3.3 Для определения содержания диффузионного водорода в наплавленном металле должны применяться электроды с диаметром стержня 4,0 мм. Для электродов с железным порошком в покрытии (высокопроизводительных) и с выходом наплавленного металла более 140 % следует проводить испытания применительно к диаметру 3,2 мм.

Поперечные колебания конца электрода во время наплавки не допускаются. Наплавка каждого образца должна выполняться новым электродом.

Скорость сварки должна подбираться таким образом, чтобы для наплавки 100 мм длины шва

расходовалось примерно 120 — 130 мм длины электрода, а масса наплавленного металла на длине шва 100 мм находилась в пределах 12 — 15 г.

Сварочный ток, как правило, должен находиться в пределах $160-170~{\rm A}$ для электродов диаметром $4,0~{\rm MM}$ и $130-140~{\rm A}-$ для высокопроизводительных электродов диаметром $3,2~{\rm MM}$. Альтернативно допускается определять силу сварочного тока по соотношению

$$I_{\rm CB}^{\rm np} = (I_{\rm min} + I_{\rm max})/2 \pm 5,$$
 (5.4.6.3.3)

где I_{CB} — сварочный ток при сварке пробы, A;

 I_{\min} и I_{\max} — минимальное и максимальное значения силы сварочного тока согласно данным изготовителя, соответственно, А.

5.4.6.3.4 Для определения содержания диффузионного водорода в наплавленном металле должна применяться порошковая сварочная проволока с диаметром на один типоразмер меньше максимального, заявленного производителем для одобрения Регистром. Сварочный ток должен устанавливаться, исходя из соотношения, аналогичного указанному выше для электродов. Скорость сварки должна подбираться таким образом, чтобы масса наплавленного металла, отнесенная к длине образца 100 мм, находилась в пределах 15 – 20 г.

5.4.6.3.5 Для определения содержания диффузионного водорода применительно к сварке под флюсом (сочетание «проволока—флюс») должна применяться сварочная проволока диаметром 3,0 или 3,2 мм. Наплавку валика на пластину следует производить с выполнением следующих требований к режиму сварки:

$$I_{CB} = 440 \pm 20$$
 A;
 $V_{\pi} = 27 + 1$ B;
 $V_{CB} = 40 \pm 5$ см/мин;
вылет электрода — 30 ± 5 мм.

5.4.6.3.6 Определение содержания диффузионного водорода для сочетаний «проволока—газ» может применяться для неомедненной сварочной проволоки сплошного сечения как способ проверки степени полноты очистки поверхности проволоки от следов технологической волочильной смазки. По этой причине поверхность проволоки не должна подвергаться дополнительной очистке перед сваркой.

Наплавка валика должна выполняться проволокой диаметром 1,2 мм с соблюдением указанных ниже требований к режиму сварки:

$$I_{CB} = 180 + 10 \text{ A};$$

 $V_{A} = 20 - 24 \text{ B};$

вылет электрода – 20 мм.

Скорость сварки должна подбираться таким образом, чтобы масса наплавленного металла, отнесенная к длине образца 100 мм, находилась в пределах 15-20 г.

5.4.6.4 Обработка образцов после наплавки.

5.4.6.4.1 Вакуумный безртутный метод.

5.4.6.4.1.1 После окончания сварки образец должен быть вынут из приспособления, в котором производилась наплавка, и погружен в сосуд с ледяной водой, т.е. температура воды должна соответствовать температуре таяния льда. Объем воды должен составлять 8 – 10 л.

5.4.6.4.1.2 Выводные планки отламываются от охлажденного образца с наплавленным валиком с помощью тисков ударом молотка. Выводные планки в дальнейшей работе не используются.

Образец удерживается в тисках для зачистки поверхности сварного шва и очистки образца со всех сторон от шлака и брызг наплавленного металла. Очистка образца производится металлической щеткой, периодически смачиваемой в ледяной воде. Брызги наплавленного металла удаляются зубилом.

5.4.6.4.1.3 После зачистки образец берется щипцами и последовательно промывается в ваннах с этиловым спиртом, ацетоном и этиловым эфиром, по 10 с в каждой ванне. После промывки этиловым спиртом образец протирается бязью.

5.4.6.4.1.4 Промытый образец сразу же следует просушить в потоке горячего воздуха от остатков растворителей, придерживая его щипцами на расстоянии примерно 1,5 см над электронагревательными приборами с температурой поверхности не менее 300 °C.

Изломы сварного шва осущаются с каждой стороны образца по 10 с, поверхности шва и обратная сторона образца – по 5 с.

5.4.6.4.1.5 Последовательность выполнения операций и время их выполнения при обработке образцов должны быть следующими:

удаление заготовки из приспособления -10 с; охлаждение заготовки в ледяной воде -10 с; разламывание заготовки и очистка образца -60 с; промывка образца -30 с;

установка образца в колбу -5 c;

общее время на подготовку образца – 2 мин 25 с; отсос воздуха из колбы до вакуума 2,7 – 4,0 Па – 60-70 с.

Вся операция от окончания сварки до начала анализа не должна превышать 4 мин.

5.4.6.4.2 Глицериновый метод.

5.4.6.4.2.1 После окончания сварки (обрыва дуги) образец должен быть вынут из приспособления (время операции — около 3 с) и погружен для охлаждения в сосуд с ледяной водой, т. е. температура воды должна соответствовать температуре таяния льда.

5.4.6.4.2.2 В процессе охлаждения, т. е. при температуре около 0 °С, образец зачищается стальной щеткой для удаления шлака, брызг и окисной пленки. Операции охлаждения и зачистки не должны занимать более 30 с.

П р и м е ч а н и е . Если образец отбирается таким образом, что место сварки образца находится на значительном расстоянии от места расположения установки для сбора диффузионного водорода, то образец необходимо дополнительно остудить после его зачистки до температуры $-78\,^{\circ}\mathrm{C}$ или ниже. Транспортировка образца должна выполняться при этой температуре при условии, что время его хранения не превышает 15 мин.

5.4.6.4.2.3 Перед помещением в испытательную установку образец должен быть просушен фильтровальной бумагой и промыт чистым этиловым спиртом (для медицинских целей).

После промывки спиртом образец снова протирается фильтровальной бумагой и затем немедленно помещается в газовую бюретку, соответствующую рис. 5.4.6.6.1-2. Продолжительность операции по промывке образца и время помещения в бюретку до начала анализа не должны превышать 30 с.

Общее время операций по перемещению образца из охлаждающей емкости (с учетом примечания к 5.4.6.4.2.2) до момента начала измерения не должно превышать 60 с.

5.4.6.5 Проведение испытаний и обработка результатов для безртутного вакуумного метода.

5.4.6.5.1 Устройство прибора для определения содержания диффузионного водорода.

5.4.6.5.1.1 Измерительный прибор должен быть изготовлен из молибденового стекла (см. рис. 5.4.6.5.1). Рекомендуемая толщина стенок прибора — около 2 мм.

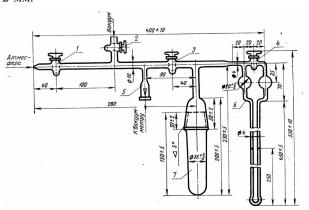


Рис. 5.4.6.5.1 Прибор для определения диффузионного водорода по ГОСТ 23338: 1, 2, 3, 4 — краны вакуумные; 5 — лампа вакуумметрическая; 6 — масляный манометр; 7 — газовая бюретка

5.4.6.5.1.2 Объем измерительной колбы и трубок от крана № 2 до капилляров манометра тарируется дистиллированной водой с точностью до $0,10~{\rm cm}^3$ и должен составлять $150-160~{\rm cm}^3$.

5.4.6.5.1.3 В приборе допускается применять только вакуумные краны.

- **5.4.6.5.1.4** Вакуумные уплотнения должны выполняться только смазкой Рамзая. При необходимости смазку следует удалять бензолом.
- **5.4.6.5.1.5** Глубина разряжения должна измеряться вакуумметрической термопарной лампой на приборе «Вакуумметр ионизационный термопарный».
- **5.4.6.5.1.6** Манометр прибора следует заполнять на 2 3 см³ вакуумированным маслом дибутилфталата. Манометр должен иметь шкалу с ценой деления 1 мм; длина шкалы -400 450 мм.
- **5.4.6.5.1.7** Разряжение в приборе следует осуществлять форвакуумным насосом с подачей 50 л/мин.
- **5.4.6.5.1.8** Должно быть обеспечено полное отсутствие ртути в системе прибора.
- **5.4.6.5.2** Правила эксплуатации и хранения прибора.
- **5.4.6.5.2.1** Прибор приводится в рабочее состояние следующим образом:
- **.1** внутренние поверхности прибора и капиллярного манометра тщательно осущаются этиловым спиртом;
- **.2** манометр заполняется вакуумированным дибутилфталатом;
- 3 все вакуумно-плотные соединения смазываются свежей смазкой Рамзая;
- .4 создается вакуум до 0,8 1,0 Па при открытых кранах № 2, 3 и 4 и закрытом кране № 1 (см. рис. 5.4.6.5.1);
- .5 последовательно закрываются краны № 2 и 3, и прибор оставляют под вакуумом на 5 суток.
- **5.4.6.5.2.2** Через 5 суток прибор проверяется на вакуумную плотность в следующей последовательности:
- **.1** устанавливается вакуум 0.8 1.0 Па (краны № 2 и 4 открыты, краны № 1 и 3 закрыты);
- .2 закрывается кран № 2, открывается кран № 3 (кран № 1 закрыт, кран № 4 открыт), давление в приборе проверяется вакуумметром.

Прибор считается вакуумно-плотным и готовым к работе, если давление в нем после выдержки в течение 5 суток не превышает 13 Па.

5.4.6.5.2.3 Приведенный в рабочее состояние прибор должен содержаться под вакуумом (краны № 1, 2 и 3 закрыты, кран № 4 открыт).

Перед каждым анализом прибор должен проверяться по времени откачки от атмосферного давления до достижения 2,7 Па в течение не более 60 с.

Для этого впускается воздух в прибор (краны № 1, 3 и 4 открыты, кран № 2 закрыт) и производится откачка с фиксированием секундомером времени от открывания крана № 2 до установления вакуума 2,7 Па (краны № 2, 3 и 4 открыты, кран № 1 закрыт).

Время достижения разряжения около 2,7 Па не должно превышать 60 с.

5.4.6.5.2.4 После приведения прибора в рабочее состояние определяется холостая поправка. Она определяется после профилактической промывки шлифованных частей от смазки Рамзая и во всех

случаях выхода прибора из нормального режима работы (поломок манометра, колб, неправильной очередности работы с кранами и т. п.).

5.4.6.5.2.5 Для определения холостой поправки прибор выдерживается под вакуумом 5 суток с помещенным в него балластом из стекла объемом 20-25 см³, имитирующим образец.

Балласт после изготовления должен быть тщательно обработан в соответствии с 5.4.6.4.1 и вакуумирован в приборе в течение 5 ч при разряжении 0.8-1.0 Па в следующей последовательности:

- **.1** установить разряжение 0.8 1.0 Па (краны № 2 и 4 открыты, краны № 1 и 3 закрыты);
- .2 открыть кран 3 (краны № 2 и 4 открыты, кран № 1 закрыт, форвакуумный насос работает непрерывно);
 - .3 измерить холостую поправку прибора;
- .4 через 5 ч работы насоса одновременно закрыть краны № 3 и 4, отключить насос и выдержать прибор под вакуумом в течение 5 суток (краны № 1, 2, 3 и 4 закрыты);
- .5 после выдержки прибора в течение 5 суток под вакуумом измеряется разность уровней манометра, и записывается величина холостой поправки ($\Delta h_{\rm x.n.}$, см).
- **5.4.6.5.2.6** При помещении образца в прибор необходимо произвести следующее:
- **.1** пустить в прибор воздух при открытых кранах № 1, 3, 4 и закрытом кране № 2;
- .2 отделить и наклонить горизонтально нижнюю часть колбы, ввести в нее образец, после чего поставить ее на место, тщательно притерев.
- .3 вакуумировать прибор с образцом при открытых кранах № 4, 2 и 3 и закрытом кране № 1.

После помещения образца в прибор следует произвести вакуумирование под давлением 2,7 Па в течение 60 с.

- **5.4.6.5.2.7** По достижении разряжения 2,7 Па следует одновременно закрыть краны № 3 и 4, затем кран № 2 и выключить вакуумный насос. Положение кранов должно сохраняться во время всего анализа образца.
- **5.4.6.5.2.8** Через 5 суток образец извлекается из прибора следующим образом: открывается кран № 4, затем краны № 3 и 1 (кран № 4 остается закрытым), нижняя часть колбы с образцом отделяется, наклоняется горизонтально и легкими покачиваниями образец удаляется из колбы.
- **5.4.6.5.2.9** Готовый к работе прибор (без образца) должен содержаться под разряжением 13 Па (кран № 4 открыт, краны № 1, 2 и 3 закрыты).
- **5.4.6.5.2.10** При подготовке прибора к работе после длительного (2-3 мес.) простоя выполняются операции, указанные в 5.4.6.5.2.1-5.4.6.5.2.5.
- **5.4.6.5.2.11** Число колб в установке для определения диффузионного водорода должно быть кратно 4, но не должно быть более 8.

5.4.6.5.3 Методика расчета содержания водорода:

- .1 каждый образец с наплавленным валиком должен быть помещен в отдельный прибор для анализа не позднее чем через 5 с после осушки;
- **.2** образцы должны находиться в приборе в течение 5 суток при комнатной температуре.

При термостатировании колб прибора с образцами в масляном термостате с температурой масла 45 ± 2 °C время выдержки можно сократить до 2 суток;

- .3 по истечении указанного в 5.4.6.5.2.8 времени выдержки образца в приборе должна быть записана разность уровней жидкости в манометре (Δh) с точностью до 0,5 мм масляного столба. После этого образец извлекается из прибора;
- .4 в момент снятия показаний манометра должна быть записана температура воздуха помещения в районе измерительных приборов ($t_{\text{комн}}$). Температура должна измеряться термометром с точностью ± 0.5 °C;
- **.5** образец, извлеченный из прибора, должен быть взвешен с точностью до 0,01 г;
- .6 по разности масс образца $P_{\rm o6p}$ и пластины $P_{\rm n}$ до наплавки подсчитывается масса наплавленного металла $P_{\rm H.M.}$:

$$P_{\text{H.M.}} = P_{\text{ofp.}} - P_{\Pi};$$
 (5.4.6.5.3.6)

.7 объем образца после сварки, см³, должен быть определен по формуле

$$V_{\text{ofp}} = P_{\text{ofp}}/7,85, \tag{5.4.6.5.3.7}$$

где $P_{\text{обр}}$ – масса образца после сварки, г; 7.85 – плотность малоуглеродистой стали, г/см³;

.8 общее количество выделившегося водорода, см 3 , приведенное к 0 $^{\circ}$ С и 1013 кПа, должно быть подсчитано по формуле

$$V_{H2} = \frac{277,66 \cdot 10^{-3}}{273 + t_{\text{KOMH}}} (V_k - V_{\text{Obp}}) (\Delta h + \Delta h_{\text{x.H.}}), (5.4.6.5.3.8)$$

где $\frac{277,66\cdot 10^{-3}}{273+t_{\text{комн}}}$ — коэффициент, учитывающий приведение газа к 0 °C и 1013 кПа (при плотности масла в манометре 1,045 г/см³ и плотности ртути 13,55 г/см³), 1/см;

 $t_{\rm комн}$ — температура воздуха в помещении в момент снятия показаний манометра, °C;

 V_k – объем колбы, см³;

 Δh – разность уровней жидкости в манометре, см;

 $\Delta h_{\text{х.н.}}$ – холостая поправка прибора, определяемая для каждого конкретного прибора согласно 5.4.6.5.2.5 и остающаяся неизменной для всех определений, см;

.9 объем выделившегося водорода $[V_{\rm H_2}]$, см 3 , в соотнесении к 100 г наплавленного металла определяется по формуле

$$[V_{\rm H_2}] = V_{\rm H_2} 100/P_{\rm H.M.}.$$
 (5.4.6.5.3.9)

5.4.6.5.4 Обработка результатов анализа.

5.4.6.5.4.1 Полученные результаты должны быть оформлены в виде протокола испытаний.

Сравнение результатов испытаний электродов должно производиться при наличии протокола для оценки влияния условий их проведения.

5.4.6.5.4.2 За окончательный показатель содержания диффузионного водорода для электродов одной марки (партии) принимается среднее арифметическое значение четырех определений.

5.4.6.5.5 Точность измерений.

- **5.4.6.5.5.1** Разность уровней жидкости в манометре должна измеряться с точностью $\pm 0,5$ мм, при этом погрешность определения содержания диффузионного водорода не должна превышать $\pm 1,5$ %.
- **5.4.6.5.5.2** При расчетах объема диффузионного водорода должна быть учтена холостая поправка прибора за время проведения анализа (5 суток). Холостая поправка ($\Delta h_{\rm x.n.}$) имеет отрицательное значение по отношению к разности уровней жидкости в манометре (Δh), измеряется в сантиметрах и при расчетах по формуле, приведенной в 5.4.6.5.3.8, прибавляется к Δh .
- **5.4.6.6** Проведение испытаний и обработка их результатов для глицеринового метода определения диффузионного водорода.
- **5.4.6.6.1** Конструкция прибора для определения содержания диффузионного водорода глицериновым методом приведена на рис. 5.4.6.6.1-1, а на рис. 5.4.6.6.1-2 представлен чертеж главной рабочей части прибора газовой бюретки с измерительной капиллярной трубкой и запорным краном.

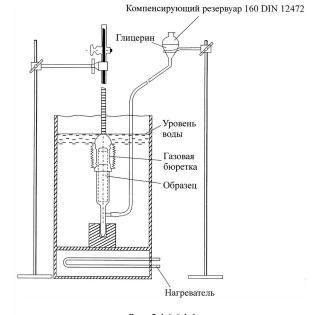


Рис. 5.4.6.6.1-1 Аппарат для определения содержания диффузионного водорода

Рис. 5.4.6.6.1-2 Газовая бюретка для определения содержания диффузионного водорода

В качестве среды для сбора выделившегося диффузионного водорода должен использоваться химически чистый глицерин (парафиновое масло).

5.4.6.6.2 После завершения подготовки в соответствии с 5.4.6.4.2 образец помещается в газовую бюретку согласно рис. 5.4.6.6.1-2. Последняя приводится в рабочее состояние путем соединения верхней и нижней частей и далее при помощи компенсирующего резервуара заполняется глицерином до нулевой отметки шкалы измерительной трубки.

После заполнения бюретки глицерином измерительная трубка изолируется от атмосферы путем закрывания запорного крана, а сама бюретка помещается в водяную баню с температурой $45\pm20\,^{\circ}$ С. Температура водяной бани должна поддерживаться постоянной в указанных пределах при помощи термостата. Положение уровня воды в водяной бане должно приблизительно соответствовать линии выходного отверстия капиллярной измерительной трубки.

5.4.6.6.3 Все 4 образца, сваренные и подготовленные согласно указаниям 5.4.6.3 и 5.4.6.4.2, подлежат одновременной дегазации каждый в отдельной измерительной установке. Время дегазации каждого образца — 48 ч.

5.4.6.6.4 После завершения 48-часовой дегазации каждого образца количество диффундировавшего в бюретку водорода считывается с измерительного капилляра газовой бюретки. Следует особенно тщательно считывать показания, чтобы гарантировать совпадение уровней жидкости в бюретке и компенсирующем резервуаре. Это достигается за счет изменения высоты компенсирующего резервуара с последующей его фиксацией.

5.4.6.6.5 Полученные согласно 5.4.6.6.4 показания объема выделившегося водорода должны быть пересчитаны к 0 °C и 760 мм рт. ст. при помощи следующей формулы:

$$V_{(NTP)} = VB273,15/760T_k$$
, (5.4.6.6.5)

где $V_{(NTP)}$ – объем водорода, мл, пересчитанный к 0 $^{\circ}$ С и 760 мм рт. ст.; V – объем водорода, определенный по показаниям измерительного капилляра во время проведения эксперимента;

 В – корректирующие показания барометра, соответствующие атмосферному давлению во время снятия показаний;

 $T_k = 273,15$ °C + $t_{\rm c}$, $t_{\rm c}$ соответствует температуре в помещении, °C, в момент снятия показаний объема выделившегося водорода.

5.4.6.6.6 После удаления из испытательного аппарата каждый образец сначала должен тщательно промываться чистым керосином, осущаться и затем взвешиваться с точностью до 0,1 л. Различие между этим весом и весом образца до наплавки принимается равным массе наплавленного металла.

Показания по содержанию водорода, мл, приведенные к 0 °C и 760 мм рт. ст. согласно 5.4.6.6.5, пересчитываются в относительные единицы в мл/100 г наплавленного металла.

В отчете об испытаниях должны приводиться индивидуальные значения для каждого из четырех испытанных образцов и среднее значение содержания диффузионного водорода в мл/100 г наплавленного металла.

5.4.6.7 Основы применения ртутно-вакуумного метода определения содержания диффузионного водорода по Стандарту ИСО 3690-77.

5.4.6.7.1 Образец для испытаний, соответствующий указаниям рис. 5.4.6.2.2, изготавливается наплавкой валика на составную пластину. В центре пластины имеются четыре элемента шириной 7,5 мм, которые используются в качестве образцов для определения содержания диффузионного водорода.

Изготовление и подготовка образцов должны соответствовать указаниям 5.4.6.2, а процесс наплавки валика – требованиям 5.4.6.3.

5.4.6.7.2 После окончания сварки (обрыва дуги) образец должен быть вынут из приспособления (время операции — около 3 с) и последовательно охлажден: сначала в ледяной воде в течение около 10 с, а затем в смеси спирта и твердой углекислоты до температуры примерно —78 °C (около 10 с).

После охлаждения выполняются операции по удалению выводных планок и зачистке образца аналогично указаниям 5.4.6.4.1. После зачистки поверхности образец разламывают при помощи тисков и молотка на 4 образца, которые подвергаются промывке и осушке аналогично указаниям 5.4.6.4.1. Общее время подготовки образцов — около 2 мин 20 с.

Примечание. При невозможности одновременной подготовки и загрузки в испытательную установку четырех образцов допускается производить их поочередную подготовку и помещение в испытательную установку. При этом хранение образцов осуществляется в смеси спирта и твердой углекислоты при температуре $-78\,^{\circ}\mathrm{C}$ в течение не более 15 мин.

5.4.6.7.3 После завершения подготовки к испытаниям образцы должны быть помещены в прибор для испытаний, указанный на рис. 5.4.6.1.3-1. В качестве измерительного прибора в ртутно-вакуумном методе (по Стандарту ИСО 3690) применяется V-образная стеклянная колба, наполовину заполненная ртутью. Ртуть применяется в качестве запирающей жидкости, поскольку она практически не растворяет водород.

Левое плечо колбы запаяно и выполнено в виде тонкой измерительной трубки, правое плечо с помощью специальной насадки, снабженной кранами, может быть соединено с форвакуумным насосом или с атмосферным воздухом.

Загрузка образца производится в следующей последовательности:

- .1 в исходном состоянии левое плечо колбы должно быть полностью заполнено ртутью. Исследуемый образец (см. рис. 5.4.6.1.3-1, а) вводят при снятой насадке в правое плечо и помещают на поверхность ртути;
- **.2** правое плечо закрывают насадкой, продувают азотом с целью дополнительной просушки образца и подключают к вакуумному насосу;
- .3 в результате возникновения вакуума в правом плече колбы ртуть в левом плече опускается, и в нем образуется вакуумное пространство с давлением $\approx 1,33\cdot 10^{-1}$ Па, равным парциальному давлению паров ртути при 20 °С. После дегазации в течение 30 с образец из правого плеча колбы с помощью магнита перемещается в левое плечо и остается в нем на поверхности ртути во время анализа (см. рис. 5.4.6.1.3-1, δ);
- **.4** образец в течение 72 ч подвергается дегазации в левом плече колбы при температуре $20~^{\circ}$ C;

При этом в процессе дегазации разряжение в правом плече колбы контролируется и при помощи вакуумного насоса поддерживается на уровне не более 10^{-2} мм рт. ст.;

.5 после окончания испытаний образец посредством магнита переводится в правое плечо, и оно соединяется с атмосферой с постепенным повышением давления. В левом плече ртуть поднимается (см. рис. 5.4.6.1.3-1, в), и в верхней части измерительной трубки остается столб выделившегося из образца водорода.

Высота столба H измеряется с точностью не менее 0,5 мм, и считывается соответствующий объем выделившегося газа.

5.4.6.7.4 Производится расчет выделившегося из образца диффузионного водорода, приведенный к 0 $^{\circ}$ C и 760 мм рт. ст., по формуле

$$V_{(NTP)} = \frac{V - (P_{\text{OTH.}} - \Delta k)273,15}{760(273,15 + t_k)},$$
 (5.4.6.7.4)

где $V_{(NTP)}$ – объем водорода, см³, приведенный к 0 °C и 760 мм рт. ст.; V – объем водорода, определенный по показаниям измерительной трубки (высота H);

 $P_{\text{отн}}$ и t_k — атмосферное давление, мм рт. ст., и температура, °С, во время снятия показаний объема выделившегося водорода;

 Δ_k — разность уровней ртути в левом и правом плечах колбы во время снятия показаний (в левом плече выше, что обеспечивает перепад давлений в измерительной трубке по отношению к атмосферному), мм рт. ст.

5.4.6.7.5 После удаления из испытательной установки образцы взвешиваются с точностью до 0,05 г, и на основании разницы в весе до и после испытаний выполняется расчет массы наплавленного металла.

После определения массы наплавленного металла для каждого образца выполняется перерасчет содержания диффузионного водорода в см³/100 г наплавленного металла.

- **5.4.6.7.6** В отчете об испытаниях приводятся индивидуальные значения для каждого из четырех испытанных образцов и среднее значение содержания диффузионного водорода в см³/100 наплавленного металла.
- **5.4.6.8** Основные требования по применению хроматографического метода определения диффузионного водорода.
- 5.4.6.8.1 Сущность хроматографического метода определения диффузионного водорода основана на применении хроматографического газоанализатора, калиброванного по водороду, который через определенные интервалы времени фиксирует приращение объема выделившегося из образца водорода в газе-носителе. В качестве последнего применяется, как правило, инертный газ аргон, который обеспечивает условия дегазации образцов, сопоставимые с условиями их дегазации в вакууме.
- 5.4.6.8.2 Принципиальная схема установки, применяемой для хроматографического метода определения диффузионного водорода, показана на рис. 5.4.6.1.3-2. Установка состоит из реакционной металлической камеры, которая металлическими трубками через вентиль забора газа соединена с хроматографом, калиброванным по водороду. Регистрация сигналов осуществляется самописцем. Для работы используется газ-носитель аргон. После сварки образца аналогично указаниям 5.4.6.3 его помещают в камеру. Последнюю устанавливают в печь-термостат с заданной температурой, при которой осуществляется экстракция диффузионного водорода (45 150 °C).

По мере выделения из образца водорода через камеру с помощью вентиля периодически про-

пускается газ-носитель, смесь которого с водородом анализируется хроматографом. Самописец последнего записывает приращение объема выделившегося диффузионного водорода. Результаты анализа по хроматографическому методу сопоставимы с результатами метода по Стандарту ИСО 3690-77.

5.4.6.8.3 Без ограничений могут применяться разновидности хроматографического метода, которые обеспечивают проведение эксперимента при следующих условиях:

для анализа применяются образцы, аналогичные образцам для испытаний по глицериновому или безртутному вакуумному методам, т. е. с длиной рабочей части 125 мм или 100 мм;

установка имеет не менее четырех реакционных камер, что позволяет одновременно проводить определение содержания диффузионного водорода для всех зачетных образцов;

температура и время экстракции диффузионного водорода соответствуют глицериновому методу и составляют 45 °C \pm 2 °C и 48 ч, соответственно;

в качестве газа-носителя применяется аргон.

5.4.6.8.4 Применение других разновидностей хроматографического метода, находящихся в пределах ограничений, устанавливаемых 5.4.6.1.3, является предметом специального рассмотрения Регистром, а их методики согласуются в индивидуальном порядке. Основанием на разрешение применения этих методов является предоставление исчерпывающей информации по сопоставимости результатов испытаний, выполненных в полностью идентичных условиях, с методом по Стандарту ИСО 3690 или безртутным вакуумным методом испытаний.

5.4.6.9 Классификация сварочных материалов по содержанию диффузионного водорода в наплавленном металле.

В зависимости от определенного содержания диффузионного водорода в наплавленном металле сварочные материалы могут быть классифицированы Регистром с присвоением индексов H5, H10 или H15.

Индивидуальные и общие средние значения содержания диффузионного водорода должны быть представлены в отчете об испытаниях. Метод определения содержания диффузионного водорода указывается в протоколе испытаний.

Общие средние значения для четырех образцов не должны превышать значений, указанных в табл. 5.4.6.9. При этом для двух образцов допускаются индивидуальные значения по содержанию диффузионного водорода, которые превышают требования, установленные табл. 5.4.6.9, не более чем на 10 %.

Таблипа 5469

Индекс классификации по содержанию водорода ¹	Содержание диффузионного водорода в наплавленном металле (не более см ³ /100 г наплавленного металла) при определении методом									
	вакуумным по Стандарту ИСО 3690-1977 ²	глицериновым ³								
H15 H10 H5	15 10 5	10 5 Не применяется								

¹Для сверхнизководородистых сварочных материалов допускается применение дополнительного индекса Н3, соответствующего среднему значению содержания диффузионного водорода, не более 3,0 см³/100 г наплавленного металла (по вакуумным и хроматографическому методам).

²Наряду с ртутно-вакуумным методом по Стандарту ИСО 3690-1977 допускается применение вакуумного безртутного и хроматографического методов определения содержания диффузионного водорода при условии соблюдения всех установленных настоящим разделом требований.

³При условии выполнения установленных настоящим разделом требований к этому методу испытаний.

ЧАСТЬ IV. ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ ИЗДЕЛИЙ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

- 1.1.1 Положения настоящей части применяются при осуществлении технического наблюдения за изготовителем изделий, подлежащих техническому наблюдению РС согласно Номенклатуре РС, приведенной в приложении 1 к части I «Общие положения по техническому наблюдению».
- 1.1.2 Положения настоящей части могут применяться с учетом особенностей и отличий в процессах изготовления изделий, присущих стране, в которой РС осуществляет техническое наблюление.

1.2 ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ, СОКРАЩЕНИЯ

1.2.1 Термины, определения и сокращения приводятся в части I «Общие положения по техническому наблюдению».

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

1.3.1 Объем технического наблюдения устанавливается приведенными ниже положениями настоящего раздела.

Объем технического наблюдения для конкретных видов изделий приводится в разд. 3 — 17.

- **1.3.2** Как правило, в процессе разработки и постановки изделий на производство техническое наблюдение Регистра осуществляется:
- .1 при разработке технической и нормативнотехнической документации;
- .2 при изготовлении и испытаниях головных (опытных) образцов продукции.
- 1.3.3 При осуществлении технического наблюдения Регистр учитывает требования действующих стандартов, устанавливающих порядок разработки технической документации и проведения испытаний изделий на этапах их изготовления.

Регистр не входит в состав приемочных комиссий, он выполняет в процессе испытаний свои функции согласно одобренной программе испытаний и технической документации, контролируя выполнение требований РС. По результатам технического

наблюдения оформляются соответствующие документы Регистра.

- 1.3.4 При разработке изделия и постановке его на производство могут не предусматриваться (в зависимости от сложности или новизны изделия) те или иные стадии разработки конструкторской документации или этапы работ, что, как правило, оговаривается в технической документации на изделие.
- 1.3.5 При решении вопроса о возможности использования на судах изделий, изготовленных без технического наблюдения РС, необходимо выполнить разовое одобрение в соответствии с 5.7 части I «Общие положения по техническому наблюдению».

Если изделие изготовлено без технического наблюдения РС, но на него имеются документы другого классификационного общества, выданные без поручения РС, то необходимо руководствоваться 2.16 части І «Общие положения по техническому наблюдению».

1.4 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

1.4.1 Общие указания.

- 1.4.1.1 Общие положения по техническому наблюдению Регистра за разработкой технической документации, в том числе положения по оформлению результатов ее рассмотрения, о сроках действия одобрения и о внесении изменений в одобренную техническую документацию изложены в части II «Техническая документация».
- **1.4.1.2** В настоящей главе излагается порядок представления Регистру технической документации на изделия, а также порядок рассмотрения Регистром отдельных видов документов на различных этапах разработки конструкторской документации.
- 1.4.1.3 Техническая документация на изделия представляется на рассмотрение и одобрение в Регистр согласно 5.1 части II «Техническая документация» в объеме, определенном в соответствующих частях правил Регистра (перечень правил Регистра см. 1.3 Общих положений о классификационной и иной деятельности).
- **1.4.1.4** Наименования изделия «головной образец (головная партия)», «опытный образец (опытная партия)» вводятся разработчиком по согласованию с заказчиком и Регистром.

1.4.1.5 В случае производства лицензионных двигателей по документации лицензиара, одобренной Регистром, лицензиат должен представлять на рассмотрение Регистру перечень чертежей согласно 1.2 части ІХ «Механизмы» Правил классификации и постройки морских судов с указанием присвоенных номеров чертежей и соответствующих им номеров чертежей лицензиара.

Если лицензиар вводит незначительные изменения в конструкцию, соответствующие документы об этом должны быть представлены Регистру на одобрение. В случае введения значительных изменений в конструкцию дополнительно Регистру должно быть представлено подтверждение лицензиара. В любом случае лицензиат должен представить Регистру полный комплект одобренных документов.

1.4.2 Техническое задание, техническое предложение, эскизный проект.

1.4.2.1 Указанные документы рассматриваются Регистром по его усмотрению только в случае применения принципиально новых конструктивных решений, однако эти документы одобрению или согласованию не подлежат. По результатам их рассмотрения составляется письменное заключение (отзыв) Регистра с рекомендациями или требованиями (при необходимости) для учета проектантом при дальнейшей разработке изделия (см. 3.6 части ІІ «Техническая документация»).

1.4.3 Технический проект.

- **1.4.3.1** По результатам рассмотрения технического проекта (ТП) составляется письмозаключение, в котором должны указываться:
- .1 технические требования (при наличии таковых), которые должны быть выполнены и учтены проектантом на последующих стадиях разработки рабочей документации и этапах работ по созданию изделия;
- .2 подразделение PC, которому поручается рассмотрение и одобрение рабочей документации, а также контроль за выполнением замечаний и требований по ТП;
- **.3** подразделение PC, которому поручается наблюдение за изготовлением головного (опытного) образца, головной (опытной) партии изделия;
- .4 участие представителя ГУР (при необходимости) в приемочных испытаниях головного (опытного) образца изделия;
- .5 допущенные Регистром отступления от требований правил (при наличии отступлений) согласно 1.4.3.2. Копии письма-заключения следует направлять в подразделения PC, указанные в 1.4.3.1.2 и 1.4.3.1.3.
- 1.4.3.2 Отступления от требований правил рассматриваются ГУР при официальном обращении разработчика с обоснованием допущенных отступлений и предложений по выполнению необходимых конструктивных мероприятий или альтернативных решений.
- **1.4.3.3** При положительном заключении по техническому проекту, в том числе при наличии

замечаний и требований, выполнение которых может быть допущено Регистром на последующих стадиях разработки изделия (см. 1.4.3.1.1), документация ТП одобряется с постановкой на документах соответствующих штампов Регистра согласно разд. 8 части II «Техническая документация».

1.4.3.4 При отрицательном заключении, т. е. невозможности одобрения ТП ввиду невыполнения требований Регистра по принципиальным вопросам, документация ТП возвращается проектанту для доработки (для учета требований Регистра, указанных в письме-заключении, выполнение которых не может быть перенесено на другие стадии разработки изделия).

1.4.4 Рабочая документация.

- **1.4.4.1** Рабочая документация (РД) на изделие представляется Регистру на рассмотрение и одобрение на стадии разработки опытного или головного образца, если разработка опытного образца не предусматривается.
- В дальнейшем Регистру представляются на одобрение только те рабочие чертежи, которые были откорректированы по результатам изготовления и испытания головного (опытного) образца или изделий установочной серии, а также в случае изменения конструкции серийных изделий.
- **1.4.4.2** Рабочая документация представляется в подразделение PC, которму ГУР поручило ее одобрение (см. 1.4.3.1.2).

Если техническое наблюдение за изготовлением головного (опытного) образца изделия осуществляет другое подразделение PC, то один комплект одобренной рабочей документации должен быть направлен в это подразделение PC (см. 1.4.3.1.3).

1.4.4.3 Рабочая документация должна одобряться без замечаний, т. е. все требования правил Регистра и требования, изложенные в письме-заключении по ТП (см. 1.4.3.1.1), должны быть учтены в РД.

1.4.5 Технические условия.

- 1.4.5.1 Технические условия должны представляться на рассмотрение, как правило, в составе технического проекта изделия. При отсутствии конструкторской документации (если такая документация не разрабатывается) технические условия должны содержать полный комплекс требований, предъявляемых Регистром к данному изделию.
- **1.4.5.2** В общем, содержание технических условий определяется принятой системой стандартизации, но в любом случае для подлежащих техническому наблюдению Регистра изделий они должны содержать указания:
 - .1 о соответствии изделия требованиям РС;
- .2 о необходимости одобрения Регистром технической документации на изделия, включая программы испытаний;
- .3 о необходимости технического наблюдения
 Регистра за изготовлением и испытаниями изделий.

- 1.4.5.3 Технические условия должны одобряться без замечаний, т. е. все возникшие в результате рассмотрения технических условий замечания должны быть учтены в тексте технических условий до их одобрения. При наличии замечаний составляется письмо-заключение без постановки на технические условия штампа об одобрении.
- 1.4.5.4 Технические условия, откорректированные по результатам испытаний головного (опытного) образца, должны вновь представляться на одобрение Регистру, либо должно быть выпущено извещение об изменении технических условий, одобренное Регистром.
- **1.4.5.5** Отсутствие технических условий при наличии необходимой информации не является препятствием для рассмотрения и одобрения документации на установленное число изделий.
- В этом случае применяется разовое одобрение документации (см. 8.6 части II «Техническая документация»).

1.4.6 Программа испытаний.

- **1.4.6.1** Программа испытаний головного (опытного) образца изделия рассматривается и одобряется ГУР или подразделением РС (см. 5.1 части ІІ «Техническая документация»).
- **1.4.6.2** Программа эксплуатационных испытаний изделия на судне рассматривается и одобряется, как правило, ГУР.
- В отдельных случаях рассмотрение и одобрение программы эксплуатационных испытаний изделия ГУР может поручить подразделению РС.
- **1.4.6.3** Программы испытаний установочных партий и серийных изделий рассматривает и одобряет подразделение PC, осуществляющее техническое наблюдение за изготовлением изделия.
- **1.4.6.4** Программы испытаний в общем случае должны предусматривать:
- **.1** проверку соответствия изделия одобренным Регистром чертежам, техническим условиям, стандартам;
- .2 определение показателей качества изделия, регламентируемых Регистром;
 - .3 функциональные испытания;
- **.4** продолжительность и режимы испытаний, а также необходимые замеры во время испытаний;
- .5 средства контроля и величину предельных отклонений;
 - .6 осмотры и ревизии;
- .7 контрольные испытания после ревизии (при необходимости):
- .8 методические указания по проведению испытаний (допускается представление методики испытаний как отдельного документа с указанием об этом в программе испытаний).
- **1.4.6.5** При положительных результатах рассмотрения на титульном листе программы испытаний ставится соответствующий штамп Регистра об одобрении.

1.4.6.6 Программы испытаний, рассматриваемые ГУР, допускается одобрять с замечаниями или требованиями, изложенными в письме-заключении, в котором также указывается подразделение РС, которому поручается контроль их выполнения.

1.5 ОПЫТНЫЙ ОБРАЗЕЦ ИЗДЕЛИЯ

- 1.5.1 В настоящей главе приведены положения по техническому наблюдению за изготовлением и испытаниями опытных образцов (партий) или изделий единичного (индивидуального) производства.
- **1.5.2** Установка опытных образцов на суда при согласии судовладельца должна быть согласована с Регистром.
- **1.5.3** Испытания опытных образцов и единичных изделий проводятся под техническим наблюдением Регистра по одобренной программе.
- 1.5.4 Техническое наблюдение за изготовлением и испытанием опытных образцов осуществляется подразделением РС. Участие представителя ГУР оговаривается при рассмотрении программы испытаний.
- **1.5.5** До начала испытаний опытного образца изделия предприятие (изготовитель) представляет Регистру:
- .1 необходимую техническую документацию, одобренную Регистром, включая программу испытаний;
- **.2** документы Регистра, подтверждающие изготовление комплектующих изделий под техническим наблюдением Регистра;
 - .3 объект испытаний;
 - .4 средства испытаний, измерения, контроля;
- .5 результаты предварительных испытаний образца (на предприятии (изготовителе)); при необходимости методику предварительных испытаний (на предприятии (изготовителе));
- **.6** документ контрольного органа предприятия (изготовителя) о готовности к испытаниям.
- **1.5.6** По результатам ознакомления с документацией и оборудованием, указанным в 1.5.5, Регистр решает вопрос о возможности технического наблюдения за испытанием образца изделия.
- 1.5.7 Если проверку опытного образца согласно одобренной программе выполнить практически невозможно, по согласованию с ГУР может быть допущен перенос отдельных пунктов программы стендовых испытаний образца в расширенную программу швартовных и ходовых испытаний судна. При этом изготовитель изделия должен предварительно согласовать с верфью судна и его заказчиком вопрос о переносе испытаний на судно.
- **1.5.8** Если изделие не выдержало какого-либо вида испытания и в его конструкцию в связи с этим

внесены изменения, испытания должны быть повторены. Регистру должно быть представлено заключение предприятия (изготовителя) о причинах неудовлетворительных испытаний.

В обоснованных случаях допускается повторение только тех видов испытаний, на результаты которых влияют внесенные изменения.

- **1.5.9** Если испытания опытного образца не подтвердили в достаточной степени соответствие изделия одобренной Регистром технической документации, изделие не допускается для установки на судно.
- **1.5.10** По окончании испытаний оформляется акт освидетельствования опытного образца по установленной форме. В заключении акта указывается следующее:
- **.1** соответствие (или несоответствие) данного образца изделия требованиям PC;
- .2 допущение (или недопущение) данного образца изделия для установки на судно по назначению, если образец предназначен для установки на судно;
- .3 требования (при необходимости) о соответствующей корректировке технической документации;
- **.4** необходимость проведения эксплуатационных испытаний образца, если такие испытания предусматриваются согласно 1.8.
- **1.5.11** На опытные образцы изделия, допускаемые к установке на судно, выдаются свидетельства Регистра. При этом:
- .1 если образец должен пройти эксплуатационные испытания (см. 1.5.10.4), то в этом случае акт является обязательным приложением к свидетельству, о чем в последнем должно иметься соответствующее указание;
- .2 если испытания проводятся в два этапа (стендсудно см. 1.5.7), то по завершении первого этапа испытаний оформляется акт освидетельствования опытного образца, в заключении которого указывается о допущении образца ко второму этапу испытаний на судне. В этом случае акт является обязательным приложением к свидетельству, о чем в последнем должно иметься соответствующее указание.

Акт об испытании опытного образца на судне оформляется с учетом акта по результатам первого этапа испытаний. При положительных результатах испытаний второго этапа делается отметка в свидетельстве о выполнении требований по этому этапу испытаний.

1.5.12 При положительных результатах испытаний на стенде предприятия (изготовителя) опытных образцов (партий) изделий, не являющихся самостоятельными функциональными единицами, оформляется акт освидетельствования опытного образца (партии), в заключении которого указывается о допущении образца (партии) к дальнейшим испытаниям в составе оборудования, для которого предназначается данное изделие.

Окончательное заключение составляется в этом случае по завершении испытаний основного изделия, укомплектованного образцом.

1.6 ГОЛОВНОЙ ОБРАЗЕЦ ИЗДЕЛИЯ

- **1.6.1** В настоящей главе приведены положения по техническому наблюдению за изготовлением головного образца изделия.
- **1.6.2** Необходимость технического наблюдения за головным образцом устанавливается при рассмотрении и одобрении документации.
- **1.6.3** Если в столбце 4 Номенклатуры РС указана обязательность оформления СТО, то техническое наблюдение за головным образцом такого изделия осуществляет ГУР или подразделение РС по его поручению.
- **1.6.4** До начала испытаний головного образца предприятие (изготовитель) представляет Регистру:
 - .1 документацию, предусмотренную в 1.5.5.;
- **.2** результаты испытаний опытного образца изделия, если они проводились;
- **.3** информацию о результатах эксплуатации изделия, если оно изготавливалось ранее.
- **1.6.5** По результатам технического наблюдения за головным образцом при обязательности СТО оформляется СТО с учетом 1.6.3, при разовом одобрении Свидетельство о соответствии.
- 1.6.6 При неудовлетворительных результатах испытаний головного образца изделия, на которое обязательно требуется оформление СТО, составляется акт, в котором указывается, что изделие не выдержало испытаний и не допускается к установке на судно. В акте выставляются требования, после выполнения которых изделие может быть допущено к повторным испытаниям.

1.7 СЕРИЙНЫЕ ИЗДЕЛИЯ УСТАНОВИВШЕГОСЯ ПРОИЗВОДСТВА

- **1.7.1** В настоящей главе приведены положения по техническому наблюдению за изготовлением и испытаниями серийных изделий установившегося производства.
- 1.7.2 Техническое наблюдение Регистра за изготовлением и испытаниями серийных изделий установившегося производства осуществляется согласно требованиям соответствующих разделов настоящей части Правил и Номенклатуры РС.
- 1.7.3 Серийные изделия подвергаются испытаниям в соответствии с согласованной Регистром нормативно-технической документацией или одобренной им программой испытаний.

- **1.7.4** В процессе серийного производства изделия в соответствии с требованиями согласованной нормативно-технической документации могут подвергаться периодическим испытаниям.
- 1.7.5 По результатам периодических испытаний, проведенных под техническим наблюдением Регистра, составляется Акт, в котором подтверждается соответствие изделия требованиям РС, стабильность регламентируемых Регистром свойств и характеристик.

Если периодические испытания изделия по решению Регистра проводились не под его техническим наблюдением, то результаты испытаний должны представляться предприятием (изготовителем) в Регистр для рассмотрения.

1.7.6 Если в серийное изделие вносятся изменения, влияющие на регламентируемые Регистром свойства и характеристики, то первое после внесения изменений изделие подвергается испытаниям по программе, одобренной Регистром. Эти испытания могут совмещаться с проводимыми на предприятии (изготовителе) типовыми испытаниями изделия.

Объем испытаний определяется Регистром в каждом случае в зависимости от характера, объема вносимых изменений и состояния производства.

- 1.7.7 По результатам испытаний, проведенных после внесения изменений (см. 1.7.6), составляется акт, в котором подтверждается соответствие изделия с внесенными изменениями требованиям Регистра и возможность его дальнейшего изготовления под техническим наблюдением Регистра.
- 1.7.8 По результатам технического наблюдения за серийными изделиями оформляются документы РС согласно Номенклатуре РС и положениям части І «Общие положения по техническому наблюдению».

1.8 ЭКСПЛУАТАЦИОННЫЕ ИСПЫТАНИЯ ИЗДЕЛИЙ

1.8.1 Эксплуатационные испытания (ЭИ) изделия на судне проводятся с целью подтверждения соответствия изделия требованиям РС в условиях эксплуатации.

Испытания изделия на судне по программе швартовных и ходовых испытаний не считаются эксплуатационными.

- **1.8.2** Эксплуатационным испытаниям подвергаются изделия:
- .1 назначенные разработчиком или судовладельцем для проверки в процессе опытной эксплуатации на судах;
 - .2 по требованию Регистра;
 - .3 согласно требованиям правил Регистра.
- **1.8.3** Эксплуатационные испытания изделия назначаются в тех случаях, когда отсутствует

возможность проведения всесторонних стендовых испытаний образца изделия принципиально новой конструкции и при этом нет достаточно проверенного опыта эксплуатации аналогичных изделий на судах. При этом не проведенные на стенде испытания не могут быть заменены расчетами.

1.8.4 Необходимые условия проведения ЭИ на судне должны быть указаны в программе ЭИ, которая разрабатывается проектантом (изготовителем) изделия, согласовывается с верфью и судовладельцем и одобряется ГУР или по его поручению подразделением РС.

Программа должна включать в себя следующее: наименование изделия и его назначение на судне;

название судна, на котором проводятся испытания;

число изделий на судне;

цель испытаний;

режимы и продолжительность испытаний;

виды замеров, освидетельствований и их периоличность:

указания о предъявлении изделия Регистру для освидетельствования.

- **1.8.5** Необходимость проведения ЭИ изделия в соответствии с одобренной программой должна быть отражена в соответствующем акте при оформлении судовых документов Регистра по завершении швартовных и ходовых испытаний.
- 1.8.6 По окончании ЭИ проектант (изготовитель) представляет в Регистр по месту освидетельствования изделия на судне отчетные материалы по этим испытаниям, в которых должно быть подтверждено выполнение одобренной программы испытаний и отражено следующее:

результаты испытаний;

число, характер и причины отказов;

мнение проектанта и заказчика об изделии по результатам ЭИ.

В общую продолжительность ЭИ не должно включаться время, на которое судно было выведено из эксплуатации.

- **1.8.7** По окончании ЭИ оформляется акт освидетельствования изделия, в котором отражаются результаты ЭИ, а также дается заключение о возможности дальнейшего применения данного изделия на судах по назначению.
- 1.8.8 При неудовлетворительных результатах промежуточных освидетельствований изделия на любой стадии проведения ЭИ Регистр прекращает наблюдение за испытаниями и в каждом конкретном случае принимает окончательное решение по данному образцу изделия после рассмотрения материалов ЭИ, представленных в соответствии с 1.8.6, а также об условиях дальнейшей эксплуатации судна.

1.9 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ МАССОВОГО ПРОИЗВОЛСТВА

1.9.1 Область распространения.

1.9.1.1 Положения настоящей главы распространяются на двигатели внутреннего сгорания с диаметром цилиндра 300 мм и менее.

1.9.2 Порядок одобрения продукции массового производства.

1.9.2.1 Заявка на одобрение. Объем представляемой документации.

При подаче заявки на одобрение предприятие (изготовитель) должно представить на рассмотрение следующую документацию на конкретный тип двигателя:

чертежи;

спецификацию материалов основных деталей; инструкции по обслуживанию и эксплуатации пвигателя:

перечень субпоставщиков основных деталей.

1.9.2.2 Освидетельствование производства и системы управления качеством.

Предприятие (изготовитель) должно представить полную информацию о процессах, используемых в производстве и процедурах управления качеством. Процессы и процедуры должны быть освидетельствованы Регистром, а также:

организационная структура системы управления качеством;

поэтапное обеспечение контроля качества;

квалификация и независимость персонала, осуществляющего контроль качества продукции.

1.9.2.3 Типовые испытания.

Один двигатель из серии, находящейся на сборочной линии, должен быть проверен в работе на испытательном стенде в течение не менее 100 ч по программе, одобренной Регистром.

После окончания испытаний основные детали двигателя должны быть представлены Регистру для освидетельствования в разобранном виде.

Для двигателей давно известных и хорошо зарекомендовавших себя типов по усмотрению Регистра могут быть сделаны исключения.

1.9.2.4 Срок действия одобрения.

Регистр оставляет за собой право ограничивать сроки действия одобрения. Изготовитель двигателя должен без задержек информировать Регистр об

изменениях в конструкции двигателя, применяемых материалах, изменениях в организации системы управления качеством.

1.9.3 Система непрерывного освидетельствования.

1.9.3.1 Регистр должен иметь свободный допуск в следующие подразделения предприятия (изготовителя):

производственные;

конструкторские;

сервисные.

1.9.3.2 Освидетельствование производства осуществляется следующими этапами:

результаты проведенных испытаний, проверок и осмотров должны быть представлены Регистру для согласования и принятия к сведению;

система идентификации комплектующих деталей должна быть согласована;

предприятие (изготовитель) должно представить полную информацию о системе управления качеством поставщиков (субподрядчиков) комплектующих узлов и деталей, подлежащих освидетельствованию.

Регистр оставляет за собой право при необходимости освидетельствовать комплектующие узлы и детали, поставляемые субпоставщиками.

1.9.3.3 Единичные стендовые испытания.

При необходимости, Регистр может потребовать проведения дополнительных испытаний на стенде предприятия (изготовителя) в своем присутствии.

1.9.4 Техническое наблюдение.

Техническое наблюдение за изготовлением двигателей должно выполняться в соответствии с Соглашением об освидетельствовании (см. 4.5 части I «Общие положения по техническому наблюдению»).

Предприятие (изготовитель) должно поставлять двигатели на суда, классифицируемые Регистром, со Свидетельствами о соответствии (форма 6.5.31), содержащими в приложении информацию об испытаниях образца двигателя в соответствии с 1.9.2.3, а также с указанием серийного номера и результатов испытаний данного двигателя на предприятии (изготовителе).

Форма приложения должна быть согласована с Регистром.

В отдельных случаях по усмотрению инспектора на двигатели могут быть оформлены Свидетельства о соответствии (форма 6.5.30).

2 КОРПУС

2.1 ОБЩИЕ ПОЛОЖЕНИЯ

- 2.1.1 Положения настоящего раздела применяются при техническом наблюдении за созданием и производством деталей, узлов, секций и других элементов корпуса, если они изготавливаются в виде отдельных изделий для поставки тому предприятию, где строится корпус судна, в том числе и корпусных конструкций, являющихся самостоятельными сборочными единицами или входящими в них при модульной (модульно-агрегатной) постройке судов.
- **2.1.2** При осуществлении технического наблюдения за изготовлением изделий для корпуса следует руководствоваться требованиями 2.1 2.10, а также 2.11, насколько это технологически приемлемо, части V «Техническое наблюдение за постройкой судов» с учетом изложенного ниже.
- 2.1.3 При заключении договора о техническом наблюдении Регистра за изготовлением изделий для корпуса в подразделение Регистра должен быть представлен договор между верфью и поставщиком изделий, а также иная документация об условиях заказа. Если условия заказа не обеспечивают должной преемственности при обеспечении качества постройки корпуса или выполнении Регистром функций наблюдения, за подразделением Регистра сохраняется право в договоре о техническом наблюдении предъявить дополнительные требования к условиям заказа.
- **2.1.4** Изделия для корпусов судов на предприятии (изготовителе) рассматриваются как завершенная продукция. Они должны быть полностью проверены органом технического контроля предприятия (изготовителя) с оформлением документов.

- 2.1.5 Инспектор осуществляет освидетельствование изделий согласно перечню объектов технического наблюдения , составленному применительно к условиям предприятия (изготовителя) (см. 12.2 части І «Общие положения по техническому наблюдению»).
- **2.1.6** Изменения и отступления от одобренной технической документации на изделия, помимо согласования с Регистром, должны быть согласованы с верфью, и документ об этом представляется инспектору.
- **2.1.7** На готовое изделие орган технического контроля предприятия (изготовителя) должен выдать документ установленной формы.

Изделие должно иметь свидетельство Регистра или документ предприятия (изготовителя), подтвержденный инспектором, в котором приводятся основные сведения об изделии: наименование, назначение, характеристики, в том числе размеры и другие сведения о материалах, чертежах и иной технической документации. Кроме того, прилагаются необходимые технические материалы — растяжка, схема припусков, результаты контроля сварных швов и необходимых испытаний, а также документы о допущенных отступлениях и заменах, согласованные с Регистром, и т. п. Для отливок и поковок прилагаются также результаты анализа химического состава, испытаний механических свойств материала и данные о термической обработке. Форма документа на изделие и перечень приложений к нему должны быть согласованы с Регистром по каждому виду изделий.

з устройства, оборудование и снабжение

3.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **3.1.1** Положения настоящего раздела применяются при техническом наблюдении за созданием и производством устройств, оборудования и снабжения, перечисленных в Номенклатуре РС.
- **3.1.2** Раздел содержит требования технического наблюдения за изготовлением головных изделий и серийных изделий устройств, оборудования и снабжения при установившемся производстве.
- 3.1.3 Материалы, применяемые для изготовления изделий, должны соответствовать требованиям частей III «Устройства, оборудование и снабжение» и XIII «Материалы» Правил классификации и постройки морских судов.
- **3.1.4** Общие положения по организации технического наблюдения за изготовлением объектов, указанных в 3.1.1, приведены в части I «Общие положения по техническому наблюдению», по технической документации в части II «Техническая документация».

¹ В дальнейшем — перечень объектов.

3.2 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ РЕГИСТРА

- 3.2.1 Техническое наблюдение за изготовлением изделий устройств, оборудования и снабжения проводится на предприятии (изготовителе) при наличии договора, заключенного между Регистром и предприятием, или заявок согласно разд. 4 части I «Общие положения по техническому наблюдению».
- **3.2.2** Выдаваемые Регистром документы указаны в Номенклатуре РС.
- **3.2.3** Техническое наблюдение осуществляется путем освидетельствования по перечню объектов, являющемуся основным рабочим документом наблюдения.
- 3.2.4 Перечень объектов разрабатывается предприятием (изготовителем) на основании Номенклатуры РС и табл. 3.2.4 по каждому головному (единичному) изделию устройств, оборудования и снабжения, а также по серийным изделиям и согласовывается с подразделением Регистра.

Подразделение может изменить перечень объектов для расширения объема контроля или для

Таблица 3.2.4

										1 6	оли	ца 3.2.4
№ п/п	Объект технического наблюдения		Контр матер				копии		Испы	тания		ии
,		Проверка техничес- кой документации	Свидетельства Регистра и/или другие документы	Маркировка, клеймение	Наружный осмотр	Контроль замеров	Контроль дефектоскопии	гидравлические	бросанием	на разрыв	пробной нагрузкой	Контроль в действии
1	Рулевые устройства:											
1.1	баллеры, включая их фланцы	+	+	+	+	+	+ 1					
1.2	рудерпосты съемные, включая их фланцы	+	+	+	+	+						
1.3	перо руля и поворотная насадка в сборе	+	+	+	+	+	+	+				
1.4	штыри рулей и поворотных насадок	+	+	+	+	+						
1.5	румпели, секторы баллера руля	+	+	+	+	+	$+^{2}$					
1.6	привод аварийный рулевой	+	+	+	+	+						+
1.7	средства активного управления судами	+	+	+	+	+						+
2	Устройства якорные:											
2.1	якоря	+	+	+	+	+			+		+	+
2.2	цепи якорные и детали их соединения	+	+	+	+	+				+	+	+
2.3	стопоры якорные	+	+	+	+	+						+
2.4	устройство для крепления и отдачи коренного конца	+	+	+	+	+						+
	якорной цепи или троса											
2.5	клюзы якорные ³											
3	Устройства буксирные и устройства для аварийной											
	буксировки:											
	буксирные гаки и дуги с деталями их крепления к корпусу,	+	+	+	+	+					+	+
	устройства для отдачи буксирного троса, цепные устройства,											
	буксирные тросы, устройства крепления буксира											
4	Устройства и закрытия отверстий в корпусе, над-											
	стройках и рубках первого и второго ярусов:											
4.1	иллюминаторы (рубочные окна), бортовые и палубные	+	+	+	+	+		+				+
	круглые и прямоугольные											
4.2	двери в наружной обшивке корпуса	+	+	+	+	+	+	$+^4$				+
4.3	двери наружные в надстройках и рубках	+	+	+	+	+		+				
4.4	крышки сходных, световых и вентиляционных люков	+	+	+	+	+	+	+				+
4.5	двери в переборках деления судна на отсеки	+	+	+	+	+	+	+				+
4.6	крышки грузовых люков сухогрузных трюмов, приспособ-	+	+	+	+	+						+
	ленных для поочередной перевозки грузов наливом и сухих											
	грузов, твиндеков, а также крышки грузовых наливных отсеков											
5	Устройства, обеспечивающие крепление палуб, платформ,	+	+	+	+	+						+
	рамп и других аналогичных конструкций в нерабочем											
	положении											
6	Тросы стальные, растительные и синтетические судовые	+	+	+	+	+				+	+	
	всех назначений											
7	Цепи без распорок, применяемые в судовых устройст-	+	+	+	+	+				+	+	
L	вах, кроме якорных											

¹ Для приварных фланцев.

² При массе румпеля более 100 кг.

³ Техническое наблюдение осуществляется согласно разд. 2 настоящей части и разд. 2 части V «Техническое наблюдение за стройкой судов».

⁴ Являются в каждом случае предметом специального рассмотрения Регистром.

его сокращения, руководствуясь при этом условиями производства и качеством изделий, а также результатами технического наблюдения при постройке судна и технического наблюдения за судами в эксплуатации.

3.2.5 Освидетельствования по перечню объектов проводятся инспектором после предъявления органом технического контроля предприятия (изготовителя) готового объекта технического наблюдения с оформленными на него документами или завершенного объема работ, окончательно проверенных предприятием (изготовителем) и подготовленных к предъявлению Регистру.

Основной целью освидетельствований по перечню является окончательная проверка объекта технического наблюдения в состоянии полной готовности и допуск его к последующей установке в устройстве и использованию для оборудования и снабжения.

Объем технического наблюдения и предписываемые виды проверок, контроля и осмотров, выполняемые инспектором при освидетельствовании объектов технического наблюдения по перечню, приведены в табл. 3.2.4.

В зависимости от условий технического наблюдения Регистра освидетельствования согласно табл. 3.2.4 осуществляются инспектором или персоналом органа технического контроля предприятия (изготовителя).

Кроме того, указанные в таблице проверки, контроль и осмотры изделий выполняются инспектором при освидетельствованиях предприятий (изготовителей).

Для контроля выполнения предприятием (изготовителем) условий технического наблюдения Регистра или для проверки условий Соглашения об освидетельствовании или договора о техническом наблюдении следует руководствоваться положениями разд. 4 части I «Общие положения по техническому наблюдению».

3.2.6 Периодические проверки осуществляются инспектором независимо от перечня объектов и не связаны с официальным предъявлением органом технического контроля предприятия (изготовителя). При их проведении следует уделять особое внимание выявлению недостатков и дефектов, которые не могут быть обнаружены при освидетельствованиях по перечню после завершения соответствующих работ.

Указания по осуществлению периодических проверок даны в соответствующих главах раздела. Однако они могут быть расширены, исходя из конкретных условий.

При освидетельствовании необходимо осуществлять:

.1 проверку технической документации, т. е. наличие:

одобренной (согласованной) технической документации, относящейся к подлежащему освидетельствованию объекту технического наблюдения (рабочих чертежей, технологических процессов, стандартов и

других нормативно-технических документов);

разрешения или иных документов, допускающих отступления от чертежей или иной технической документации, согласованных с Регистром;

документов ОТК на предъявляемые изделия, включающих необходимые сведения о проведенном операционном контроле в соответствии с требованиями технической документации;

- .2 контроль материала проверку наличия свидетельств Регистра и клеймения в случаях, предусмотренных Номенклатурой РС, и/или других документов на материал и маркировки; установление соответствия марок материалов указанным в технической документации;
- .3 наружный осмотр проверку соответствия изделий технической документации, отсутствия наружных дефектов, характер и допускаемая величина которых превышают оговоренные в соответствующих главах настоящего раздела; в необходимых случаях проводится осмотр с разборкой в объеме, согласованном с инспектором; для сварных конструкций проверяются сварные швы;
- .4 контроль замеров проверку основных размеров с помощью приборов и инструментов, обеспечивающих необходимую точность измерения (к основным размерам относятся размеры изделий, регламентируемые правилами Регистра и требованиями, указанными в технической документации); для сварных конструкций проверяются размеры сварных швов;
- .5 контроль дефектоскопии проверку результатов дефектоскопии сварных швов рентгено- и гаммаграфированием, ультразвуком и другими одобренными методами;
- .6 и с п ы т а н и я гидравлические, бросанием, разрывной и пробной нагрузками;
- .7 контроль в действии проверку работоспособности изделий, а также подвижности деталей изделий в соответствии с требованиями технической документации и указаниями соответствующих глав настоящего раздела.
- 3.2.7 Кроме освидетельствований (согласно перечню) инспектор осуществляет проверки, не связанные с официальным предъявлением органом технического контроля предприятия (изготовителя) готового объекта технического наблюдения.

Периодические проверки выполняются в процессе производства на промежуточных стадиях изготовления изделий.

При этом следует уделять особое внимание выявлению недостатков и дефектов, которые не могут быть обнаружены при освидетельствовании (согласно перечню) готовой продукции.

Указания по осуществлению периодических проверок даны в соответствующих главах раздела. Подразделение может их расширить или уточнить с

учетом конкретных условий производства.

Дополнительно к требованиям 3.2.4 результаты периодических проверок используются при решении вопросов о заключении Соглашения об освидетельствовании и о сохранении условий его действия.

- 3.2.8 При проведении периодических проверок инспектор определяет характер и число выборок, проб и контрольных проверок, исходя из конкретных условий производства, качества выполнения работ, особенностей и ответственности объекта технического наблюдения и его элементов при условии выполнения требований настоящих Правил и других применяемых документов Регистра.
- 3.2.9 До начала серийного изготовления изделий устройств, оборудования и снабжения под техническим наблюдением инспектора должны быть изготовлены и испытаны головной образец и установочная серия изделий в количестве, согласованном предприятием (изготовителем) с подразделением Регистра.

При изготовлении головного образца (установочной серии) проводятся подробные периодические проверки. Отдельные проверки, осмотры и контроль, проводимые периодически при серийном изготовлении изделий, для головной серии (образца) должны быть включены в перечень и должны предъявляться инспектору при освидетельствовании согласно перечню.

Инспектор должен убедиться, что предприятие (изготовитель) освоило принятую технологию изготовления изделий, и при положительных результатах предусмотренных освидетельствований решить вопрос о возможности поставки изделий установившегося производства на суда, подлежащие техническому наблюдению Регистра.

3.3 ДОКУМЕНТАЦИЯ

- 3.3.1 До начала изготовления изделий устройств, оборудования и снабжения предприятие (изготовитель) передает подразделению РС одобренную (согласованную) Регистром техническую документацию объекта наблюдения, требуемую 3.3.3 части I «Классификация» и 1.3.4 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов.
- **3.3.2** Одобрение технологических процессов на изготовление изделий в целом, а также сварку, термообработку и сборку ответственных деталей и узлов осуществляется подразделением Регистра.

3.4 РУЛЕВЫЕ УСТРОЙСТВА

3.4.1 Техническому наблюдению Регистра подлежит изготовление изделий и относящихся к

- ним деталей, указанных в табл. 3.2.4.
- **3.4.2** При освидетельствовании согласно перечню дополнительно к требованиям табл. 3.2.4 необходимо обратить внимание на следующее.
- **3.4.2.1** При изготовлении пера руля или поворотной насадки проверяются:
- .1 крепления к перу руля фланца для соединения с баллером и петель штырей;
- .2 крепления к поворотной насадке фланца, вварной втулки и других вварных деталей для соединения насадки с баллером и штырем, а также крепление стабилизатора к насадке;
- .3 отсутствие резких переходов сечений конструкции;
- .4 непроницаемость конструкции согласно приложению 9 к разд. 2 части V «Техническое наблюдение за постройкой судов»;
- .5 защита изделий от коррозии в соответствии с инструкциями или их заполнение наполнителем, если Регистром предъявляются специальные требования.
- **3.4.2.2** При изготовлении баллеров, съемных рудерпостов и штырей проверяются:
- .1 качество выполнения шпоночных пазов, пригонки шпонок, резьбы хвостовиков, гаек, конусных частей и стопорных устройств;
- **.2** крепление к баллеру фланца, служащего для соединения с фланцем пера руля;
- .3 материал облицовок баллеров, съемных рудерпостов и штырей, отсутствие дефектов облицовок и качество их прилегания к посадочным поверхностям после остывания; при наплавке рабочих шеек качество наплавки;
 - .4 уплотнение торцов облицовок.
- **3.4.2.3** При сборке в цехе фланцевых и конусных соединений перьев рулей или поворотных насадок с баллерами и штырями, а также соединений рудерпостов с ахтерштевнями проверяются:
- .1 качество пригонки конусов баллера и штырей по посадочным местам в перьях рулей или в поворотных насадках на отпечаток по краске, при этом должно быть не менее двух пятен на любой площади 25×25 мм;
- .2 качество пригонки шпонок по шпоночным пазам в сопрягаемых деталях;
- .3 качество пригонки фланцев в соединениях баллеров с перьями рулей или поворотными насадками, а также съемных рудерпостов;
- .4 качество обработки отверстий под призонные болты;
- .5 соосность баллеров и штырей, отверстий подшипников в перьях рулей для съемных рудер-постов после их окончательной сборки с перьями или поворотными насадками;
- .6 прилегание головок болтов и гаек к поверхности фланцев во фланцевых соединениях баллеров с

перьями рулей или поворотными насадками и в соединениях съемных рудерпостов, стопорение болтов и гаек, прилегание гаек штырей и баллеров к поверхности деталей перьев рулей или поворотных насадок в конусных соединениях.

- 3.4.3 Техническое наблюдение Регистра за изготовлением вгулок штырей, подшипников баллеров, деталей соединений баллеров, баллеров с пером руля и поворотной насадкой, съемного рудерпоста с ахтерштевнем, румпеля или сектора с баллером, ограничителей перекладки пера руля и поворотной насадки с их деталями, деталей валиковых прокладок рулевых приводов и штуртросовых цепей ограничивается рассмотрением соответствующей технической документации, включая сертификаты качества (паспорта) предприятия (изготовителя) на вышеперечисленные изделия и сертификаты на материалы этих изделий.
- **3.4.4** Периодическая проверка сварных металлических конструкций пера руля или поворотной насадки осуществляется согласно разд. 2 настоящей части и разд. 2 части V «Техническое наблюдение за постройкой судов».
- 3.4.5 Средства активного управления судами рассматриваются Регистром только с точки зрения влияния их конструкции, установки и т. п. на общую безопасность судна. В случае, указанном в 2.1.3.2 части ІІІ «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов, механизмы и гребные винты средств активного управления судном проверяются согласно 3.2.4, а также исходя из дополнительных указаний, которые устанавливает подразделение в зависимости от особенностей конструкции и технологии изготовления.

3.5 ЯКОРНЫЕ УСТРОЙСТВА

3.5.1 Якоря.

3.5.1.1 Техническому наблюдению Регистра подлежит изготовление кованых, литых и сварных якорей типа Холла, Грузона и адмиралтейского согласно требованиям табл. 3.2.4. Техническое наблюдение за изготовлением якорей других типов в каждом случае является предметом специального рассмотрения Регистром.

Техническое наблюдение за изготовлением поковок и отливок деталей якорей — лап, веретен, осей штырей и скоб проводится согласно требованиям Правил.

- **3.5.1.2** При освидетельствовании по перечню дополнительно к указанному в табл. 3.2.4 необходимо проверить:
 - .1 документы об испытаниях бросанием;
 - .2 качество сварки сварных якорей;
- .3 качество сварки деталей якорей: приварку по периметру штырей якорных скоб, стопорных штырей якоря Холла и др.;

- **.4** кривизну веретена якоря, которая должна быть не более 3 мм на 1 м длины;
- .5 массу якоря путем взвешивания; при этом отклонение теоретической массы якоря в сборе должно быть от -4 до +7 %; взвешивание в отдельных случаях разрешается проводить выборочно в количестве 5 % числа якорей, но не менее двух изготовленных якорей одного типоразмера при условии использования проверенных моделей.
- **3.5.1.3** Испытание якоря и литой якорной скобы на растяжение пробной нагрузкой осуществляется в соответствии с приложением 3.
- **3.5.1.4** При периодической проверке контролируются:
- .1 изготовление деталей якорей. При этом обращается внимание на отсутствие трещин, раковин, плен, песочниц и других пороков на поверхности деталей, которые могут повлиять на прочность якоря. Допустимые пороки на литых деталях указаны в приложении 1, кованых и сварных в технических требованиях чертежей;
- .2 соблюдение технологии, принятой на предприятии (изготовителе), по механической и тепловой обработке деталей с целью выявления возможных скрытых пороков, а также причин, ухудшающих механические свойства металла;
- .3 сборка сварных якорей: подготовка кромок под сварку и сварочные зазоры, сварочные материалы и соблюдение основных требований сварки согласно требованиям Правил;
- **.4** режимы термической обработки, если она предусмотрена технологическим процессом;
- .5 порядок проведения и результаты испытания бросанием литых и сварных якорей или их деталей в соответствии с приложением 2.
- **3.5.1.5** При техническом наблюдении за изготовлением головного образца и установочной серии якорей (см. 3.2.9), кроме освидетельствований, предусмотренных в 3.5.1.2 3.5.1.3, проверяются:
 - .1 изготовление деталей;
 - .2 сборка сварных якорей;
 - .3 термообработка;
 - .4 испытания бросанием;
- .5 правильность отбора проб для проверки механических свойств металла;
 - .6 подготовка дефектных мест литья под сварку.
- 3.5.1.6 Для признания якоря якорем повышенной держащей силы проводятся, кроме того, сравнительные испытания в паре с якорем Холла или Грузона такой же массы на разных грунтах по одобренной Регистром программе.
- **3.5.1.7** При положительных результатах освидетельствования якорей инспектор проверяет маркировку, проставляет клейма Регистра и оформляет свидетельства.

3.5.2 Якорные цепи и детали их соединений.

3.5.2.1 Техническому наблюдению Регистра подлежит изготовление якорных цепей, а также узлов и деталей якорных цепей.

К узлам и деталям якорных цепей относятся: смычки цепи;

звено общее и звено увеличенное с распоркой; звено концевое;

вертлюг;

скоба концевая;

скоба соединительная;

звено соединительное.

Изделия могут изготавливаться контактной сваркой методом оплавления, отливкой и штамповкой.

При применении электродуговой сварки для изготовления изделий порядок и объем технического наблюдения подлежат специальному согласованию с Регистром.

Распорки должны быть надежно закреплены в звеньях путем точной подгонки соприкасающихся поверхностей. Крепление распорок сваркой допускается по специальному согласованию с Регистром. При этом распорки привариваются только с одного конца, противоположного сварному шву звена, а размеры сварного шва и примененные сварочные материалы должны обеспечивать надежность соединения. Допускается исправление пороков осуществлять сваркой методами и по технологии, согласованной с подразделением. Сварка должна выполняться до окончательной термической обработки цепи. Техническое наблюдение за производством горячекатаной и тянутой круглой стали, предназначенной для изготовления сварных цепей, осуществляется согласно требованиям Правил.

- **3.5.2.2** При освидетельствовании (согласно перечню) дополнительно к требованиям табл. 3.2.4 необходимо проверить:
- .1 свидетельства о соответствии и/или протоколы с результатами испытаний химического состава и механических свойств металла на отливки, наличие одобренного технологического процесса сварки, свидетельств о соответствии на сварочные материалы, СДС;
- .2 результаты испытаний дополнительных проб, выполненных по указанию инспектора, на макроструктуру, продольные шлифы штампованных звеньев для проверки уплотнения в зоне соединения и др.;
- **.3** карты разрешения допущенных отступлений и исправления пороков;
 - **.4** документ о массе изделий¹;
- .5 сопрягаемость деталей узлов в местах примыкания их друг к другу и взаимоподвижность их при расположении на прямой линии, а также под прямым углом;
 - .6 свободное вращение штыря вертлюга в его звене;

- .7 соосность отверстий в ушках концевых и соединительных скоб и проход штыря;
- .8 длину смычек, которая должна быть в пределах 25 27,5 м;
- .9 предельное отклонение калибра якорной цепи от номинального значения, которое не должно превышать величин, указанных в табл. 7.1.3.9.1 части XIII «Материалы» Правил классификации и постройки морских судов.

Предельные отклонения остальных геометрических размеров звеньев, узлов и деталей якорных цепей должны быть не более $\pm 2,5$ % их номинальных размеров. При этом площадь поперечного сечения звена по продольной его оси должна быть не менее теоретического сечения, соответствующего номинальному диаметру, а длина любого участка цепи, состоящего из пяти звеньев, — не более +2,5 % номинальной длины этого участка, равной L=5l-8d мм, где l — номинальная длина звена, мм; d — калибр, мм (уменьшение длины участка не допускается).

3.5.2.3 При освидетельствовании согласно перечню проверяются

при изготовлении сварных изделий:

- .1 отсутствие трещин, расслоений, рванин и других дефектов на поверхности деталей, прошедших гибку;
 - .2 тщательность удаления грата в местах сварки;
- **.3** качество электросварных швов (не допускаются трещины и расслоения);
- .4 закрепление распорок в звеньях (проверяется обстукиванием молотком), вварка распорок (допускается при условии последующей термообработки);
 - .5 сопрягаемость поверхности звена и распорки;
- **.6** прогиб в продольной плоскости после сварки, который не должен превышать 2 мм;
- .7 смещение в стыке свариваемых концов, мм, которое не должно превышать:

для цепей калибром

13	0,7
44 — 62	2,0
14 — 26	1,0
68 — 81	2,5
28 — 40	1,5
87 — 102	3,5
более 102	4,0;

.8 высота утолщения по наружной поверхности звена, мм, которая после обрезки грата не должна превышать:

для цепей калибром

13	0,8
44 — 62	2,5
14 — 26	
68 — 81	3,0
28 — 40	1,5
87 — 107	3.5

¹ При стабильности массы изделий согласно стандарту документ о взвешивании не требуется.

при условии сохранения ширины звена в пределах допуска. При этом внутренний грат у звеньев без распорок не должен превышать 1,5 мм;

.9 места пригаров электродов сварочной машины к звену, которые должны быть зачищены. Допустимое местное углубление зачистки — не более 5 % калибра звена или толщины тела;

при изготовлении литых изделий:

- .10 очистка от формовочных материалов (литники, швы, заусеницы и другие неровности от формовки должны быть удалены, а места их расположения на отливках зачищены);
- .11 отсутствие ситовидной пористости, трещин, расслоений и других пороков;
- .12 глубина пологой зачистки в результате удаления прибыли, которая должна быть не более 0,05 калибра цепи, или высота выступов, которая должна быть не более 1 мм. На изделиях не допускаются без заварки литейные пороки на глубине и протяженности 5 % диаметра или толщины детали, а также раковины, расположенные в одном сечении, если их суммарная глубина и протяженность превышают 5 % диаметра или толщины детали;
- .13 смещение звена в плоскости разъема, мм, по поперечной оси, которое не должно превышать:

для цепей калибром

При этом чрезмерные уступы должны быть зачищены без нарушения размеров сечения;

- при изготовлении штампованных изделий:
- **.14** отсутствие окалины, заусениц, трещин, заковов, выбоин, плен, волосовин и прочих дефектов;
- .15 отсутствие зазоров между соединительными полузвеньями;
- .16 плавность переходов от одного полузвена к другому;
- .17 величина смещения плоскости стыкования полураспорки звеньев от оси звена, которая не должна быть более 0,1 его диаметра;
- **.18** местные зазоры между полураспорками, мм, которые не должны быть более:
 - 0,5 для звеньев диаметром 13 34;
 - 1,0 для звеньев диаметром 37 49;
 - 2,0 для звеньев диаметром 58 62.

Для цепей калибром более 62 мм значения зазоров принимаются по специальному согласованию с Регистром.

3.5.2.4 Техническому наблюдению Регистра подлежат испытания якорных цепей (см. 3.6 части XIII «Материалы» Правил классификации и постройки морских судов).

Перед началом испытаний инспектор должен убедиться в том, что цепопробные прессы признаны Регистром и имеют свидетельство контроля компетентных органов; размеры захватных приспособлений прессов в местах их сопряжения с испытываемыми образцами близки к размерам деталей и узлов, с которыми образцы соединены в цепи; цепопробные прессы обеспечивают постепенное и равномерное увеличение нагрузки на образец.

3.5.2.5 При периодических проверках контролируются

при изготовлении сварных изделий:

- .1 заготовки, подготовленные для сварки, на отсутствие пороков, наличие усадочного допуска, правильность разделки кромок под сварку, качество и чистоту поверхности свариваемых кромок;
 - .2 режим и ход процесса сварки;
 - .3 режим термообработки изделий;
 - при изготовлении литых изделий:
- .4 предварительная вырубка дефектных мест до чистого металла;
- .5 разделка под сварку литейных пороков, превышающих по глубине и протяженности 5 % диаметра или толщины детали;
- **.6** сварочные материалы, применяемые для устранения дефектов;
 - .7 процесс заварки дефектов;
- **.8** режим термической обработки отливок при наличии дефектов (они устраняются до термической обработки);
- при изготовлении штампованных излелий:
- .9 размеры и качество поверхностей углублений и отростков с кольцевыми выступами;
 - .10 степень обжатия соединения звена.
- **3.5.2.6** При техническом наблюдении за изготовлением головной партии (образца) якорных цепей и деталей их соединения (см. 3.2.9) кроме освидетельствований, предусмотренных в 3.5.2.2 и 3.5.2.3, проверяются:
 - .1 подготовка полузвена под сварку;
 - .2 термообработка;
- .3 предварительная вырубка дефектных мест и разделка под сварку литейных пороков;
- .4 размеры и качество поверхности углублений и отростков с кольцевидными выступами штампованных изделий.
- 3.5.2.7 При положительных результатах освидетельствований смычек и деталей их соединения инспектор проверяет маркировку, проставляет клейма Регистра, оформляет Свидетельство о соответствии.

3.5.3 Якорное оборудование.

3.5.3.1 Техническому наблюдению Регистра подлежит изготовление стопоров, обеспечивающих удержание якоря в клюзе «по-походному» или

предназначенных для стоянки судна на якоре, и устройств для крепления и отдачи коренного конца якорной цепи.

- **3.5.3.2** При освидетельствовании согласно перечню инспектор должен руководствоваться требованиями табл. 3.2.4.
- 3.5.3.3 При контроле в действии проверяются легкость взаимного перемещения деталей, отсутствие перекосов и заклинивания (усилие на маховике не должно превышать 160 Н). Кроме того, выполняются пробная укладка цепи в фрикционный стопор и стопорение, заводка звена коренной смычки в устройство крепления и отдачи цепи.

3.6 ШВАРТОВНЫЕ УСТРОЙСТВА

3.6.1 Техническое наблюдение Регистра за изготовлением кнехтов, уток, киповых планок, клюзов, роульсов, стопоров и других устройств ограничивается рассмотрением и одобрением технической документации и выдачей соответствующих свидетельств.

3.7 БУКСИРНЫЕ УСТРОЙСТВА

- **3.7.1** Техническое наблюдение Регистра за изделиями и относящимися к ним деталями осуществляется согласно требованиям табл. 3.2.4.
- 3.7.2 При контроле в действии проверяется работа устройства для отдачи буксирного троса каждого буксирного гака при отсутствии тягового усилия. Замеряется усилие открывания рычага механического затвора, которое не должно превышать 50 H.
- **3.7.3** Испытания буксирных гаков проводятся в соответствии с приложением 4.
- 3.7.4 При периодической проверке признанное предприятие (изготовитель) должно обеспечить контроль качества на соответствующих этапах изготовления изделия, руководствуясь одобренной технической документацией.
- 3.7.5 Первый буксирный гак каждого типоразмера, изготовленный данным изготовителем, является головным. При техническом наблюдении за изготовлением головного образца буксирного гака и устройства для отдачи буксирного троса (см. 3.2.9) необходимо руководствоваться положениями, изложенными в приложении 4.
- **3.7.6** Техническое наблюдение Регистра за изготовлением битенгов, кнехтов, киповых планок, клюзов, стопоров, роульсов, уток, буксирных канифасблоков и буксирных арок ограничивается рассмотрением соответствующей технической документации.

3.7.7 Изделия, входящие в устройство для аварийной буксировки судна, испытываются по одобренной Регистром программе (см. 5.7 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов).

3.8 СИГНАЛЬНЫЕ МАЧТЫ

3.8.1 Техническое наблюдение Регистра за изготовлением мачт, металлического, деревянного рангоута и рангоута из стеклопластика, несъемных деталей мачт и их стоячего такелажа ограничивается рассмотрением соответствующей технической документации.

3.9 УСТРОЙСТВА И ЗАКРЫТИЯ ОТВЕРСТИЙ В КОРПУСЕ, НАДСТРОЙКАХ И РУБКАХ

- **3.9.1** Техническое наблюдение Регистра за изготовлением изделий осуществляется согласно требованиям табл. 3.2.4. При выполнении освидетельствований по перечню инспектор также осуществляет проверки согласно требованиям табл. 3.9.1.
- 3.9.2 При техническом наблюдении за изготовлением головных образцов изделий, кроме освидетельствований, предусмотренных в 3.9.1, должны проводиться испытания по одобренной программе, включающей проверку прочности, жесткости и водонепроницаемости.
- **3.9.2.1** Испытания иллюминаторов, дверей, люков сходных, световых и вентиляционных на прочность и водонепроницаемость проводятся гидростатическим напором согласно приложению 5.
- **3.9.2.2**¹ Испытания крышек люков сухогрузных трюмов на прочность и жесткость проводятся нагрузками, увеличенными на 25 % по сравнению с расчетными.

Водонепроницаемость проверяется согласно приложению 9 разд. 2 части V «Техническое наблюдение за постройкой судов» поливанием водой из брандспойта без нагрузки на люке.

- **3.9.2.3** Испытания крышек нефтеналивных судов на прочность, жесткость и непроницаемость проводятся гидростатическим давлением согласно приложению 9 к разд. 2 части V «Техническое наблюдение за постройкой судов».
- 3.9.2.4 Испытания на прочность крышек люков трюмов, предназначенных для перевозки как сухих, так и наливных грузов, проводятся нагрузкой, увеличенной на 10 % по сравнению с расчетной, определяемой согласно 7.13.3 части III «Устройства,

¹ Испытания на прочность и жесткость можно проводить в тех случаях, когда определение прочных размеров выполнено по апробированным методикам.

Таблица 3.9.1

		_																											
Отсеков нефтеналивных судов	22		+	-	+		+		+			+						+	+			+			+	+			
Крышки грузовых люков трюмов, трюмов, предназначенных мость с для перевозки как усуких, так и наливных грузов, обеспечивающих непроницаемость с помощью уплотнительных прокладок прокладок	21		+	-	+		+		+			+	-					+	+			+			+	* *		+	
Крышки Сухотрузных трюмов, обеспечивающих непроницаемость с помощью с обеспечивых непроницаемость с обеспечиов	. 1 0		+ 2	-	+		+		+			+	-					+	+			+			+	∞ +		+	
сухолруза обеспач непрони пом резентов	19		+																										
в котках в котках	H 8		+2	-	+		+		+			+	-		9+			+	+			+						+	
мользящие средства в пере-	2 7		+				+		+			+	-					+	+			+			+	+ 10		+	
звесиые тра-бру	н 91		+	-	+		+		+			+			+			+	+			+			+				
в котках се ения	H 2		+												+				+			+			+	6+			
борках деления в переборках деления на отсеки судина на отсеки соглание	2 4		+												+				+						+	6+			
ввесные Судн	н 5		+	-	+		+		+			+	-					+	+			+			+	6+			
эгчнилипилин	12 B		+	-	+		+		+			+	-					+	+			+			+	+			
He retobble	ء =		+	-	+		+		+			+	-					+	+			+			+	+			
ходиные	 -		+	-	+		+		+			+						+	+			+			+	+			
рери наружные в надстройках рубках			+	-	+		+		+			+	-					+	+			+			+	+			
вери в наружной обшивке Брпуса			+	-	+		+		+			+						+	+			+		۰	+				
элубные			+	-	+		+		+			+	-					+	+			+			+	+			
рамоутольные окна)			+	=	+		+		+			+	-					+	+			+			+	+			
Пли омина организация образования организация образования организация образования организация образования образов	0 &		+	-	+		+		+			+						+	+			+			+	+			
ормальные Д	Н 4		+		+		+		+			+						+	+			+			+	+			
іжелые	π ω		+		+		+		+			+						+	+			+			+	+			
Закрытий закрытий	2	Хапантон просонов	Аарактер проверок Отсутствие дефектов на поверх-	ностях металлических изделий	Отсутствие дефектов и повреждении	на раоочих поверхностях уплотни- тельных прокладок ³	Наличие скругления рабочих кромок	уплотнительных буртов	Прилегание уплотнительных про-	кладок к рабочим кромкам буртов в	закрытом, но не задраенном поло-	жении Совпаление рабочих кромок с	osponing production and opposite the constant opposite the constan	серединои уплотнительных про- кладок ⁵	Равномерность прилегания уплот-	нительной прокладки в задраенном	положении	Плотность укладки уплотнитель-	ных прокладок в пазах Плоскостность рам. крышек. поло-	тен в соответствии с указаниями	согласованной технологии	Глубина вдавливания уплотни-	тельных прокладок в задраеном			закрывания и задраивания Испытание непроницаемости	наливом воды под напором		ных швов
М п/п	-		-	•	7		es		4			v	,		9			_	œ			6			10	Ξ		12	

22	+
21	+
20	+ 12
19	
18	
17	
16	
15	
14	
13	
12	
11	
10	
6	
8	
7	
9	
5	
4	
3	
2	Конструктивные меры, исклю- чающие возможность искро- образования
1	13

Трещины, заусеницы, острые кромки, вмятины, раковины и другие дефекты не допускаются.

Металлические конструкции проверяются согласно разд. 2.

Грещины, раковины, наслоения, краска, масло не допускаются.

4 Непрерывность прилегания контролируется по меловому отпечатку и должна быть обеспечена при глубине вдавливания не более 1 мм, исключая закрытия, указанные в графах 7, 19, 20, площадью 15 м² и более.

Смещение уплотнительных буртов относительно оси прокладки должно соответствовать требованиям технической документации

Зазоры проверяются при помощи щупа или другими согласованными с Регистром методами.

Величина вмятия не должна превышать допустимых в технической документации размеров.

8 Если открывание дверей в наружной общивке корпуса и крышек грузовых люков предусмотрено в море, то наблюдение Регистра за изготовлением приводов осуществляется согласно разд. 5.
9 Испытываются на стенде давлением столба воды, указанным в технической документации; при испытании дверей с неметаллическими уплотнениями подтеки не допускаются, для дверей с металлическими уплотнениями норма фильтрации воды допускается не более 1 л/мин.

Вместо испытаний для больших дверей может быть выполнен их структурный анализ. В этом случае при использовании неметаллических уплотнений для последних должны быть проведены Испытывается на стенде давлением столба воды, указанным в технической документации; норма фильтрации воды при испытании столбом воды допускается не более 10 л в минуту. испытания прототипа, подтверждающие, что сжатие уплотнительного материала согласуется с соответствующей величиной прогиба, определенного в результате структурного анализа.

1 Только для грузовых люков сухогрузных трюмов, приспособленных для перевозки опасных грузов (см. 7.10.8.6 части III «Устройства, оборудование и снабжение» Правил классификации и 11 Перекосы и заклинивания не допускаются; усилие на маховике при подъеме (опускании) крышки вручную при применении дополнительного инструмента и приспособлений не должно

постройки морских судов).

оборудование и снабжение» Правил классификации и постройки морских судов.

Испытания на непроницаемость проводятся поливанием воды из брандспойта согласно приложению 9 к разд. 2 части V «Техническое наблюдение за постройкой судов» и надувом воздуха давлением, равным максимальному давлению срабатывания дыхательных клапанов.

- **3.9.2.5** После испытаний в деталях изделий не должно быть остаточных деформаций и разрушений, для чего проводится освидетельствование наружным осмотром с разборкой изделий в необходимых случаях.
- **3.9.3** Техническое наблюдение Регистра за изготовлением вентиляционных раструбов и крышек горловин цистерн корпуса ограничивается рассмотрением соответствующей технической документации.

3.10 УСТРОЙСТВО И ОБОРУДОВАНИЕ ПОМЕЩЕНИЙ, РАЗЛИЧНЫЕ УСТРОЙСТВА И ОБОРУДОВАНИЕ, АВАРИЙНОЕ СНАБЖЕНИЕ

- **3.10.1** Техническое наблюдение Регистра ограничивается рассмотрением соответствующей технической документации на изготовление перечисленных ниже изделий:
- .1 настила, рыбинсов, обшивки грузовых трюмов, дверей судовых помещений на путях эвакуации, наклонных и вертикальных трапов, леерного ограждения, фальшборта и переходных мостиков, направляющих элементов в трюмах контейнеровозов;
- .2 временных разборных разделительных продольных и поперечных переборок и питателей, служащих для разделения и ограничения в продольном и поперечном направлениях трюмов (твиндеков) при перевозке зерновых грузов, опасных в отношении смещения; стоек, распорок, тросов штагов, несъемных и съемных деталей штагов;
- .3 мягких и жестких пластырей со снаряжением, инструмента и инвентаря, материалов аварийного снабжения;
- .4 усилений фальшборта или леерного устройства, гнезд и других приспособлений для крепления стоек и стензелей для крепления палубного лесного груза, рымов, найтовов.

Виды проверок, контроля и осмотров при освидетельствовании устанавливает предприятие (изготовитель) в соответствии с одобренной технической документацией.

3.10.2 Ответственные изделия устройств для крепления перемещаемых палуб, платформ, рамп и других аналогичных конструкций, а также для подъемных устройств судовых барж, поднимаемых на борт баржевоза (проушины, обухи, рамы, скобы, захваты и т. п.), должны быть определены

предприятием (изготовителем) на основании одобренной технической документации и включены в перечень объектов. Кроме того, при необходимости должны быть учтены дополнительные проверки.

По результатам технического наблюдения за головными образцами изделий, осуществляемого инспектором, уточняется объем и характер освидетельствований и проверок серийных изделий.

3.11 ЦЕПИ БЕЗ РАСПОРОК, ПРИМЕНЯЕМЫЕ В СУДОВЫХ УСТРОЙСТВАХ, КРОМЕ ЯКОРНЫХ

- 3.11.1 Техническому наблюдению подлежат цепи без распорок, применяемые в грузоподъемных, рулевых и других судовых устройствах, являющихся объектами технического наблюдения Регистра (кроме якорных). Их изготовление должно производиться по стандартам или иной технической документации, одобренным Регистром.
- 3.11.2 Техническое наблюдение Регистра за цепями, включая относящиеся к ним детали, осуществляется согласно табл. 3.2.4. Дополнительно к требованиям таблицы и с учетом метода изготовления изделий и их конструкции выполняются проверки, предписываемые требованиями 3.5.2.2 3.5.2.4. Если отдельные требования этих пунктов отличаются от одобренных стандартов (или технической документации), надлежит руководствоваться последними.
- **3.11.3** Испытательные нагрузки и указания по отбору образцов для испытаний приведены в 7.1.4 части XIII «Материалы» Правил классификации и постройки морских судов.

3.12 СТАЛЬНЫЕ ТРОСЫ

- **3.12.1** Освидетельствование стальных тросов, входящих в перечень объектов, следует проводить, применяя технические требования действующих государственных стандартов на стальные канаты.
- **3.12.2** Обязательному испытанию на разрыв в целом подлежат стальные канаты ответственного назначения, предназначенные для подъема, спуска и транспортировки людей и грузов.

Такие испытания должны проводиться при освидетельствовании головных образцов и периодически один раз в 2 года или при оформлении и периодическом подтверждении Соглашения об освидетельствовании (один раз в два года), если при осуществлении технического наблюдения не возникнет необходимости внеочередного испытания.

3.12.3 Канаты, не перечисленные в 3.12.2 и входящие в перечень объектов, могут подвергаться

испытаниям на разрыв в целом только при техническом наблюдении за изготовлением их образцов.

- **3.12.4** Определение разрывного усилия каната в целом должно производиться на испытательных машинах, прошедших надлежащую проверку, подтверждаемую соответствующими документами компетентных органов.
- **3.12.5** Взамен требований 3.12.1 3.12.3 могут быть применены требования национальных стандартов, согласованные с Регистром.

3.13 РАСТИТЕЛЬНЫЕ ТРОСЫ И ТРОСЫ ИЗ СИНТЕТИЧЕСКОГО ВОЛОКНА (КАНАТЫ)

- **3.13.1** При освидетельствовании (согласно перечню объектов) дополнительно к требованиям табл. 3.2.4 проверяются:
- .1 документы компетентных органов на испытательные машины;
- .2 правильность комплектования партий и отбора проб для проведения испытаний;

- .3 отсутствие на тросах бурых пятен, плесени, запаха гнили или гари, а также подплавленных участков;
- .4 цвет тросов, который должен быть равномерным по всей длине и соответствовать цвету пряжи или синтетического материала, из которого сделан трос;
- .5 наличие отличительных цветных ниток или каболок, указывающих на группу прочности и обработку, если таковые предусмотрены стандартом;
 - .6 размер троса по окружности;
 - .7 свивка тросов;
 - .8 разрывное усилие в целом;
 - .9 документы о массе и о содержании влаги в них;
- .10 относительное удлинение при разрыве троса из синтетического волокна.
- 3.13.2 При техническом наблюдении за изготовлением головных образцов тросов, кроме освидетельствований, предусмотренных в 3.13.1, проводится испытание образцов тросов по программе, одобренной подразделением Регистра. В программу должно быть включено экспериментальное определение коэффициента (см. приложение 6).

ПРИЛОЖЕНИЕ 1

ДОПУСТИМЫЕ ВЕЛИЧИНЫ ПОРОКОВ НА ЛИТЫХ ДЕТАЛЯХ ЯКОРЕЙ

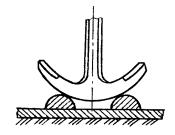
- **1.** Пологие вмятины и шероховатости глубиной менее 3 % толщины отливки, но не более 5 мм.
- **2.** Отдельные земляные, шлаковые и газовые раковины диаметром менее 5 мм и глубиной менее 5 % толщины тела отливки, но не более 8 мм, причем количество их должно быть не более 3 шт. на площади 100 cm^2 .
- **3.** Ужимины длиной менее 200 мм и глубиной менее 2 мм.
- 4. Смещения поверхностей без плавного перехода от одной поверхности к другой для якорей массой до 500 кг менее 3 мм, для якорей массой свыше 500 кг и до 5000 кг менее 5 мм, для якорей свыше 5000 кг менее 8 мм.
- **5.** Общая суммарная площадь раковин, вмятин, ужимин и прочего не должна быть более 5 % площади поверхности детали.

ПРИЛОЖЕНИЕ 2

ИСПЫТАНИЕ ЯКОРЕЙ И ИХ ДЕТАЛЕЙ БРОСАНИЕМ

1. Все литые или сварные якоря или их детали должны испытываться бросанием на стальную плиту толщиной не менее 100 мм. Высота сбрасывания указана в таблице.

Лапы якорей Холла, Грузона, повышенной и высокой держащей силы сбрасываются на плиту пяткой, а веретено якорей Холла, Грузона, повы-


Таблица

Масса якоря, кг	Высота сбрасывания (измеряется от плиты до нижней кромки якоря или его детали), м
m < 750	4,5
$750 \le m \le 1500$	4,0
$1500 \le m \le 5000$	3,5
$m \ge 5000$	3,0

шенной и высокой держащей силы, а также веретено с лапами адмиралтейского якоря — в горизонтальном положении.

- 2. Каждое литое или сварное веретено с лапами адмиралтейского якоря должно быть, кроме того, подвешено в вертикальном положении лапами вниз и сброшено на две стальные болванки, положенные на плиту таким образом, чтобы расстояние между ними составляло половину величины развала лап (см. рис.). Толщина болванок должна быть такой, чтобы пятка веретена не могла удариться о плиту.
- **3.** После испытания на бросание якоря или их детали должны подвешиваться и обстукиваться молотком массой не менее 3 кг, при этом должен получаться чистый металлический звук.

При нечистом звуке должна быть произведена дефектоскопия детали методом неразрушающего контроля, при необходимости — исправление дефектов, после чего должно быть проведено повторное испытание.

ПРИЛОЖЕНИЕ 3

ИСПЫТАНИЕ НА РАСТЯЖЕНИЕ ПРОБНОЙ НАГРУЗКОЙ ЯКОРЕЙ И ЯКОРНЫХ СКОБ

1. Каждая литая якорная скоба должна быть испытана без якоря с закрепленным в скобе нештатным штырем пробной нагрузкой F_2 , H:

$$F_2 = 2F_1$$
,

где F_1 — пробная нагрузка для якоря, определенная согласно таблице и указанная в технических требованиях чертежа.

Это испытание в отдельных случаях разрешается проводить выборочно в количестве 5 % от партии, но не менее двух скоб.

Партией считаются скобы, изготовленные из одной марки стали, прошедшие либо совместную термообработку или термообработку по одинаковому режиму с обязательным фиксированием температур. При испытании пробной нагрузкой не должно наблюдаться трещин и остаточных деформаций.

Если на конкретный вид изделия были получены удовлетворительные результаты упомянутых выше испытаний пробной нагрузкой и оформлено СПИ, то допускается:

- **.1** испытания якорных скоб пробной нагрузкой проводить совместно с якорем (см. п. 2);
- .2 испытания якорных скоб на растяжение пробной нагрузкой, равной удвоенной величине пробной нагрузки для якоря, проводить только при подтверждении СПИ.
- 2. Каждый якорь, независимо от способа его изготовления, должен испытываться на растяжение пробной нагрузкой на специальном цепопробном стане или подвешиванием груза к лапам. До предъявления к испытаниям якоря не должны подвергаться нагрузке.

3. Якоря Холла, Грузона, повышенной и высокой держащей силы должны испытываться одновременно захватом за обе лапы (см. рис. 1) с поворотом сначала в одну сторону, а затем в другую.

Рис

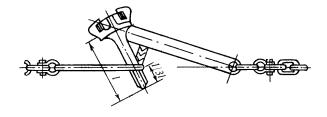


Рис. 1

4. Якоря адмиралтейские должны испытываться последовательно за каждую лапу (см. рис. 2). Испытание допускается проводить как со штоком, так и без него.

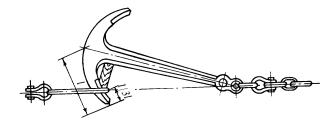


Рис. 2

Таблица

Масса якоря, кг	Пробная нагрузка, кН	Масса якоря, кг	Пробная нагрузка, кН	Масса якоря, кг	Пробная нагрузка, кН	Масса якоря, кг	Пробная нагрузка, кН
50	23,2	1250	239	5000	661	12500	1130
55	25,2	1300	247	5100	669	13000	1160
60	27,1	1350	255	5200	677	13500	1180
65	28,9	1400	262	5300	685	14000	1210
70	30,7	1450	270	5400	691	14500	1230
/0	30,7	1430	270	3400	091	14300	1230
75	32,4	1500	278	5500	699	15000	1260
80	33,9	1600	292	5600	706	15500	1270
90	36,3	1700	307	5700	713	16000	1300
100	39,1	1800	321	5800	721	16500	1330
120	44,3	1900	335	5900	728	17000	1360
120	1 1,5	1,000	333	2700	720	17000	1500
140	49,0	2000	349	6000	735	17500	1390
160	53,3	2100	362	6100	740	18000	1410
180	57,4	2200	376	6200	747	18500	1440
200	61,3	2300	388	6300	754	19000	1470
225	65,8	2400	401	6400	760	19500	1490
	·						
250	70,4	2500	414	6500	767	20000	1520
275	74,9	2600	427	6600	773	21000	1570
300	79,5	2700	438	6700	779	22000	1620
325	84,1	2800	450	6800	786	23000	1670
350	88,8	2900	462	6900	794	24000	1720
	·						
375	93,4	3000	474	7000	804	25000	1770
400	97,9	3100	484	7200	818	26000	1800
425	103	3200	495	7400	832	27000	1850
450	107	3300	506	7600	845	28000	1900
475	112	3400	517	7800	861	29000	1940
500	116	3500	528	8000	877	30000	1990
550	124	3600	537	8200	892	31000	2030
600	132	3700	547	8400	908	32000	2070
650	140	3800	557	8600	922	34000	2160
700	149	3900	567	8800	936	36000	2250
750	158	4000	577	9000	949	38000	2330
800	166	4100	586	9200	961	40000	2410
850	175	4200	595	9400	975	42000	2490
900	182	4300	604	9600	987	44000	2570
950	191	4400	613	9800	998	46000	2650
1000	199	4500	622	10000	1010		
1050	208	4600	631	10500	1040		
1100	216	4700	638	11000	1070		
1150	224	4800	645	11500	1090		
1200	231	4900	653	12000	1110		

Примечания: 1. Пробная нагрузка для промежуточного значения массы якоря определяется линейной интерполяцией. 2. Для якорей повышенной держащей силы пробная нагрузка выбирается по массе якоря, увеличенной на 35 %. 3. Для якорей высокой держащей силы пробная нагрузка выбирается по удвоенной массе якоря.

- **5.** Во всех случаях пробная нагрузка прикладывается с одной стороны к штатной скобе, а с другой к лапам (у якорей Холла, Грузона, повышенной и высокой держащей силы) или к лапе (у адмиралтейских якорей) на расстоянии 1/3 длины лап (*l*), считая от носка (см. рис. 1 и 2).
- **6.** Перед испытанием на растяжение на веретене якоря у скобы, а также на носке каждой лапы ставится по одному керну. Затем якоря Холла, Грузона, повышенной и высокой держащей силы подвергаются предварительному растяжению в течение 5 мин нагрузкой, равной $0.5F_1$.

Далее нагрузка снижается до $0.1F_1$ и производится замер расстояний между кернами. После этого нагрузка доводится до пробной и выдерживается в течение 5 мин. Затем она снижается до $0.1F_1$ и производится повторный замер расстояний между кернами. Если приращение расстояния между кернами превышает 1.0~% первоначального расстояния, якорь бракуется.

Для адмиралтейских якорей предварительное растяжение не производится. Расстояние между кернами измеряется до и после приложения пробной нагрузки, а сама нагрузка должна действовать в течение 5 мин. Никаких остаточных деформаций не допускается.

- 7. После испытания пробной нагрузкой якорей Холла, Грузона, повышенной и высокой держащей силы должно быть проверено свободное проворачивание их лап на полный угол. При затруднительном проворачивании лап или проворачивании их на неполный угол необходимо устранить дефекты и повторить испытание снова. Результаты повторного испытания считаются окончательными.
- 8. После испытания пробной нагрузкой все якоря должны подвергаться осмотру с целью установления отсутствия в них дефектов, а также взвешиванию, которое разрешается производить выборочно в количестве 5 % от каждой партии, но и не менее двух якорей. Партией считаются якоря одного типоразмера, изготовленные по одной модели в количестве не менее 5 шт.

ПРИЛОЖЕНИЕ 4

ИСПЫТАНИЯ БУКСИРНЫХ ГАКОВ

1. Образец устройства для отдачи буксирного троса должен быть испытан на надежность срабатывания в диапазоне нагрузок на гак от нуля до тройной номинальной тяги при любом практически возможном отклонении буксирного троса от диаметральной плоскости судна.

При нагрузках на гак, равных номинальной, двойной и тройной тягам, усилия на рычаге отдачи механического затвора не должны превышать значений, соответственно, 117, 176 и 392 Н.

Испытания на прочность гаков должны быть проведены при пробной нагрузке, равной разрывному усилию буксирного троса в целом.

Указанное выше может быть выполнено при испытаниях опытных образцов, которые должны проводиться по программе, одобренной Регистром. Испытанные гаки и их детали не устанавливаются на суда.

- **2.** Головные образцы буксирных гаков должны быть испытаны:
- .1 на прочность пробной нагрузкой, равной двойному номинальному усилию; время выдержки под нагрузкой должно быть не менее 10 мин;
- **.2** на надежность открытия устройства для отдачи буксирного троса под нагрузкой; испытание проводится при нагрузках, равных номинальному и двойному тяговому усилию.

Усилия на рычаге отдачи механического затвора не должны превышать значений, полученных при испытаниях образцов.

Испытанный таким образом гак допускается к установке на судно. Если усилия на рычаге превышают значения, полученные при испытаниях, но не более предельно допустимых, надежность открытия устройства для отдачи буксирного троса проверяется при нагрузке, равной тройному тяговому усилию. В этом случае головной гак к установке на судно не допускается;

- .3 на срабатывание амортизатора; предельная нагрузка амортизирующего действия должна быть не менее 1,3 номинальной тяги на гаке.
- 3. Каждый буксирный гак перед установкой на судно должен быть испытан на прочность нагрузкой, равной двойной номинальной, и на надежность открытия устройства для отдачи буксирного троса под нагрузкой, равной номинальной. Усилие на рычаге отдачи механического затвора не должно превышать значения, полученного при испытаниях головного образца и указанного в технической документации.
- **4.** При проведении испытаний гаков не должно быть деформаций и разрушений каких-либо элементов гака.

ПРИЛОЖЕНИЕ 5

ИСПЫТАНИЯ ГОЛОВНЫХ ОБРАЗЦОВ ИЛЛЮМИНАТОРОВ, ДВЕРЕЙ НАДСТРОЙКИ И РУБКИ, ЛЮКОВ СХОДНЫХ, СВЕТОВЫХ И ВЕНТИЛЯЦИОННЫХ

- 1. Указанные изделия должны подвергаться испытаниям гидростатическим напором для проверки водонепроницаемости и механической прочности.
- 2. Испытания проводят следующим образом: изделие устанавливается на стенде и закрепляется в рабочем положении, в камере стенда постепенно с помощью механического или ручного насоса создается расчетный и испытательный напоры, измеряемые по манометру. Регулирование подачи воды и фиксирование испытательных давлений в камере стенда производится запорным клапаном.
- **3.** Иллюминаторы испытываются напором, определяемым по следующим формулам:

для круглых иллюминаторов

$$P = 1.6 \cdot 10^2 t^2 / d^2; \tag{3.1}$$

для прямоугольных иллюминаторов (рубочных окон)

$$P = 1,25 \cdot 10^4 t^2 / (k^2 b^2), \tag{3.2}$$

где d — диаметр в свету круглого иллюминатора, мм;

- Р гидростатический напор, МПа;
 - b меньший из размеров в свету прямоугольного иллюминатора;
 - t толщина закаленного стекла иллюминатора, мм;
 - a больший из размеров в свету прямоугольного иллюминатора, мм;
 - *k* коэффицент, определяемый по таблице:

Для промежуточных значений величины a/b коэффицент k определяется линейной интерполяцией.

Круглые иллюминаторы испытываются со стеклом и с открытой штормовой крышкой, а также без стекла и с закрытой штормовой крышкой.

- **4.** Образцы закаленных стекол для иллюминаторов должны испытываться или методом штампа по Стандарту ИСО № 614, или гидростатическим напором, равным удвоенной величине напора.
- 5. Двери в надстройки и рубки испытываются напором на 15 % больше расчетного напора, принятого для данной двери (см. 7.5.2.3 части ІІІ «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов) в технической документации, одобренной Регистром.
- **6.** Люки сходные, световые и вентиляционные испытываются напором на 15 % больше расчетного (допустимого) напора, указанного в одобренной Регистром технической документации.
- 7. Изделие считается непроницаемым, если на его поверхности при испытании расчетным гидростатическим напором в течение 5 мин не будет обнаружена течь в виде струй, потеков и капель.
- **8.** Изделие считается прочным, если после сброса испытательного напора не будет остаточных деформаций и разрушений.

a/b	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0 и более
k	8,45	9,18	9,66	10,4	10,62	11,02	11,35	11,7	11,94	12,16	12,32

ПРИЛОЖЕНИЕ 6

ИСПЫТАНИЯ РАСТИТЕЛЬНЫХ ТРОСОВ И ТРОСОВ ИЗ СИНТЕТИЧЕСКОГО ВОЛОКНА

1. Образцы для испытания на разрыв троса в целом должны отбираться из партии тросов длиной не более 2000 м — для растительных тросов и длиной не более 5000 м — для тросов из синтетического волокна.

От каждой партии удаляют конец троса длиной не менее 2 м и затем отрезают образцы для испытания.

Перед испытанием образцы тросов выдерживают в развернутом виде в течение 24 ч в атмосферных условиях.

2. Размер троса по окружности, если он равен 500 мм и более, определяют стальной рулеткой с шириной ленты не более 5 мм, если же размер меньше 50 мм, его определяют обмером сечения штангенциркулем.

Для определения размера по окружности на длине троса производят 10 замеров в разных местах. Среднее арифметическое 10 замеров принимается за размер окружности троса.

3. Растительные тросы должны быть свиты из каболок одного и того же материала. Исключение допускается для манильских тросов, которые могут содержать в своем составе до 50 % каболок из сизальского волокна.

4. Определение разрывной нагрузки троса в пелом.

4.1 Расстояние между зажимами на разрывной машине для растительных тросов окружностью до 65 мм и синтетических тросов должно быть 0,5 м, для тросов окружностью более 65 мм — 1,0 м.

Скорость движения зажимов разрывной машины не должна превышать 250 мм/мин для синтетических тросов и 300 мм/мин — для растительных тросов.

На испытываемый образец наносятся метки, симметрично расположенные от центра образца на расстоянии друг от друга не менее 300 мм.

За разрывную нагрузку принимают результат, полученный при разрыве троса между метками.

Если разрыв образца троса произойдет в зажимах разрывной машины или в сплеснях огона (если последние применяются), то испытание должно быть повторено.

Разрывная нагрузка троса в целом должна соответствовать требованиям одобренной технической документации.

$$F = c \left(\sum_{1}^{z} \Delta F \right) n/z, \tag{4.2}$$

где n — число всех каболок в тросе;

- 2 число каболок, подвергнутых испытанию на разрыв. Это число должно быть не менее 0,5n для тросов окружностью до 80 мм, 0,3n для тросов окружностью от 80 до 115 мм и 0,1n для тросов окружностью более 115 мм. Каболки должны быть взяты от всех прядей в равном количестве:
- ΔF разрывное усилие каждой каболки, подвергнутой испытанию, H;
 - c коэффицент, определяемый на основании результатов испытаний головных образцов троса и периодически подтверждаемый.

В каболках при испытаниях должна быть сохранена первоначальная свивка.

Каболки из прядей троса для определения разрывной нагрузки отбирают раскручиванием пряди, зажатой по концам, до параллельности каболок.

Суммарную разрывную нагрузку троса по каболкам, составляющим трос, определяют испытанием на разрывную нагрузку 50 % каболок, отобранных от всех прядей.

Расстояние между зажимами на разрывной машине при испытании каболок должно быть равным 1,0 м.

Скорость движения зажимов на разрывной машине не должна превышать 300 мм/мин. Если разрыв испытуемых каболок произойдет в зажимах или результат будет ниже среднего показателя, предусмотренного технической документацией, то испытание считается недействительным.

4.3 При проведении испытания тросов из синтетического волокна одновременно определяется его относительное удлинение при разрыве.

Относительное удлинение троса при разрыве δ_{cp} , %, вычисляется по формуле

$$\delta_{\rm cp} = \frac{l_{\rm p} - l}{l} \cdot 100,\tag{4.3}$$

где *l* — первоначальная длина испытываемого участка образца троса, см;

 $l_{\rm p}$ — длина этого же участка троса под нагрузкой, равной разрывному усилию троса в целом, предусмотренному стандартом, см.

4 МАТЕРИАЛЫ, КОНСТРУКЦИИ И ИЗДЕЛИЯ ПРОТИВОПОЖАРНОЙ ЗАЩИТЫ

4.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **4.1.1** Положения настоящего раздела применяются при техническом наблюдении за изготовлением материалов, конструкций и изделий противопожарной защиты, перечисленных в Номенклатуре РС.
- **4.1.2** Настоящий раздел определяет объем и порядок технического наблюдения за изготовлением материалов, конструкций и изделий противопожарной защиты судов и охватывает:
- **.1** материалы, конструкции и изделия конструктивной противопожарной защиты;
- **.2** изделия систем пожаротушения, противопожарного снабжения и огнетушащие вещества.
- **4.1.3** Общие положения по организации технического наблюдения за изготовлением материалов, конструкций и изделий противопожарной защиты приведены в части I «Общие положения по техническому наблюдению», по технической документации в части II «Техническая документация».
- 4.1.4 Техническое наблюдение за изготовлением материалов, конструкций и изделий противопожарной защиты проводится на предприятии (изготовителе) при наличии заявок согласно разд. 4 части І «Общие положения по техническому наблюдению» или соглашению, заключенному между Регистром и предприятием (изготовителем).
- 4.1.5 Термины, определения и сокращения приведены в части І «Общие положения по техническому наблюдению» Правил и в части VI «Противопожарная защита» Правил классификации и постройки морских судов.
- 4.1.6 На материалы и изделия противопожарной защиты Регистром выдаются Свидетельства о типовом одобрении (СТО), а на противопожарные конструкции Свидетельства о типовом одобрении противопожарной конструкции (СТПК) согласно разд. 6 части I «Общие положения по техническому наблюдению».
- 4.1.7 При техническом наблюдении за изготовлением материалов, конструкций и изделий противопожарной защиты может применяться Руководство по альтернативным конструкциям, мерам и устройствам для противопожарной безопасности ИМО (см. 1.7 части VI «Противопожарная защита» Правил классификации и постройки морских судов).

4.2 МАТЕРИАЛЫ, КОНСТРУКЦИИ И ИЗДЕЛИЯ КОНСТРУКТИВНОЙ ПРОТИВОПОЖАРНОЙ ЗАЩИТЫ

- 4.2.1 Техническое наблюдение за изготовлением материалов и изделий конструктивной противопожарной защиты проводится с целью подтверждения их соответствия применимым требованиям разд. 1.6 и 2.1 части VI «Противопожарная защита» Правил классификации и постройки морских судов и Кодекса процедур огневых испытаний с дополнениями (см. 1.2 части VI «Противопожарная защита» Правил классификации и постройки морских судов).
- 4.2.2 Изделия конструктивной противопожарной защиты (такие как двери, заслонки противопожарные систем вентиляции, устройства автоматического закрытия противопожарных дверей) дополнительно к огневым испытаниям проверяются на работоспособность по одобренной Регистром программе.
- **4.2.3** При одобрении материалов, конструкций и изделий конструктивной противопожарной защиты Регистром рассматривается, по меньшей мере, следующее:
- .1 техническая документация, включая описания материала/чертежи конструкции или изделия;
- **.2** инструкции по применению материала/ изготовлению конструкции/установке изделия;
- .3 протоколы проведения огневых испытаний, выполненных в признанных PC испытательных лабораториях. Содержание протоколов испытаний должно быть таким, как указано в соответствующих методиках испытаний. Протокол испытаний, как правило, является собственностью заказчика проведения испытаний.
- **4.2.4** После любой существенной модификации материала/конструкции/изделия одобрение РС утрачивает силу. Одобрение материала/конструкции/изделия после существенной модификации выполняется в установленном РС порядке.
- 4.2.5 Изготовители материалов, конструкций и изделий конструктивной противопожарной защиты должны иметь систему контроля качества, проверенную компетентными организациями, для обеспечения постоянного соответствия условиям одобрения типа. Альтернативно Регистр может использовать процедуры окончательной проверки материала/конструкции/изделия на соответствие типовому одобрению перед их установкой на судно.
- **4.2.6** В отдельных случаях РС может производить разовое одобрение материала/конструкции/изделия без выдачи СТО/СТПК. Такое разовое одобрение действительно только для конкретного судна.

- **4.2.7** В СТО/СТПК на материалы, конструкции и изделия конструктивной противопожарной защиты включается, по меньшей мере, следующее:
- **.1** наименование или торговое наименование материала/конструкции/изделия;
- .2 подробное описание материала/конструкции/ излелия:
- **.3** классификация материала/конструкции/ изделия и любые ограничения в его использовании;
- **.4** используемая(ые) методика(и) испытаний в соответствии с Кодексом процедур огневых испытаний;
- .5 номер и дата выдачи протокола(ов) испытаний, наименование и адрес лаборатории, в которой проводились испытания.

4.3 ИЗДЕЛИЯ СИСТЕМ ПОЖАРОТУШЕНИЯ, ПРОТИВОПОЖАРНОГО СНАБЖЕНИЯ И ОГНЕТУШАЩИЕ ВЕЩЕСТВА

- 4.3.1 Техническое наблюдение за изготовлением изделий систем пожаротушения, противопожарного снабжения и огнетушащих веществ проводится с целью подтверждения их соответствия требованиям разд. 3 и 5 части VI «Противопожарная защита» Правил классификации и постройки морских судов.
- **4.3.2** Техническое наблюдение за изготовлением изделий систем пожаротушения, противопожарного снабжения и огнетушащих веществ производится в соответствии с одобренной Регистром технической документацией, разработанной предприятием

- (изготовителем) на основании применимых международных и/или национальных стандартов в области пожарной безопасности.
- 4.3.3 Техническое наблюдение за изготовлением составных частей систем пожаротушения и противопожарного снабжения, таких как насосы, арматура, гибкие соединения, баллоны, электрооборудование, системы управления и др., проводится в соответствии с применимыми разделами настоящей части. В том числе проверяются характеристики изделий, подтверждающие их работоспособность в судовых условиях (стойкость к воздействию морской среды, взрывозащищенное исполнение и т. п.).
- 4.3.4 Испытания изделий/огнетушащих веществ проводятся по одобренной Регистром программе или по методикам ИМО (см. табл. 4.3.6) с целью подтверждения их соответствия характеристикам, приведенным в одобренной технической документации.
- 4.3.5 При одобрении изделий/огнетушащих веществ может быть принято во внимание наличие документов, выданных организациями, компетентными в области пожарной безопасности, или результаты испытаний, проведенных при участии данных организаций, которыми подтверждается возможность использования изделий/огнетушащих веществ для борьбы с пожарами.
- **4.3.6** Техническое наблюдение за изготовлением изделий/огнетушащих веществ, для которых ИМО разработаны документы, производится в соответствии с этими документами согласно табл. 4.3.6 в зависимости от случая.

Таблица 4.3.6

№	Изделие/огнетушащее вещество	Документы ИМО
п/п		
1	Любые	Международный кодекс по системам противопожарной безопасности (резолюция MSC.98(73))
2	Газовые системы пожаротушения, кроме углекислотных	Пересмотренное руководство по одобрению эквивалентных стационарных газовых систем пожаротушения, в соответствии с Конвенцией СОЛАС-74, для машинных помещений и
	тушения, кроме углекислотных	пожаротушения, в соответствии с конвенциси соотас-74, для машинных помещении и грузовых насосных отделений (циркуляр MSC/Circ.848)
3	Системы водораспыления	Рекомендация по стационарным системам пожаротушения для грузовых помещений специальной категории (резолюция А.123(V)), Пересмотренная методика для эквивалентных систем пожаротушения на основе воды для машинных помещений категории А и грузовых
		насосных отделений (циркуляр MSC/Circ.728), Альтернативные устройства для хладоновых систем пожаротушения в машинных помещениях и насосных отделениях (циркуляр MSC/
		Circ.668), Руководство по одобрению альтернативных систем пожаротушения на основе воды для использования в помещениях специальной категории (циркуляр MSC/Circ.914)
4	Спринклерные системы	Пересмотренное руководство по одобрению спринклерных систем, эквивалентных системам, упомянутым в правиле II-2/12 Конвенции СОЛАС-74 (резолюция A.800(19))
5	Стационарные системы пожаротушения местного применения	Пересмотренное руководство по одобрению стационарных систем пожаротушения местного применения на основе воды для применения в машинных помещениях категории A (циркуляр MSC/Circ.913)
6	Системы аэрозольного пожаротушения	Руководство по одобрению стационарных аэрозольных систем пожаротушения, эквивалентных стационарным газовым системам пожаротушения, указанным в Конвенции СОЛАС-74, для машинных помещений (циркуляр MSC/Circ.1270)
7	Переносные огнетушители	Пересмотренное руководство по морским переносным огнетушителям (резолюция А.951(23))
8	Пенообразователи	Пересмотренное руководство по проведению испытаний, критериям оценки и освидетельствованию пенообразователей для стационарных систем пожаротушения (циркуляр MSC.1/Circ.1312), Руководство по характеристикам, критериям испытаний и освидетельствованиям пенообразователей пены средней кратности (циркуляр MSC/Circ.798), Руководство по характеристикам, критериям испытаний и освидетельствованиям пенообразователей пены
		высокой кратности (циркуляр MSC/Circ.670)

- **4.3.7** Испытания по методикам в соответствии с руководствами ИМО проводятся, как правило, признанными Регистром испытательными лабораториями.
- **4.3.8** Испытание систем пожаротушения пробным давлением проводится в соответствии с табл. 3.13.1 части VI «Противопожарная защита» Правил классификации и постройки морских судов.
- 4.3.9 Головные образцы лафетных стволов испытываются на кратность пенообразования и дальность подачи воды, пены или порошка при различных углах возвышения. Длина струи должна соответствовать требованиям технической документации. При испытаниях замеряются давление перед стволом и расход воды, раствора пенообразователя или порошка.
- **4.3.10** При освидетельствовании спринклерных головок проверяется температура вскрытия около 3 % из партии, но не менее трех штук.
- 4.3.11 При освидетельствовании предохранительных мембран клапанов баллонов систем углекислотного пожаротушения высокого давления испытываются на разрыв 3 6 % мембран от партии в соответствии с требованием 3.8.2.6.1 части VI «Противопожарная защита» Правил классификации и постройки морских судов.

- 4.3.12 При испытаниях головных образцов генераторов высокократной пены проверяются давление раствора на входе в генератор, кратность пены и производительность генератора на рекомендуемом пенообразователе, а также автоматическое и ручное управление устройством, закрывающим выходное отверстие генератора.
- **4.3.13** При испытаниях головных образцов огнетушителей проверяются продолжительность подачи огнетушащего вещества, длина струи и огнетушащая способность при тушении модельного очага пожара соответствующего класса.
- **4.3.14** При испытаниях головных образцов переносных пенных генераторов проверяются расход раствора пенообразователя, давление на входе в генератор, кратность пены, дальность и высота подачи пены, заполнение пеной всего контура сетки генератора.

Каждый генератор должен быть испытан на прочность при гидравлическом давлении 0.9 - 1.0 МПа в течение не менее 2 мин.

4.3.15 При испытаниях головных образцов переносных пенных комплектов проверяются производительность по пене и кратность пенообразования при давлении у эжектирующего устройства около 0,3 МПа, а также дальность подачи пены при максимальном давлении.

5 МЕХАНИЗМЫ

5.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **5.1.1** Положения настоящего раздела применяются при техническом наблюдении за созданием и производством механизмов, перечисленных в Номенклатуре РС.
- **5.1.2** Раздел устанавливает порядок технического наблюдения за изготовлением вышеуказанных объектов технического наблюдения на предприятии (изготовителе).
- **5.1.3** Общие положения по организации технического наблюдения за изготовлением упомянутых объектов приведены в части I «Общие положения по техническому наблюдению», по технической документации в части II «Техническая документация».
- **5.1.4** В настоящем разделе приняты следующие определения и сокращения.

Наружный осмотр — осмотр детали, материала, оборудования; проверка сопровождающих документов, выданных в соответствии с принятой формой наблюдения при изготовлении, и другой документации, определяющей соответствие

объектов технического наблюдения одобренной технической документации, например: результаты обмеров, наличие клейм (если они предусмотрены), результаты дефектоскопии и т. п.

По результатам наружного осмотра определяется возможность продолжения процесса изготовления (обработки), монтажа, гидравлического испытания и т. п.

ДВС — двигатель внутреннего сгорания;

ГТЗА — главный турбозубчатый агрегат;

ГТУ — газотурбинная установка;

ГТД — газотурбинный двигатель;

БЗК — быстрозапорный клапан;

ДАУ — дистанционное автоматическое управление:

ДУ — дистанционное управление;

КВД — компрессор высокого давления;

КНД — компрессор низкого давления;

ТВ — турбина высокого давления;

ТН — турбина низкого давления;

ТЗХ — турбина заднего хода;

ППХ — полный передний ход;

ПЗХ — полный задний ход;

ГУП — главный упорный подшипник;

ПБУ — плавучая буровая установка.

- **5.1.5** Все материалы, включая поковки и отливки, комплектующее оборудование и изделия, идущие на изготовление механизмов и их деталей и комплектации, должны иметь документы, подтверждающие соответствие материала и способа изготовления одобренной технической документации. Эти документы должны быть оформлены в соответствии с Номенклатурой РС.
- **5.1.6** Датой заявки на освидетельствование ДВС является дата любого документа, который Регистр требует/принимает как заявку, или дата заявки на освидетельствование конкретного двигателя.
- **5.1.7** Результаты обмеров деталей и монтажных замеров, представленные в процессе изготовления деталей и при их монтаже, должны охватывать все точки замеров, регламентируемые рабочей документацией и инструкциями по монтажу и эксплуатации механизма.

Контроль результатов замеров производится выборочно с целью определения соответствия конструкции объекта технического наблюдения, его размеров и методов проверок требованиям рабочих чертежей.

Требования настоящего пункта следует учитывать при наружном осмотре окончательно обработанных деталей.

- **5.1.8** На материалы (заготовки), поступившие для механической обработки, а также на комплектующее оборудование и/или детали перед монтажом предъявляются документы, указанные в 5.1.5.
- 5.1.9 При необходимости исправления дефектов на обработанных и необработанных поверхностях отливок, поковок и сварных конструкций следует руководствоваться требованиями частей XIII «Материалы» и XIV «Сварка» Правил классификации и постройки морских судов.
- **5.1.10** При проведении гидравлических испытаний пробное давление принимается в соответствии с требованиями 1.3 части IX «Механизмы» Правил классификации и постройки морских судов, а условия проведения должны отвечать действующим стандартам и следующим требованиям:
- **.1** температура окружающего воздуха должна быть не ниже +5 °C;
- .2 разность температур окружающего воздуха и среды, используемой для гидравлического испытания, должна быть не более 10 °C; при этом для исключения отпотевания следует использовать среду с температурой, превышающей температуру окружающего воздуха;
- **.3** запрещаются любые работы на деталях, подвергаемых гидравлическому испытанию.
- **5.1.11** Порядок и объем освидетельствований и испытаний объектов технического наблюдения в процессе их изготовления и монтажа на предприятии

- (изготовителе) определяется перечнем (см. 12.2 части I «Общие положения по техническому наблюдению»), разработанным предприятием (изготовителем) и одобренным подразделением на основании Номенклатуры РС, а также требований настоящего раздела. При составлении перечня учитываются особенности технологического процесса, принятые на предприятии (изготовителе).
- **5.1.12** Формы документов предприятия (изготовителя), в том числе таблицы для результатов замеров, таблицы испытаний, удостоверения о предъявлении, разрабатываются с учетом требований перечня, согласованного с инспектором.
- **5.1.13** Проведение испытаний и их объем, если специальные требования правил отсутствуют, определяются действующими стандартами, одобренными Регистром.
- **5.1.14** Инспектор, при необходимости, может осуществлять периодические проверки и освидетельствования, не указанные в перечне, но предусмотренные договором о техническом наблюдении или Соглашением об освидетельствовании, например:
 - .1 проверку эффективности операций контроля;
 - .2 проверку соблюдения технологического процесса;
- .3 проверку узлов, деталей, не включенных в перечень, но качество изготовления которых влияет на работоспособность механизма в целом, а проверка их на окончательной стадии изготовления изделия исключается.

Во всех случаях при обнаружении недопустимого дефекта или нарушения на любом этапе предъявления объекта технического наблюдения инспектор, при необходимости, может потребовать проведения повторной проверки любой из предшествующих операций в объеме, необходимом для выявления причин и предупреждения возможного появления дефекта.

- **5.1.15** Методы контроля, инструмент и приспособления для его проведения при изготовлении и монтаже определяются предприятием (изготовителем) по согласованию с Регистром и указываются в документации технологического процесса.
- **5.1.16** Нормы допусков на изготовление и монтаж, не отраженные в одобренной документации на изготовление, должны быть указаны в документации технологического процесса, одобренной Регистром.

5.2 ГЛАВНЫЕ И ВСПОМОГАТЕЛЬНЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ МОЩНОСТЬЮ 55 кВт И БОЛЕЕ

5.2.1 Техническое наблюдение за изготовлением двигателей внутреннего сгорания, их узлов и деталей осуществляется в соответствии с требованиями табл. 5.2.1, перечня объектов и Номенклатуры РС.

Таблица 5.2.1

Объект технического наблюдения	Осмотр материа- ла, заго- товок, узлов, деталей	Проверка сопровождающих документов, клейм	Дефек- тоскопия	Гидрав- лические испы- тания	Специ- альные испы- тания	Стендо- вые испы- тания
Главные и вспомогательные двигатели внутреннего сгорания		+				+
мощностью 55 кВт и более						
Рамы фундаментные	+	+	+	+		
Общая опорная рама дизельных агрегатов	+	+	+			
Картеры	+	+	+	+		
Станины, стойки	+	+	+			
Блоки цилиндров	+	+	+	+		
Крышки цилиндров	+	+	+	+		
Втулки цилиндров	+	+	+	+		
Корпуса впускных и выпускных клапанов	+	+	+	+		
Анкерные связи	+	+	+			
Поршни (головки и тронки)	+	+	+	+		
Пальцы головного соединения	+	+	+			
Штоки поршня	+	+	+			
Шатуны	+	+	+			
Крейцкопфы	+	+	+			
Коленчатые валы	+	+	+			
Съемные муфты коленчатого вала	+	+	+			
Подшипники рамовые, шатунные, головные, крейцкопфные и встроенные упорные подшипники	+	+	+		+	
Болты и шпильки крейцкопфных, шатунных и рамовых подшипников, крепления противовесов на щеках коленчатых валов, цилиндровых крышек, соединений секций коленчатых валов и демпферов крутильных колебаний		+	+			
Передачи зубчатые и цепные	+	+	+			
Тяги и рычаги механизмов синхронизации	+	+	<u>'</u>			
Клапанные доски	+	+				
Выхлопные улитки и газосборники	+	+		+		
Регуляторы частоты вращения	+	+		'		_
Предельные выключатели	+	+				+
Валы распределительные	+	+	+			
Клапаны предохранительные		+		+		
Изоляция	+	F		F		
l '	+	+		+		
Топливные трубопроводы высокого давления и их защита	+ +	+		+		
Топливные насосы высокого давления	+ +	+				
Форсунки	+	+	l			

Примечание. Требования по объему освидетельствований, видам дефектоскопии, а также гидравлическим испытаниям – см. 1.2 и 1.3, часть IX «Механизмы» Правил классификации и постройки морских судов.

5.2.2 Фундаментные рамы ДВС и опорные рамы дизельных агрегатов.

5.2.2.1 Фундаментные рамы двигателей и общие опорные рамы дизельных агрегатов литой, сварной и литосварной конструкций после предварительной обработки и всех сварочных работ (включая устранение дефектов сваркой) должны подвергаться термической обработке по одобренному технологическому процессу.

Незначительные дефекты, устранение которых сваркой не вызывает деформации рамы, по согласованию с инспектором могут быть устранены без последующей термической обработки.

- **5.2.2.2** При наружном осмотре окончательно обработанной фундаментной рамы ДВС следует руководствоваться положениями 5.1.6 и документами органа технического контроля. Выборочной проверкой следует убедиться, что рама отвечает требованиям технической документации в отношении:
 - .1 ее конструкции и размеров;
 - .2 выполнения сварных соединений;
- .3 выполнения соединений и фиксации ее частей между собой;
- .4 выполнения обработанных поверхностей под сопряжения со следующими деталями: клиньями;

станинами;

картерными стойками;

вкладышами рамовых подшипников; другими деталями;

.5 выполнения требуемых проверок:

дефектоскопии стальных литых, кованых деталей и сварных швов;

соосности расточек под рамовые подшипники; положения опорных поверхностей;

положения поверхностей сопряжений;

обеспечения параллельности, перпендикулярности и концентричности поверхностей;

наличия дефектов и их характера; шероховатости поверхностей.

- **5.2.2.3** При наружном осмотре окончательно обработанной общей опорной рамы дизельных агрегатов следует руководствоваться положениями 5.1.6, требованиями одобренной технической документации и документами органа технического контроля. Выборочной проверкой следует убедиться в том, что рама отвечает требованиям технической документации в отношении:
 - .1 ее конструкции и размеров;
 - .2 выполнения сварных соединений;
- .3 выполнения соединений и фиксации ее частей между собой;
 - .4 обработки опорных поверхностей рамы

5.2.3 Картеры.

- **5.2.3.1** При освидетельствовании картера или отдельных его частей следует руководствоваться применимыми требованиями 5.2.2.
- 5.2.3.2 На пульте управления двигателем или, предпочтительнее, на каждой съемной крышке картера с каждой стороны двигателя и на крышках смотровых лючков должна иметься предупредительная надпись с указанием, что, независимо от предполагаемой величины перегрева внутри картера, крышки не должны открываться до истечения определенного промежутка времени, достаточного для необходимого охлаждения после остановки двигателя.

5.2.3.3 Предохранительные клапаны картеров:

- .1 предохранительные клапаны картеров должны иметь Свидетельство о типовом одобрении/ испытании, подтверждающее их соответствие требованиям 2.3.5 части ІХ «Механизмы» Правил классификации и постройки морских судов. Процедура типового испытания для предохранительных клапанов картеров изложена в приложении 2 к настоящему разделу;
- .2 предохранительные клапаны картера должны быть установлены в соответствии с Руководством изготовителя по их установке и обслуживанию с учетом размера и типа клапана, предназначенного для установки на конкретном двигателе. Данное Руководство должно входить в комплект поставки

предохранительных клапанов картера и содержать следующую информацию:

описание клапана с указанием функциональных и конструктивных ограничений;

копию Свидетельства о типовом одобрении/ испытании;

инструкцию по установке;

инструкцию по обслуживанию и эксплуатации, включая проверку и замену всех уплотнительных устройств;

о действиях, которые должны быть предприняты в случае взрыва в картере.

Примечание. Копия Руководства должна поставляться на судно вместе с двигателем и храниться на судне;

.3 клапаны должны иметь маркировку, содержащую: наименование и адрес изготовителя;

обозначение и размер;

дату изготовления;

указание заданного положения для установки на двигатель.

- **5.2.3.4** Приборы обнаружения и сигнализации масляного тумана в картере:
- .1 приборы обнаружения и сигнализации масляного тумана в картере должны быть одобренного Регистром типа и соответствовать применимым требованиям 2.3.4 части IX «Механизмы» Правил классификации и постройки морских судов. Процедура типовых испытаний приборов обнаружения и сигнализации масляного тумана в картере изложена в приложении 3 к настоящему разделу;
- .2 приборы обнаружения и сигнализации масляного тумана в картере должны быть установлены в соответствии с инструкциями и рекомендациями по их установке как изготовителя ДВС, так и изготовителя этих приборов. Инструкции должны включать следующую информацию:

схему расположения датчиков и системы сигнализации с указанием точек отбора проб из картера, а также расположение труб или кабелей, ведущих к датчику, с указанием диаметра труб;

анализ, подтверждающий, что выбор точек отбора проб и нормы отбора (если применимо) учитывают устройство и геометрию картера, а также прогнозируемую атмосферу в местах, где может скапливаться масляный туман;

Руководство изготовителя по обслуживанию и проверкам (испытаниям);

сведения о типовых или эксплуатационных испытаниях двигателя совместно с системой защиты двигателя, включающей приборы обнаружения и сигнализации масляного тумана одобренного типа.

Примечание. Двигатель, устанавливаемый на судно, должен быть снабжен Руководством изготовителя по обслуживанию и проверкам (испытаниям) приборов обнаружения масляного тумана;

.3 системы приборов обнаружения и сигнализации масляного тумана в картере двигателя должны испытываться по одобренной Регистром программе, как на испытательном стенде, так и на судне, как при остановленном ДВС, так и при его работе в нормальном эксплуатационном режиме. Системы совместно с датчиками должны испытываться на испытательном стенде и на борту судна для демонстрации функционирования.

Оборудование для испытаний должно быть согласовано с Регистром.

5.2.4 Станины и стойки.

При освидетельствовании станин и стоек или отдельных их частей следует руководствоваться применимыми требованиями 5.2.2.

5.2.5 Блоки цилиндров.

- **5.2.5.1** При освидетельствовании блоков цилиндров или отдельных их частей следует руководствоваться применимыми требованиями 5.2.2.
- **5.2.5.2** Блок цилиндров или его секции после окончательной обработки подвергаются испытанию со стороны полости охлаждения пробным гидравлическим давлением в соответствии с требованиями 5.1.9; при этом особое внимание обращается на герметичность технологических заделок.

5.2.6 Втулки цилиндров.

- **5.2.6.1** При освидетельствовании втулок цилиндров следует руководствоваться применимыми требованиями 5.2.2.
- **5.2.6.2** Втулка цилиндра после окончательной обработки подвергается испытанию пробным гидравлическим давлением в соответствии с требованиями 5.1.9.
- **5.2.6.3** У втулок с охлаждающими буртами особое внимание следует обратить на герметичность технологических заделок сверлений или насадок, образующих полость охлаждения бурта втулки.

5.2.7 Крышки цилиндров.

5.2.7.1 При освидетельствовании крышек цилиндров или отдельных их частей следует руководствоваться применимыми требованиями 5.2.2.

Особое внимание следует обращать также на герметичность технологических заделок сверлений и сварных швов приварных обечаек, образующих полость охлаждения крышки цилиндра, а также вставок под установку клапанов.

5.2.7.2 Крышка цилиндра (в сборе при составной крышке) после окончательной обработки подвергается испытанию со стороны полости охлаждения пробным гидравлическим давлением в соответствии с требованиями 5.1.9.

5.2.8 Корпуса выпускных и впускных клапанов.

Корпуса выпускных клапанов после окончательной обработки подвергаются испытанию со стороны полости охлаждения пробным гидравлическим давлением в соответствии с требованиями 5.1.9.

Проверяются результаты дефектоскопии.

5.2.9 Анкерные связи.

Кроме соответствия их размеров и материала особое внимание уделяется состоянию резьбы. При наружном осмотре анкерных связей также проверяются результаты дефектоскопии.

5.2.10 Поршни.

При наружном осмотре окончательно обработанных поршней проверяются:

параллельность плоскостей кепов между собой; перпендикулярность плоскостей кепов к оси поршня; перпендикулярность оси расточки под палец головного соединения к оси поршня и расположение этих осей в одной плоскости;

концентричность поверхностей, центр которых лежит на оси поршня;

результаты дефектоскопии.

После окончательной обработки поршень подвергается испытанию пробным гидравлическим давлением в соответствии с требованиями 5.1.9.

5.2.11 Пальцы головного соединения.

При наружном осмотре пальцев головных соединений, кроме соответствия их размеров, шероховатости и материала, проверяются также результаты дефектоскопии и термической обработки.

5.2.12 Штоки поршней.

При наружном осмотре окончательно обработанного штока поршня проверяются:

параллельность или соосность поверхностей сопряжения между собой;

перпендикулярность или соосность поверхностей сопряжения с осью штока;

результаты дефектоскопии.

5.2.13 Шатуны.

При наружном осмотре окончательно обработанного шатуна проверяются:

параллельность поверхностей сопряжения между собой;

перпендикулярность поверхностей сопряжения к оси шатуна;

результаты дефектоскопии.

5.2.14 Крейцкопфы.

При наружном осмотре окончательно обработанного крейцкопфа проверяются:

соосность шеек;

параллельность и смещение образующих поверхностей одной шейки относительно другой;

результаты дефектоскопии и термической обработки.

5.2.15 Коленчатые валы.

5.2.15.1 При наружном осмотре окончательно обработанного коленчатого вала или его деталей проверяются:

параллельность образующих рамовых и шатунных шеек оси коленчатого вала;

отклонение шеек от цилиндрической формы; углы заклинки кривошипов, радиусы кривошипов; перпендикулярность образующих шатунных и рамовых шеек к поверхностям щек;

биение шеек, фланцев и мест под посадку шестерни или звездочки привода распределительного вала;

соблюдение радиусов и шероховатости галтелей шеек и фланцев, а также масляных каналов;

результаты дефектоскопии и термической обработки; шероховатость поверхностей рамовых и шатунных шеек;

результаты балансировки вала.

5.2.15.2 У составных и полусоставных коленчатых валов, кроме перечисленных выше проверок, проверяются:

шероховатость обработанных поверхностей под запрессовку;

отклонения посадочных поверхностей от цилиндрической формы;

перпендикулярность осей отверстий под запрессовку шеек к боковым поверхностям щек;

совпадение масляных каналов в шейках и щеках; величина принятого натяга при запрессовке шеек в щеки.

5.2.16 Съемные муфты коленчатого вала.

При наружном осмотре окончательно обработанных съемных муфт коленчатого вала проверяются:

перпендикулярность торцевых поверхностей к оси расточки;

концентричность сечений между собой;

наличие припусков на окончательную обработку после посадки на вал;

результаты дефектоскопии.

5.2.17 Подшипники рамовые, шатунные, головные, крейцкопфные и встроенные упорные подшипники.

При наружном осмотре окончательно обработанных вкладышей подшипников под заливку или подшипников, полностью изготовленных из антифрикционного материала, или после заливки проверяются:

концентричность сечений;

перпендикулярность торцевых поверхностей к оси расточки;

концентричность заливки;

прилегание подшипников к постелям;

обеспечение натяга при посадке (втулки-подшипники);

результаты дефектоскопии заливки;

обеспечение плотности прилегания и величины натяга (тонкостенные подшипники).

По встроенным упорным подшипникам — см. также разд. 7.

5.2.18 Болты и шпильки крейцкопфных, шатунных и рамовых подшипников, цилиндровых крышек, крепления противовесов на щеках коленчатых валов и соединений секций коленчатых валов, крепления демпферов крутильных колебаний.

При наружном осмотре окончательно обработанных болтов и шпилек проверяются:

концентричность сечений;

перпендикулярность образующих к торцевым поверхностям;

длина болта, зафиксированная на теле болта;

результаты дефектоскопии.

5.2.19 Передачи зубчатые и цепные.

5.2.19.1 При наружном осмотре окончательно обработанных зубчатых колес и звездочек проверяются:

перпендикулярность оси отверстия под посадку к торцевым поверхностям ступицы шестерни или звездочки;

форма зуба и контакт в зацеплении;

результаты дефектоскопии и термической обработки.

5.2.19.2 При наружном осмотре окончательно обработанных деталей приводных цепей и цепей в сборе следует руководствоваться требованиями 5.1.6; при этом проверяются:

концентричность сечений втулок и пальцев; межосевое расстояние в щеках;

состояние внутренних поверхностей втулок до насадки щек;

расчеканка пальцев в щеках цепи;

шаг цепи под измерительной нагрузкой;

разнодлинность комплекта однорядных цепей в данных передачах с двумя и более однорядными цепями, работающими по двум и более рядным звездочкам:

результаты термической обработки деталей до сборки цепи.

5.2.20 Тяги и рычаги механизмов синхронизации.

См. 5.1.6.

5.2.21 Клапанные доски.

См. 5.1.6.

5.2.22 Выхлопные улитки и газосборники.

См. 5.1.6.

5.2.23 Регуляторы частоты вращения, предельные выключатели.

Окончательно собранные регуляторы частоты вращения и предельные выключатели испытываются на стенде или совместно с испытываемым механизмом при испытаниях этого механизма на стенде.

5.2.24 Валы распределительные и их подшипники.

При наружном осмотре окончательно обработанного распределительного вала и его подшипников проверяются:

- **.1** параллельность образующих рабочих шеек оси распределительного вала;
- .2 отклонение рабочих шеек от цилиндрической формы;

- .3 углы заклинки кулачковых шайб;
- .4 параллельность образующей рабочей поверхности профиля кулачка или кулачковой шайбы оси распределительного вала;
- .5 биение шеек, фланцев и мест под посадку приводной шестерни или звездочки;
- .6 отклонение геометрии шпоночных пазов для посадки втулок под кулачковые шайбы по перпендикулярности и параллельности относительно проекций распределительного вала;
- .7 шероховатость обработки шеек и кулачков (кулачковых шайб);
- .8 результаты дефектоскопии и термической обработки;
 - .9 подшипники распределительных валов (см. 5.2.17).
- **5.2.25** По окончании освидетельствования узлов и деталей ДВС осуществляется техническое наблюдение за монтажом двигателя на стенде.

Начало сборки двигателя определяет установка фундаментной рамы на стендовые балки. В процессе монтажа контролируются:

- .1 установка фундаментной рамы в горизонтальном положении в необжатом состоянии с подгонкой клиньев;
- .2 пригонка, фиксация и крепление отдельных частей рамы между собой; при этом у фундаментных рам ДВС со съемными сварными поддонами большой длины следует обратить внимание на установку крепления поддона и его частей;
- .3 затяжка болтов и упоров с последующей проверкой горизонтальности верхней плоскости рамы;
 - .4 снятие реперных линий;
- .5 проверка соосности постелей рамовых подшипников;
- .6 пригонка вкладышей рамовых подшипников по постелям и пригонка опорно-упорного подшипника;
 - .7 проверка поддона на непроницаемость;
- .8 укладка коленчатого вала с проверкой прилегания рамовых шеек к подшипникам, проверка горизонтальности и разворота вала, а также боя рамовых шеек, замер раскепов;
- **.9** установка зазоров рамовых, опорно-упорного и упорного подшипников;
- .10 монтаж картерных стоек, станин и их частей, центровка параллелей;
- .11 монтаж и центровка блока цилиндров или отдельных блоков, проверка пригонки поверхностей соединения отдельных частей блока цилиндров между собой, их фиксация и крепление;
- .12 затяжка анкерных связей и подшипников с регламентированной затяжкой (производится по инструкции предприятия (изготовителя));
- .13 контрольная проверка раскепов после затяжки анкерных связей и установки валоповоротного устройства (маховика);

- .14 монтаж и центровка привода газораспределения и распределительного вала;
 - .15 монтаж цилиндровых втулок;
 - .16 установка деталей движения;
- .17 центровка движения с установкой монтажных зазоров в подшипниках;
- **.18** монтаж цилиндровых крышек с арматурой и аппаратурой, прошедших испытания и регулировку;
 - .19 монтаж систем двигателя;
- **.20** монтаж и центровка приводных и/или газотурбинных воздухонагнетателей;
 - .21 проверка стопорения деталей.
- **5.2.26** При проведении стендовых испытаний ДВС следует руководствоваться требованиями 5.11 и следующими:
- **.1** до выведения ДВС на режим проверяются системы управления, регулирования, сигнализации и защиты, а именно:

блокировка системы управления пуском с валоповоротным устройством;

количество пусков с определением расхода воздуха при различных давлениях;

работа регуляторов;

действие предельного выключателя;

действие системы аварийно-предупредительной сигнализации и защиты;

действие систем ДАУ и ДУ по специальной программе, реверсирование на различных режимах с замером времени, работа на минимально устойчивой частоте вращения, действие устройства аварийной остановки двигателя;

.2 проверяется работа ДВС на режимах, предусмотренных программой, включая реверсирование, при этом фиксируются следующие параметры:

температура и давление на входе и выходе (для системы смазки);

температура и давление воды внешнего и замкнутого контуров на входе и выходе, в том числе на воздухоохладителях (для системы охлаждения);

параметры, связанные с рабочим процессом: давление, температура и влажность окружающего воздуха, давление воздуха наддува, давление сжатия, давление сгорания, среднее эффективное давление, температура газов по цилиндрам, температура газов до и после турбонагнетателя, противодавление выпуску;

прочие: мощность, частота вращения двигателя, частота вращения турбонагнетателя;

.3 по окончании стендовых испытаний производится выборочная ревизия деталей ДВС в объеме, предусмотренном программой стендовых испытаний, при этом, как правило, подлежат осмотру:

крышки цилиндров;

поршни и штоки;

цилиндровые втулки;

шатуны;

коленчатый вал;

шатунные, рамовые и головные подшипники, направляющие;

крейцкопфы, головные пальцы;

привод газораспределения и распределительный вал;

- .4 проводится сборка ДВС с выборочной проверкой результатов замеров деталей, кроме ДВС, отправляемых в разобранном виде, если по результатам ревизии не требуется проведение контрольных испытаний;
- .5 проводятся контрольные испытания с проверкой необходимых параметров.

5.3 ВСПОМОГАТЕЛЬНЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ МОЩНОСТЬЮ МЕНЕЕ 55 κ Bt

5.3.1 Техническое наблюдение за изготовлением вспомогательных ДВС, их узлов и деталей осуществляется в объеме, указанном в табл. 5.3.1, и в соответствии с применимыми требованиями 5.2 и требованиями 5.12.

Таблица 5.3.1

Объект технического наблюдения	Осмотр материалов, заготовок, узлов, деталей	Проверка сопровождаю- щих документов, клейм	Дефектоскопия	Гидравлические испытания	Специальные испытания	Стендовые испытания
Вспомогательные двигатели внутреннего сгорания мощностью менее 55 кВт						+
Рамы фундаментные ДВС	+	+	+			
и общие опорные рамы дизельных агрегатов						
Блоки цилиндров	+	+	+	+		
Картеры	+	+	+			
Крышки цилиндров	+	+	+	+		
Поршни	+	+	+	+		
Шатуны	+	+	+			
Коленчатые валы	+	+	+			
Регуляторы частоты вра-	+	+				+
щения, предельные						
выключатели						
Валы распределительные	+	+	+			+

5.4 ГЛАВНЫЕ ПАРОВЫЕ ТУРБИНЫ И ТУРБИНЫ ЭЛЕКТРОГЕНЕРАТОРОВ

5.4.1 Техническое наблюдение за изготовлением главных паровых турбин, турбин электрогенераторов, их узлов и деталей осуществляется в объеме, указанном в табл. 5.4.1 и в соответствии с требованиями настоящей главы.

Таблица 5.4.1

Объект технического наблюдения	Осмотр материалов, заготовок, узлов, деталей	Проверка сопровождаю- щих документов, клейм	Дефектоскопия	Гидравлические испытания	Специальные испытания	Стендовые испытания
Главные паровые турбины						+
и турбины электроге-						
нераторов						
Корпуса турбин	+	+	+	+		
Корпуса сопловых коробок	+	+		+		
и маневровых устройств						
Сопла	+	+				
Диафрагмы	+	+			+	
Диски	+	+	+		+	
Лопатки	+	+	+		+	
Уплотнения	++	+				
Роторы и валы	+	+	+		+	
Подшипники	+	+	+		+ +	
Соединительные муфты	+	+			+	
Бандажи и связующая	+	+				
проволока						
Болты для соединения	+	+	+			
разъемов корпусов						

5.4.2 Корпуса турбин.

- **5.4.2.1** Корпуса турбин литой, сварной и литосварной конструкций после предварительной обработки (включая все сварочные работы) подвергаются термической обработке по одобренному технологическому процессу.
- **5.4.2.2** При наружном осмотре окончательно обработанного корпуса турбины необходимо убедиться в следующем:

сварные соединения, обработанные поверхности под клинья, для соединения отдельных частей корпуса, под вкладыши подшипников, уплотнения, диафрагмы, сопла и направляющий аппарат выполнены согласно требованиям технической документации;

дефектоскопия сварных швов и основного материала, проверка соосности расточек постелей под уплотнения, подшипники, сопла и направляющий аппарат проведены одобренными методами;

сварные швы выполнены требуемым калибром и не имеют дефектов;

поверхности соединения отдельных частей корпуса турбины между собой пригнаны и зафиксировано их положение относительно друг друга;

отверстия под болтовые соединения соосны, а их образующие перпендикулярны к поверхностям под гайки (головки);

поверхности под подшипники, уплотнения и направляющий аппарат концентричны и не имеют конусности и эллиптичности, а их ось лежит в

плоскости горизонтального разъема и перпендикулярна к торцовым поверхностям расточек.

5.4.2.3 Окончательно обработанный корпус турбины подвергается гидравлическому испытанию согласно требованиям 5.1.9.

5.4.3 Корпуса сопловых коробок и маневровых устройств.

- **5.4.3.1** При наружном осмотре окончательно обработанных корпусов сопловой коробки и маневрового устройства следует руководствоваться требованиями 5.4.2, при этом особое внимание обращается на запрессовку гнезд клапанов и обработку мест присоединений.
- **5.4.3.2** Окончательно обработанные корпуса сопловой коробки и маневрового устройства должны быть подвергнуты гидравлическому испытанию согласно требованиям 5.1.9.

5.4.4 Сопла.

При наружном осмотре окончательно обработанных сопел следует убедиться, что профили выполнены в соответствии с требованиями технической документации, а на поверхностях отсутствуют подрезы, трещины и другие дефекты.

5.4.5 Диафрагмы.

- **5.4.5.1** Все соответствующие требования 5.4.2 для контроля литых и литосварных корпусов относятся также к диафрагмам.
- **5.4.5.2** Диафрагмы (чугунные и стальные) с залитыми в них лопатками после тщательной очистки должны быть предъявлены инспектору для проверки качества заливки лопаток.

При наличии плохо залитых лопаток или лопаток с явными признаками пережога диафрагмы бракуются.

- **5.4.5.3** Стенки каналов должны быть ровными; при этом особое внимание обращается на места выхода лопаток из металла диафрагмы.
- **5.4.5.4** Инспектор должен проверить правильность заполнения паспорта обмера каналов диафрагм.
- **5.4.5.5** Диафрагмы в присутствии инспектора должны быть подвергнуты испытаниям на прогиб; при этом после снятия нагрузки у диафрагм не должно быть остаточных деформаций.

5.4.6 Диски.

5.4.6.1 Окончательно обработанные диски должны быть предъявлены инспектору для освидетельствования качества обработанных поверхностей, на которых не должно быть трещин, раковин и других дефектов.

Торцы втулок (ступиц), ободов, разгрузочные отверстия, отверстия втулок, места галтелей должны быть тщательно заполированы.

Диски должны быть обмерены, и результаты занесены в паспорта.

5.4.6.2 Каждый диск должен быть подвергнут дефектоскопии одобренным Регистром методом и статической балансировке до насадки на вал.

Если диски насаживаются на вал облопаченными, то первая балансировка (без облопачивания) инспектору может не предъявляться.

5.4.7 Лопатки.

5.4.7.1 При осмотре окончательно обработанных лопаток необходимо убедиться в следующем:

профили и хвостовые части под посадку выполнены в соответствии с технической документацией;

кромки лопаток скруглены и не имеют царапин или зазубрин;

полированные лопатки не имеют следов механической обработки.

Особое внимание должно быть обращено на нарезку хвостовой части лопаток, которая должна быть выполнена чисто, без задиров и обеспечивать правильную постановку лопаток по месту без слабины и излишнего натяга.

- **5.4.7.2** Каждая лопатка должна быть подвергнута дефектоскопии одобренным Регистром методом; при этом не допускаются к применению лопатки, имеющие трещины, раковины и подобные дефекты.
- **5.4.7.3** У окончательно обработанных лопаток, составленных в пакеты, должна быть проверена частота собственных колебаний.

5.4.8 Уплотнения.

При осмотре уплотнений следует убедиться, что их рабочие элементы концентричны, ось расточки перпендикулярна торцовым поверхностям, пружины имеют необходимую жесткость.

5.4.9 Роторы и валы.

5.4.9.1 При наружном осмотре окончательно обработанных роторов или валов необходимо убедиться в следующем:

дефектоскопия выполнена одобренным методом; сечения шеек и их поверхности, радиусы всех галтелей, упорный гребень, а также обработанные поверхности под посадку дисков, лопаток, обойм уплотнений и частей муфт выполнены в соответствии с технической документацией;

все обработанные поверхности обмерены, и результаты обмеров занесены в паспорт;

шероховатость обработанных поверхностей измерена и занесена в паспорт;

болтовые соединения частей составных барабанов надежно застопорены.

- **5.4.9.2** Особое внимание обращается на правильность расположения и обработки колодцев для замковых лопаток и проверку пригонки шпонок.
- **5.4.9.3** Облопаченный ротор предъявляется инспектору для наружного осмотра, при котором необходимо убедиться в следующем:

посадка дисков, обойм уплотнений, упорного гребня и других насадных частей выполнена с натягами, предусмотренными технической документацией;

лопатки установлены без слабин и излишних натягов;

бандажная лента после расклепки шипов не имеет надрывов и надежно закреплена;

связующая проволока закреплена предусмотренным способом с применением надлежащего сплава.

5.4.9.4 Окончательно собранный ротор со всеми насаженными на него деталями подвергается индицированию и динамической балансировке, результаты которых заносятся в паспорт ротора и предъявляются инспектору.

5.4.10 Подшипники.

При наружном осмотре окончательно обработанных подшипников необходимо убедиться в следующем:

обработанные под постель и шейки опорные поверхности вкладышей соответствуют требованиям рабочих чертежей;

дефектоскопия и специальные испытания (сцепление, металлография) проведены одобренными метолами.

5.4.11 Соединительные муфты.

- **5.4.11.1** При наружном осмотре окончательно обработанных соединительных муфт необходимо убедиться, что обработанные поверхности под посадку на валы (ротор), шпоночные пазы, зубчатые венцы, отверстия под запрессовку втулок, втулки и пальцы, термическая обработка зубьев выполнены в соответствии с технической документацией.
- **5.4.11.2** Динамическая балансировка, а при необходимости окончательная обработка соединительных муфт, должны производиться совместно с ротором (валом).

5.4.12 Бандажи и связующая проволока.

В дополнение к требованиям 5.4.9.3 контроль бандажей и связующей проволоки осуществляется также в отношении использованных материалов и соответствия их технической документации.

- **5.4.13** Болты и шпильки для соединения разъемов корпуса проверяются согласно требованиям 5.2.18.
- **5.4.14** По окончании освидетельствования узлов и деталей паровых турбин в процессе их изготовления осуществляется техническое наблюдение за монтажом турбины; при этом необходимо убедиться в том, что:

узлы и детали турбины, поступившие на монтаж, не имеют повреждений при транспортировке;

укладка ротора произведена в соответствии с требованиями технической документации на монтаж;

кроме того, проверяются:

пригонка подшипников по постелям;

пригонка подшипников по шейкам ротора;

пригонка подушек упорного подшипника;

установка зазоров в подшипниках;

установка зазоров в скользящих опорах;

крепление эластичных опор;

установка диафрагм, уплотнений;

аксиальные и радиальные зазоры в проточной части и в уплотнениях;

фиксация и крепление разъемов корпуса турбины:

прилегание головок болтов и гаек к фланцам корпуса турбины;

центровка ротора турбины с торсионным валом или валом шестерни первой ступени редуктора с обеспечением требуемых контактов на контактных поверхностях соединительных полумуфт;

представленные результаты замеров монтажа, выполненные органом технического контроля одобренным методом.

- **5.4.15** При проведении стендовых испытаний паровых турбин необходимо руководствоваться требованиями 5.12, а также приведенными ниже требованиями.
- **5.4.15.1** До выведения турбины на режим следует проверить работу систем регулирования, управления и аварийно-предупредительной сигнализации и защиты. При этом проверяются:

зазоры в упорном и рамовых подшипниках с помощью штатных устройств;

блокировка валоповоротного устройства с органами управления (быстрозапорный клапан — БЗК);

осевое перемещение ротора, при котором закрывается БЗК;

открывание и закрывание быстрозапорного клапана, в том числе ручным приводом, и закрывание БЗК устройством экстренной остановки турбины;

срабатывание БЗК на закрывание при падении давления в системе смазки турбины и редуктора и в системе управления;

работа регуляторов частоты вращения;

срабатывание БЗК на закрывание при достижении турбиной частоты вращения, превышающей предельно допустимую, от измерителя скорости, бойкового выключателя;

закрывание БЗК при повышении давления в конденсаторе;

работа клапанов отбора пара.

5.4.15.2 При проверке работы турбины на режимах, предусмотренных программой, включая аварийные режимы и реверсирование, фиксируются следующие параметры:

давление пара перед соплами каждого корпуса;

давление в конденсаторе;

давление отборов;

температура пара перед соплами;

температура пара отборов;

температура конденсата;

давление пара на всех ступенях эжекторов;

давление масла в системе смазки;

давление масла в системе регулирования и защиты;

температура масла в системе смазки; частота вращения на выходном вале редуктора; время реверсирования с ППХ на ПЗХ и обратно; время выбега турбины.

- **5.4.15.3** Стендовые испытания и ревизия редуктора, муфт, упорного подшипника и навешенных механизмов проводится согласно требованиям соответствующих глав настоящего раздела.
- **5.4.15.4** По окончании стендовых испытаний производится ревизия турбин с выборочной проверкой результатов замеров деталей, при этом, как правило, подлежат осмотру:

ротор и его детали;

рамовые и упорный подшипники;

уплотнения;

корпус и его детали.

5.4.15.5 После ревизии и устранения дефектов производятся сборка турбины и контрольные испытания с проверкой необходимых параметров.

5.5 ВСПОМОГАТЕЛЬНЫЕ ПАРОВЫЕ ТУРБИНЫ

5.5.1 Техническое наблюдение за изготовлением вспомогательных паровых турбин, их узлов и деталей осуществляется в объеме, указанном в табл. 5.5.1, и в соответствии с применимыми требованиями 5.4 и 5.12.

Таблица 5.5.1

Объект техническто наблюдения	Осмотр материалов, заготовок, узлов, деталей	Проверка сопровождаю- щих документов, клейм	Дефектоскопия	Гидравлические испытания	Специальные испытания	Стендовые испытания
Вспомогательные паро-						+
вые турбины Корпуса турбин	+	+	+	+		
Корпуса сопловых коробок	+	+		+		
Сопла	+	+				
Диски	+	+	+			
Лопатки	+	+	+		+	
Роторы и валы	+	+	+		+	
Подшипники	+	+	+		+	

5.6 ГЛАВНЫЕ ГАЗОТУРБИННЫЕ ДВИГАТЕЛИ (ГТД) И ГАЗОВЫЕ ТУРБИНЫ (ГТ) ДЛЯ ПРИВОДА ЭЛЕКТРОГЕНЕРАТОРОВ

5.6.1 Техническое наблюдение за изготовлением главных ГТД, ГТ для привода электрогенераторов, их узлов и деталей осуществляется в соответствии с

требованиями настоящей главы в объеме, указанном в табл. 5.6.1.

Таблица 5.6.1

163

					олиц	a 5.0.
Объект		- 0 _1			ИЯ	K
техническго наблюдения	ĕ,	Іроверка сопровождаю- щих документов, клейм			Специальные испытания	Стендовые испытания
телин тесне о настодения	Осмотр материалов, заготовок, узлов, деталей	XX) KJE			ЫТ	та
	па	DBC B, 1	Б	1e	E I	191
	ge Ga	TO.	Ш	1XC	e E	ИСІ
	: , y	CO TEH	KO]	че	3PI	<u>e</u>
	No. 7	g &	00	ПП	<u>I</u> P	Bb]
	1 E 5 5	Проверка сопров цих документов,	Дефектоскопия	Гидравлические испытания	иа.	д Д
	Z C Z	IX,	ф	日日	ец	ен
	Осмотр материал заготовок, узлов, деталей	ļi 🖹	Де	Ги	Cī	$C_{\rm I}$
Рама ГТД и его опоры	+	+	+			
Воздухоприемное устрой-	+	+		+		
ство	l '	i '		'		
	+	+	+	+		
Корпуса турбин и ком-						
прессоров	l .					
Сопловые аппараты	+	+	+			
Диафрагмы	+	+	l		+	
Диски и цапфы компрес-	+	+			+	
соров и диски турбин						
Лопатки турбин и ком-	+	+	+		+	
прессоров						
Роторы и валы турбин	+	+	+		+	
компрессоров						
Валы (рессоры) соеди-	+	+	+		+	
нения турбин с компрес-	'	'	l '		'	
сорами	l .		١.			
Торсионные валы соеди-	+	+	+		+	
нения турбин с зубчатыми						
передачами						
Лопатки спрямляющих	+	+	+			
аппаратов компрессоров						
и поворотные лопатки						
реверсивных устройств						
Жаровые трубы камер	+	+	+			
сгорания, регенераторы						
Цилиндры реверса	+	+		+		
Ленты перепуска газа,	+	+	+			
	'	'	l '			
воздуха	+					
Уплотнения	1	+				
Подшипники	+	+				
Бандажи, связующая про-	+	+	l			
волока			l			
Соединительные муфты	+	+	l		+	
Болты для соединения	+	+	+			
разъемов корпусов тур-						
бин и компрессоров						
* *	L					

- **5.6.2** При наружном осмотре фундаментной рамы ГТД после ее окончательной обработки следует руководствоваться требованиями 5.2.2.
- 5.6.3 При наружном осмотре окончательно обработанного входного устройства забора воздуха внешним осмотром и обмером определяется качество сварных швов и чистота обработки поверхностей разъемных соединений. Если внутренняя полость входного устройства используется для охлаждения и конденсации паров масла, то входное устройство должно быть подвергнуто испытанию на непроницаемость внутренних полостей после окончания сварочных работ и механической обработки.

5.6.4 При наружном осмотре окончательно обработанных корпусов компрессоров и турбин следует руководствоваться положениями 5.4.2, соответственно их конструкции. Следует обращать особое внимание на чистоту обработки сопрягаемых поверхностей корпусов по их разъемам, соединяющимся при помощи болтов без применения прокладок для обеспечения газовоздухонепроницаемости при работе. Такие поверхности должны проверяться на отсутствие коробления. Проверка может производиться установкой детали на проверочную плиту. Щуп размером 0,05 мм не должен проходить между плитой и проверяемой поверхностью свободно лежащей детали. Качество обработки сопрягаемых поверхностей должно быть не ниже требований чертежа.

При осмотре собранных корпусов компрессоров должно быть обращено внимание на качество монтажа металлокерамических вставок лабиринтных уплотнений, отсутствие их подвижности, качество обработки поверхности. Следует проверить качество монтажа спрямляющих аппаратов и соответствие площади проходных сечений требованиям чертежа.

5.6.5 При осмотре опорных венцов турбин ГТД должно быть обращено внимание на качество выполнения сварных швов, обработки сопрягаемых с другими узлами поверхностей, обработки посадочных мест под обоймы подшипников качения, качество выполнения клепаных соединений. Прослабление заклепок, неполное формирование головок заклепок и их перекос не должны допускаться, должна быть проверена установка жиклеров подачи смазки на подшипники и проверена их производительность, должна быть проведена проверка непроницаемости маслоподводящих и отливных труб по соединениям, а также труб подвода воздуха к лабиринтным уплотнениям.

5.6.6 При осмотре окончательно изготовленных сопловых аппаратов должно быть обращено внимание на качество выполнения сварных и клепаных соединений и обработки сопрягаемых поверхностей. При наличии литых деталей должно быть обращено внимание на качество отливок. Отливки должны отвечать требованиям одобренной документации. Особое внимание должно быть обращено на соответствие проходных сечений сопловых аппаратов требованиям чертежа и соответствие профиля и шероховатости поверхности сопел. Качество сварных швов, которыми приварены сопла, должно быть проверено неразрушающими методами контроля. Трещины и непровары не допускаются.

Сопловые аппараты с залитыми в них соплами после тщательной очистки должны быть предъяв-

лены инспектору для проверки качества заливки. При наличии плохо залитых сопел или сопел с явными признаками пережога сопловые аппараты бракуются. Контроль отсутствия дефектов должен проводиться неразрушающими методами дефектоскопии.

При осмотре сопловых аппаратов должно быть проверено качество металлокерамических и сотовых частей уплотнений, отсутствие коробления.

Выкрашивание металлокерамики, забоины на сотах не допускаются.

- **5.6.7** При наружном осмотре диафрагм, спрямляющих аппаратов следует руководствоваться положениями 5.4.5.
- 5.6.8 При наружном осмотре окончательно обработанных дисков и цапф компрессоров и дисков турбин должны быть проверены обработка поверхностей, пазов для крепления лопаток, соответствие размеров деталей требованиям чертежа, результаты специальных видов контроля, термообработок, результаты динамической балансировки, если это требуется чертежом, до установки их на ротор. Кроме того, следует руководствоваться положениями 5.4.6.
- **5.6.9** При осмотре окончательно обработанных рабочих лопаток компрессоров и турбин проверяются шероховатость поверхностей профилей пера лопаток и хвостовых частей, входящих и выходящих кромок, отсутствие забоин и выполнение замковой части лопаток.

Литые охлаждаемые лопатки турбин, имеющие охлаждающие каналы, должны быть проверены на соответствие толщин стенок по всем сечениям, указанным в чертеже; при этом должны быть проверены результаты проливки каналов для определения их пропускной способности. Особое внимание следует обращать на обработку входных и выходных кромок. Лопатки, имеющие трещины, забоины, утоненные стенки по охлаждаемым каналам, входным и выходным кромкам, не могут допускаться к установке в ротор.

Литые и штампованные рабочие лопатки компрессоров и турбин должны изготовляться по техническим условиям, одобренным Регистром. Эти технические условия должны предусматривать требования, предъявляемые:

- к материалам;
- к механическим свойствам;
- к состоянию поверхностей;
- к макро- и микроконтролю;
- к специальным видам контроля и испытаний;
- к специальным видам обработки;
- к шихтовым материалам;
- к контролю литья;
- к нормам допустимых дефектов.

Кроме того, см. также положения 5.4.7.

5.6.10 При наружном осмотре окончательно обработанных и облопаченных роторов турбин и

компрессоров следует руководствоваться требованиями 5.4.9, соответственно их конструкции.

Необходимо обратить внимание на отсутствие видимых дефектов (таких, как вмятины и забоины на кромках лопаток, гребешках лабиринтовых уплотнений, резьбовых поверхностях и шлицах), а также трещин и коррозии.

При этом следует проверить:

- .1 люфт рабочих лопаток, выступление их торцевой части из пазов дисков, которое по отношению к смежным лопаткам не должно быть более допустимого по чертежу;
- .2 паспорта на рабочие лопатки, диски и валы; при этом должно быть обращено внимание на результаты динамической балансировки роторов и дефектоскопического контроля деталей (люминесцентного контроля рабочих лопаток, цветной дефектоскопии дисков и ультразвукового контроля валов);
- .3 результаты частотного контроля и отжига в среде инертных газов, а также установку стопорных замков лопаток и крепление балансировочных грузиков.

При барабанно-дисковой конструкции роторов компрессоров должны быть проверены документы, подтверждающие соблюдение температурных режимов нагрева дисков и давлений их напрессовки, а также установка фиксирующих штифтов в соединении смежных дисков и цапф с дисками.

5.6.11 При наружном осмотре окончательно изготовленных валов компрессоров и турбин следует обратить внимание на качество сварки, если валы изготовляются сварными из отдельных заготовок. Технические условия на их изготовление, одобренные Регистром, в которых должны быть оговорены метод сварки, вид термообработки, методы контроля сварных соединений, механические свойства материала заготовок вала после термообработки и условия проведения контроля механических свойств вала и сварного соединения. Дефекты сварных швов валов не допускаются.

Готовые валы должны быть проверены на соответствие требованиям чертежа по размерам, шероховатости поверхностей; при этом проверяются результаты динамической балансировки вала.

- 5.6.12 При наружном осмотре окончательно обработанных валов (рессор) соединения турбин с компрессорами и торсионных валов с зубчатыми передачами должны быть проверены результаты дефектоскопического контроля материала вала, соответствие шероховатости поверхностей, шлицев, посадочных поверхностей под обоймы подшипников качения и т. п. требованиям чертежа.
- **5.6.13** При наружном осмотре окончательно изготовленных лопаток спрямляющих аппаратов компрессоров и поворотного реверсивного устройства должно быть проверено их соответствие

требованиям одобренных чертежей по размерам, профилю и чистоте поверхности.

5.6.14 Внешним осмотром и обмером с применением шаблонов проверяется качество выполнения сварных соединений окончательно изготовленных камер сгорания и жаровых труб; стыковые швы подлежат проверке радиографическим контролем.

Завихрители жаровых труб должны быть проверены на соответствие их проходных сечений на пропускную способность по воздуху. Результаты этой проверки отражаются в паспорте завихрителя.

Эмалированные жаровые трубы должны быть проверены на качество эмалевого покрытия поверхностей. Не допускается заплавление эмалью воздухоподводящих отверстий. Свободное сечение этих отверстий должно быть не менее указанного в чертеже трубы.

Жаровые трубы должны быть проверены на отсутствие осевого коробления (биения) по каждой из обечаек. Допустимое биение должно быть указано в чертеже.

Кроме того, по камерам сгорания, жаровым трубам и регенераторам — см. также разд. 9 настоящей части и разд. 5 части V «Техническое наблюдение за постройкой судов».

- 5.6.15 При наружном осмотре окончательно изготовленных цилиндров реверса ГТД должно быть проверено качество обработки внутренней рабочей поверхности, результаты гидравлического испытания, а также должны быть осмотрены все детали привода управления реверсом.
- **5.6.16** При наружном осмотре окончательно изготовленных лент перепуска воздуха и газов должны быть проверены результаты термообработки и дефектоскопии лент, качество сварных (клепаных) соединений и отсутствие коробления полотна лент.
- 5.6.17 При наружном осмотре деталей уплотнения турбин должно быть проверено, что их рабочие элементы обработаны в соответствии с требованиями одобренной документации по величине зазоров и шероховатости поверхностей, а металлокерамические вставки и напыление не имеют дефектов и установлены без люфта. Выкрашивание керамики и напыленного слоя не допускается.

Состояние уплотнительных гребешков должно соответствовать требованиям чертежа.

5.6.18 При наружном осмотре подшипников качения необходимо убедиться, что их типы и размеры соответствуют требованиям чертежа узла, в который они устанавливаются. Если должны применяться термостойкие подшипники, то вместо них не могут устанавливаться обычные.

На рабочих поверхностях обойм (наружных и внутренних) сепаратора, шариков и роликов не

должно быть трещин, коррозии, вмятин, сколов и других дефектов, влияющих на надежную работу подшипников.

Если в конструкции подшипникового узла применяется нагрузочное устройство, то должна быть проверена тарировка создаваемой нагрузки.

5.6.19 При осмотре соединительных и эластичных муфт необходимо убедиться, что поверхности под посадку на вал, ротор, фланцевые соединения, зубчатые венцы, шпоночные пазы, отверстия, втулки, пальцы, шлицы, эластичные муфты обработаны в соответствии с требованиями чертежа. При изготовлении деталей эластичных муфт из титановых сплавов заготовки должны соответствовать техническим условиям, одобренным Регистром. При осмотре готовых деталей из титановых сплавов следует особо обращать внимание на шероховатость обработанных поверхностей, результаты специальных видов контроля, термообработки.

После окончательной сборки соединительные и эластичные муфты должны быть динамически отбалансированы до установки в сборочный узел (ротор, вал, шестерня и т. п.) изделия.

5.6.20 Наружный осмотр трубопроводов ГТД проводится при осмотре окончательно собранного двигателя, смонтированного на фундаментной раме. При этом необходимо убедиться, что все трубопроводы (топливный, масляный, сжатого воздуха, углекислотного тушения, трубопроводы разгрузки межлабиринтных полостей и другие) смонтированы на двигателе в полном соответствии с требованиями одобренной документации, гибкие вставки топливного и масляного трубопроводов установлены без недопустимых натягов, изгибов, перекосов и тому подобного, что может привести к их повреждению; качество сварки труб, их соединения выполнены согласно требованиям чертежей; обеспечен доступ к соединениям, форсункам, арматуре и другим узлам, требующим обслуживания в эксплуатации.

5.6.21 При проведении стендовых испытаний ГТД и ГТУ необходимо руководствоваться 5.12 и следующими требованиями:

.1 до запуска ГТУ проверяются:

зазоры в упорных и рамовых подшипниках штатными устройствами;

блокировка валоповоротного устройства со стартерами;

осевой сдвиг роторов, при котором срабатывает сигнализация с последующим прекращением подачи топлива;

сигнализация и защита по предельной частоте вращения от всех каскадов и турбин винта или привода электрогенератора;

сигнализация о последующем прекращении подачи топлива в случаях падения давления охлаждающей воды, повышения температуры

охлаждающей воды, падения давления в системе смазки и повышения температуры рабочего тела;

действие противопожарного устройства;

сигнализация и регулировка подачи топлива по давлению воздуха на КВД;

работа ГТУ по схеме аварийного режима;

время реверсирования с ППХ на ПЗХ и обратно; время выбега турбин;

испытание на угонную пробу;

готовность ГТУ к запуску;

- .2 проверяются ложный запуск и холодная прокрутка с замерами тока стартеров, времени работы стартеров, оборотов КВД, выбегов и давления масла ГТУ;
- .3 проверяется запуск двигателя с замером тока стартеров, времени работы стартеров и других основных параметров, характеризующих работу ГТУ при запуске.

При работающем двигателе проверяется:

невозможность включения электродвигателей прокрутки КНД и КВД;

невозможность отключения электромасляных насосов: двигателя, редуктора, приводного компрессора, системы автоматики;

невозможность осуществления реверса и режима «стоп-винт» при работе двигателя на режиме выше допустимого для выполнения маневров (например, при нагрузке выше 0,5 номинальной мощности);

невозможность управления лентой перепуска воздуха кнопкой вручную;

невозможность включения системы зажигания;

.4 при работе ГТУ на холостом ходу проверяются все параметры, а также сигнализация:

«Маслонасос ГТУ работает»;

«Маслонасос автоматически работает»;

«Маслонасос редуктора работает»;

«Система термоограничения включена»;

«Лента перепуска воздуха открыта»;

.5 производятся проверки защит ГТД и прочие проверки:

защиты по давлению масла в двигателе;

защиты по давлению масла в приводном от ГТД механизме (редукторе, электрогенераторе, компрессоре); защиты по давлению топлива;

срабатывания термозащиты по запуску;

системы термоограничения перед режимной работой ГТД;

системы термоограничения на рабочих режимах ГТД;

согласование измерителей температуры, выходящих газов с задатчиком регулятора температуры;

приемистости ГТУ;

срабатывания защит от разноса;

герметичности системы пускового топлива;

полярности подключения термопар на регуляторе температуры;

стравливания из межлабиринтных полостей на отсутствие выброса масла;

работы ограничителя нарастания давления топлива;

включения, отключения резервного топливного насоса;

консервативности системы реверса по падению давления воздуха;

отсутствия помпажных явлений;

режима «стоп-винт»;

защиты по давлению масла автоматики;

защиты от разноса турбины винта;

.6 проверяется работа ГТУ на режимах, предусмотренных программой, включая реверсирование. При работе ГТУ на всех режимах проверяется газовоздухонепроницаемость соединений корпусов ГТУ по вертикальным и горизонтальным разъемам;

.7 проверяются остановки ГТУ:

нормальная;

экстренная;

аварийная;

- .8 стендовые испытания механизмов, приводимых от ГТД, и их ревизия проводятся в соответствии с положениями 5.12;
- .9 после окончания стендовых испытаний проводится ревизия газотурбинного двигателя с осмотром и дефектацией всех узлов и деталей двигателя. В период ревизии рабочие лопатки всех ступеней турбин и компрессоров подвергаются люминесцентному контролю, а сопловые аппараты и ступени ТВД контролю методом цветной дефектоскопии.

В зависимости от конструктивных особенностей ГТД с подразделением Регистра должен быть согласован перечень других узлов и деталей, подвергающихся дополнительным видам контроля;

- .10 после окончания ревизии производится сборка ГТД и проведение контрольных испытаний на стенле:
- .11 контрольные испытания проводятся по программе, одобренной подразделением Регистра, при этом проверяются все параметры, предусмотренные программой;
- .12 при положительных результатах контрольных испытаний ГТД инспектор разрешает демонтаж двигателя со стенда и выполнение его окончательной комплектации узлами и деталями, которые не должны проходить испытаний (например, теплоизоляционными кожухами, трубами пожаротушения ГТД, маркировочными табличками и т. п.);
- .13 после окончательной комплектации и окраски двигатель предъявляется инспектору для наружного осмотра. На табличке ГТД предприятия (изготовителя) инспектор ставит окончательное клеймо Регистра и выдает на двигатель свидетельство Регистра.

5.7 ПЕРЕДАЧИ И РАЗОБЩИТЕЛЬНЫЕ МУФТЫ ГЛАВНЫХ И ВСПОМОГАТЕЛЬНЫХ МЕХАНИЗМОВ

5.7.1 Техническое наблюдение за изготовлением передач и разобщительных муфт главных и вспомогательных механизмов, их узлов и деталей осуществляется в объеме, указанном в табл. 5.7.1, и в соответствии с требованиями настоящей главы и 5.12.

Таблица 5.7.1

Объект технического наблюдения	Осмотр материалов, заготовок, узлов, деталей	Проверка сопровождаю- щих документов, клейм	Дефектоскопия	Гидравлические испытания	Специальные испытания	Стендовые испытания
Передачи, и разобщитель-						+
ные муфты главных меха-						
низмов:						
корпуса редукторов и муфт		+	+	+		
зубчатые колеса и шестерни		+	+		+	
валы редукторов и муфт	+	+	+		+	
съемные полумуфты сое-	+	+			+	
динений валов						
болты соединительные	+	+				
ведущие и ведомые дета-	+	+			+	
ли муфт						
эластичные элементы муфт	+	+				
подшипники	+	+	+		+	
Передачи вспомога-						+
тельных механизмов:	l .	١. ا				
корпуса редукторов и муфт		+	+	+	١	
зубчатые колеса и шес-	+	+	+		+	
терни	l .	١. ا				
валы редукторов и муфт	+	+	+		+	
подшипники	+	+			+	

5.7.2 Корпус редукторов и муфт.

5.7.2.1 По окончании сварочных работ и проведения термической обработки при наружном осмотре окончательно обработанных деталей корпусов редукторов необходимо убедиться в следующем:

сварные соединения, обработанные поверхности под клинья фундамента, фланцевые соединения отдельных частей корпуса и под вкладыши подшипников выполнены согласно требованиям технической документации;

дефектоскопия сварных швов, проверка соосности расточек постелей под подшипники одного вала, проверка параллельности и перекоса осей валов, находящихся в зацеплении, проведены одобренными методами;

сварные швы выполнены требуемым калибром и не имеют дефектов;

отдельные части корпуса редуктора соединены между собой требуемым числом калиброванных болтов (штифтов), фиксирующих положение отдельных частей относительно друг друга;

корпус редуктора подвергался испытанию на маслонепроницаемость.

5.7.2.2 При наружном осмотре окончательно обработанных (после окончания сварочных работ и термической обработки) деталей корпусов муфт необходимо убедиться в следующем:

сварные соединения, обработанные поверхности фланцевых соединений отдельных частей корпуса, расточки под вкладыши подшипников и уплотнения, поверхности под клинья фундамента выполнены согласно требованиям технической документации;

дефектоскопия сварных швов, соосность расточек постелей под подшипники проведены согласованными методами;

составные части корпуса муфты соединены между собой требуемым числом калиброванных болтов (штифтов), фиксирующих положение отдельных частей относительно друг друга;

корпус гидромуфты подвергался гидравлическому испытанию на непроницаемость.

5.7.3 Зубчатые колеса и шестерни.

5.7.3.1 При наружном осмотре окончательно обработанных зубчатых колес, шестерен и их деталей необходимо убедиться в следующем:

обработанные поверхности под посадку, обеспечение натягов, шейки, шпоночные пазы и термическая обработка зубчатых венцов выполнены согласно требованиям технической документации;

параметры нарезки зубьев, перпендикулярность оси вала к торцовым поверхностям, радиальный бой, дефектоскопия зубьев проверены и выполнены одобренными методами;

соединение венца с ободом, обода с ребрами, ребер со ступицей и ступицы с валом выполнены в соответствии с технической документацией.

5.7.3.2 Окончательно собранное и обработанное зубчатое колесо или шестерня подвергаются динамической или только статической балансировке.

5.7.4 Валы редукторов и муфт.

5.7.4.1 При наружном осмотре окончательно обработанных валов редукторов и муфт необходимо убедиться в следующем:

обработанные поверхности под посадку, шейки и шпоночные пазы выполнены согласно требованиям технической документации;

радиальный бой, параллельность оси вала к образующим концентрических поверхностей, дефектоскопия проверены и проведены одобренными методами.

5.7.4.2 Окончательно собранные и обработанные валы с полумуфтами подвергаются динамической или только статической балансировке.

5.7.5 Съемные полумуфты соединений валов.

При наружном осмотре окончательно обработанных съемных полумуфт соединений валов необходимо убедиться в следующем:

обработанные поверхности, шпоночные пазы, зубчатые венцы, отверстия под запрессовку втулок, втулки и пальцы, отверстия под болты и посадку на вал выполнены в соответствии с технической документацией;

динамическая балансировка или только статическая и окончательная обработка производились совместно с валом, причем проведение балансировки определялось необходимостью проведения балансировки для вала, а необходимость окончательной обработки — результатами проверки в сборе с валом.

5.7.6 Болты соединительные.

При наружном осмотре окончательно обработанных болтов для соединения полумуфт необходимо убедиться в следующем:

обработанные поверхности под посадку, резьбовые соединения выполнены согласно технической документации;

перпендикулярность торцовых поверхностей прилегания к оси болта, резьба проверены одобренным методом.

5.7.7 Ведущие и ведомые детали муфт.

5.7.7.1 При наружном осмотре окончательно обработанных деталей муфт необходимо убедиться в следующем:

обработанные поверхности для соединения с ведущим и ведомым валами, натяги, поверхности под уплотнения и для соединения деталей муфты выполнены в соответствии с технической документацией;

концентричность обработанных поверхностей, термическая обработка контактных поверхностей проверены одобренным методом.

- **5.7.7.2** Окончательно собранные ведущая и ведомая части муфты подвергаются динамической или только статической балансировке.
- **5.7.7.3** Необходимость проведения окончательной обработки определяется результатами проверки муфт в сборе с валами.

5.7.8 Эластичные элементы муфт.

При наружном осмотре эластичных элементов муфт проверяется соответствие их конструкции, материала и характеристик, определяющих их работу, рабочей документации.

5.7.9 Подшипники передач и разобщительных муфт.

5.7.9.1 Проверяются:

- .1 подшипники скольжения (см. 5.2.17);
- .2 при наружном осмотре подшипников качения необходимо убедиться, что их типы и размеры соответствуют требованиям технической документации. На рабочих поверхностях обойм, сепараторов, шариков и роликов не должно быть трещин, коррозии, вмятин, сколов, и других дефектов, влияющих на надежную работу подшипников.

5.7.10 По окончании освидетельствований узлов и деталей передач главных двигателей осуществляется техническое наблюдение за монтажом передачи; при этом контролируются следующие операции монтажа:

установка корпуса передачи (редуктора) на клиньях на фундаменте стенда с фиксацией положения;

пригонка подшипников по постелям;

пригонка подшипников по шейкам штатных валов или фальшвалов;

проверка межцентровых расстояний;

проверка непараллельности оси валов;

проверка перекоса осей валов;

проверка зазоров в зацеплении;

установка зазоров в опорных и упорных подшипниках, проверка зацепления по контакту зубьев (окончательная проверка после стендовых испытаний);

монтаж торсионных валов и их муфт;

центровка редуктора к штатному приводному двигателю или двигателю стенда;

монтаж систем, обслуживающих редуктор;

центровка редуктора с нагрузочным устройством или через муфту.

Проверяется подача смазки к зубчатым зацеплениям и подшипникам в соответствии с требованиями 4.2.4 части IX «Механизмы» Правил классификации и постройки морских судов.

 Π р и м е ч а н и е . Контроль межцентровых расстояний, непараллельности осей валов, перекоса осей и зазоров в зацеплении проводится на попарно связанных зацеплением валах.

5.7.11 По окончании освидетельствования узлов и деталей разобщительных муфт главных механизмов осуществляется техническое наблюдение за монтажом; при этом контролируются следующие операции:

монтаж неподвижной части муфты (кожуха, корпуса) на клиньях, на фундаменте стенда;

монтаж ведущей части муфты;

монтаж ведомой части муфты;

пригонка опорно-упорных подшипников по постелям:

пригонка опорно-упорных подшипников по шейкам штатных ведущего и ведомого валов с проверкой их соосности или по фальшвалу;

центровка ведущего и ведомого валов;

центровка ведущей части муфты (вала) со штатным двигателем (редуктором или двигателем) редуктором стенда и ведомой части муфты (вала) нагрузочным устройством;

монтаж систем, обслуживающих муфту.

- **5.7.12** При проведении стендовых испытаний передачи главных механизмов необходимо руководствоваться требованиями 5.12, а также приведенными ниже требованиями.
- **5.7.12.1** Испытание передачи, как правило, проводится со штатным приводным двигателем и/или муфтой.

5.7.12.2 При проведении испытаний передачи со стендовым приводным двигателем режимы работы должны отвечать условиям работы передачи со штатным двигателем, при этом проверяются:

реверсирование приводным двигателем;

реверсирование, предусмотренное конструкцией передачи (реверс-редуктор):

реверсирование реверс-муфтами;

изменение частоты вращения приводного двигателя;

изменение частоты вращения выходного вала, предусмотренное конструкцией передачи;

изменение частоты вращения с помощью гидротрансформатора;

разобщение передачи с приводным двигателем или с нагрузкой.

- **5.7.12.3** Действие навешенных механизмов и их монтаж осуществляются в соответствии с требованиями настоящих Правил в зависимости от принципа действия и назначения механизма.
- **5.7.12.4** Режимы испытаний передач по времени и по нагрузке определяются требованиями, предъявляемыми к штатному приводному двигателю.
- **5.7.12.5** По окончании испытаний передача подвергается ревизии, при этом подлежат осмотру:

шестерни и колеса, встроенные муфты, подшипники,

проверяется контакт в зацеплении, пятно которого должно быть не менее 90 % по длине и 60 % по высоте зубьев, а для передач вспомогательных механизмов — не менее 70 % по длине и 50 % по высоте зубьев.

- **5.7.12.6** Проводится сборка передачи с выборочной проверкой результатов замеров деталей и замеров на монтаж.
- **5.7.12.7** Проводятся контрольные испытания с проверкой необходимых параметров.
- **5.7.13** При проведении стендовых испытаний разобщительных муфт главных механизмов необходимо руководствоваться требованиями 5.11, а также приведенными ниже требованиями.
- **5.7.13.1** Испытание разобщительных муфт, как правило, проводится со штатным приводным двигателем и/или редуктором.
- **5.7.13.2** При испытании разобщительных муфт со стендовым приводным двигателем, агрегатом «двигатель-редуктор» или редуктором режимы должны отвечать условиям работы в зависимости от штатной схемы, которая должна предусматривать:

реверсирование приводным двигателем или реверс-редуктором;

изменение частоты вращения.

- **5.7.13.3** В зависимости от конструкции муфты проверяются:
- .1 шлицевые, кулачковые, зубчатые и фрикционные муфты —

включение и выключение муфты при неподвижном и вращающемся ведущем вале муфты: на передний ход, на задний ход, при различных режимах и частотах вращения, если это предусмотрено конструкцией и необходимо по условиям эксплуатации;

действие механизма включения муфты;

при этом фиксируются:

температура муфты;

давление рабочей среды при гидравлическом приводе механизма включения;

проскальзывание по предельному моменту, если оно предусмотрено;

.2 гидротрансформаторы, гидромуфты, электромагнитные муфты —

включение и выключение муфты при неподвижном и вращающемся ведущем вале муфты: на передний ход, на задний ход, при различных режимах и частотах вращения, если это предусмотрено конструкцией и необходимо по условиям эксплуатации;

заполнение и опорожнение гидромуфт и гидротрансформаторов;

изменение частоты вращения ведомого вала гидротрансформатором при различных нагрузках, а при необходимости — переход в режим гидромуфты; скольжение муфт.

- **5.7.13.4** Испытания электрической части электромагнитных муфт осуществляются в соответствии с требованиями разд. 10.
- **5.7.13.5** При испытаниях фиксируются следующие параметры:

температура масла на входе и выходе;

время заполнения и опорожнения муфт;

расход (подача) насосов, обслуживающих муфту, при наполнении муфт и при пополнении утечек;

скольжение.

5.7.13.6 По окончании испытаний муфты подвергаются ревизии, при этом подлежат осмотру:

валы;

поверхности контакта;

уплотнения;

подшипники;

насосы;

механизмы включения.

- **5.7.13.7** Проводится сборка муфты с выборочной проверкой результатов замеров деталей и замеров на монтаж.
- **5.7.13.8** Проводятся контрольные испытания с проверкой необходимых параметров.
- **5.7.14** Техническое наблюдение за изготовлением передач вспомогательных механизмов, их узлов и деталей осуществляется в объеме, указанном в табл. 5.7.1, и в соответствии с применимыми требованиями настоящей главы и 5.12.

5.8 ВСПОМОГАТЕЛЬНЫЕ МЕХАНИЗМЫ

5.8.1 Техническое наблюдение за изготовлением перечисленных в табл. 5.8.1 вспомогательных механизмов осуществляется в соответствии с требованиями настоящей главы и 5.9.

5.8.2 Пароструйные эжекторы конденсаторов.

5.8.2.1 При наружном осмотре окончательно обработанных деталей пароструйных эжекторов необходимо убедиться в следующем:

конструкция сопел и корпуса выполнена в соответствии с рабочими чертежами;

контрольные сечения сопел проверены одобренным методом;

при монтаже эжектора проверено положение сопла в корпусе относительно камеры разрежения.

5.8.2.2 Окончательная регулировка проводится при стендовых испытаниях на спецификационных параметрах, при этом фиксируются следующие параметры:

давление пара перед соплами всех ступеней;

давление паровоздушной смеси в теплообменных аппаратах всех ступеней;

количество отсоса сухого воздуха.

5.8.2.3 Техническое наблюдение за теплообменными аппаратами, обслуживающими пароструйные эжекторы, осуществляется в соответствии с требованиями разд. 9 части V «Техническое наблюдение за постройкой судов».

5.8.3 Эжекторы осушения.

Следует руководствоваться требованиями 5.8.2; при этом фиксируются следующие параметры:

давление рабочей среды;

давление в камере разрежения;

давление на выходе;

расход рабочей среды;

подача отсасываемой жидкости.

5.8.4 Механизмы подъема и спуска колонн погружных насосов забортной воды ПБУ.

Техническое наблюдение за механизмами подъема и спуска колонн погружных насосов забортной воды ПБУ осуществляется в сооветствии с применимыми требованиями Правил по грузоподъемным устройствам морских судов.

- 5.8.5 Вентиляторы машинных отделений (помещений), закрытых помещений и трюмов, предназначенных для перевозки автотранспорта и подвижной техники, охлаждаемых помещений, станций грузовых насосных помещений, ангаров для вертолетов, трюмов, приспособленных для перевозки опасных грузов, аккумуляторных помещений и ящиков.
- **5.8.5.1** При наружном осмотре окончательно обработанных деталей вентиляторов необходимо убедиться в следующем:

примененные материалы соответствуют технической документации;

Таблица 5.8.1

Объект технического наблюдения	Осмотр мате- риалов, заготовок, узлов, деталей	Проверка сопровождающих документов, клейм	Дефекто- скопия	Гидравли- ческие испытания	Специаль- ные испытания	Стендо- вые испытания
Компрессоры пускового воздуха						+
Турбонагнетатели						+
Воздухонагнетатели главных котлов						+
Насосы:						·
циркуляционные главных конденсаторов						+
масляные главных дизелей и турбин						+
котельнопитательные						+
конденсатные						+
форсуночные котельные						+
топливоперекачивающие						+
осущительные						+
пожарные						+
балластные						+
грузовые						+
охлаждающие						+
главных двигателей						+
Пароструйные эжекторы конденсаторов						+
Циркуляционные насосы утилизационных котлов						+
Сепараторы топлива и масла						+
Эжекторы осушения						+
Вентиляторы (см. 5.8.5)	+	+				+
Моторы и насосы гидросистем:						,
валы, роторы	+	+				+
штоки	+	+				·
поршни, плунжеры	+	+				
корпуса	+	+		+		
цилиндры	+	+		+		
арматура и трубопроводы	+	+		+		
Погружные подпиточные насосы ПБУ				· .		
Механизмы подъема и спуска ПБУ						+
Механизмы подъема и спуска трубопроводов и погружных						
подпиточных насосов						+
The state of the s						·

рабочее колесо подвергнуто динамической балансировке или только статической.

5.8.5.2 При проверке соответствия монтажа вентиляторов требованиям чертежей следует убедиться в следующем:

подшипники скольжения пригнаны по постелям и шейкам с обеспечением требуемого зазора;

требуемые установочные радиальные и аксиальные зазоры между рабочим колесом и корпусом установлены;

вал сцентрован с приводным двигателем;

на выполненный монтаж органом технического контроля представлены результаты замеров деталей и замеров на монтаж;

проверки выполнены одобренными методами.

5.8.5.3 При проведении стендовых испытаний вентиляторов следует руководствоваться требованиями 5.9.5.7 и 5.12.

5.8.6 Моторы и насосы гидросистем.

5.8.6.1 Валы и роторы.

5.8.6.2 Штоки.

5.8.6.3 Поршни и плунжеры.

5.8.6.4 Корпуса.

5.8.6.5 Цилиндры.

5.8.6.6 Техническое наблюдение по 5.8.6.1 — 5.8.6.5 осуществляется в соответствии с требованиями 5.9 в зависимости от принципа действия насоса.

5.8.6.7 Окончательная проверка монтажа насосов переменной подачи и гидромоторов осуществляется при проверке в действии.

5.8.6.8 При проведении стендовых испытаний насосов переменной подачи и моторов гидросистем следует руководствоваться требованиями 5.12 и следующим:

 .1 фиксируются следующие параметры: потребляемая мощность; подача от нулевой до максимальной подачи или расхода;

давление рабочей среды;

температура рабочей среды;

давление в обслуживающих системах;

- .2 испытания проводятся в режиме изменения подачи рабочей среды по направлению от максимальной одного направления до максимальной другого;
- .3 по окончании испытаний проводится ревизия насоса (мотора); при этом подлежат осмотру:

опорные поверхности для плунжеров;

плунжеры;

блок цилиндров;

уплотнения;

насос, обслуживающий вспомогательные системы;

- .4 проводится сборка насоса с выборочной проверкой результатов замеров деталей и замеров на монтаж;
- **.**5 проводятся контрольные испытания с проверкой необходимых параметров.

5.9 ДЕТАЛИ МЕХАНИЗМОВ, ПЕРЕЧИСЛЕННЫХ В ТАБЛИПЕ 5.8.1

5.9.1 Насосы и компрессоры поршневые.

5.9.1.1 Блоки цилиндров.

При наружном осмотре окончательно обработанных блоков цилиндров необходимо убедиться в следующем:

обработанные поверхности под посадку втулок цилиндров и поверхности, сопрягаемые с картером, крышкой и между собой, выполнены в соответствии с технической документацией;

концентричность расточек, перпендикулярность оси расточек к торцевым поверхностям проверены согласованным методом;

блок цилиндров подвергается гидравлическому испытанию в соответствии с требованиями 5.1.9.

5.9.1.2 Втулки цилиндров.

При наружном осмотре окончательно обработанных втулок цилиндров необходимо убедиться в следующем:

обработанные поверхности под посадку в блок и сопряжение с крышкой выполнены в соответствии с технической документацией;

концентричность поверхностей и перпендикулярность оси расточки к плоскости бурта проверены согласованным методом;

втулки цилиндров подвергались гидравлическому испытанию в соответствии с требованиями 5.1.9.

5.9.1.3 Поршни.

При наружном осмотре окончательно обработанных поршней необходимо убедиться в том, что концентричность поверхностей, перпендикулярность и пересечение оси поршня с осью расточки под палец проверены согласованным методом.

5.9.1.4 Штоки поршневые.

При наружном осмотре окончательно обработанных поршневых штоков необходимо убедиться в следующем:

посадочные поверхности выполнены в соответствии с рабочими чертежами;

концентричность поверхностей, перпендикулярность или соосность оси штока поверхностям сопряжения с поршнем и крейцкопфом проверены согласованным методом.

5.9.1.5 Шатуны.

При наружном осмотре окончательно обработанных шатунов необходимо убедиться в следующем:

обработанные поверхности под подшипники верхней и нижней головки шатуна выполнены в соответствии с технической документацией;

параллельность осей расточек под подшипники или плоскостей под их установку и параллельность осей подшипников проверены согласованным метолом.

5.9.1.6 Валы коленчатые.

При наружном осмотре окончательно обработанных коленчатых валов или их деталей в составных коленчатых валах необходимо убедиться в следующем:

обработанные поверхности шеек и под посадку, натяги выполнены в соответствии с технической документацией;

рамовые шейки соосны, образующие шатунных шеек параллельны образующим рамовых шеек, угол заклинки кривошипов, параллельность осей отверстий под запрессовку шеек и их перпендикулярность к торцовым поверхностям проверены одобренными методами.

5.9.1.7 Монтаж поршневых насосов и компрессоров.

При монтаже поршневых насосов и компрессоров для определения правильности монтажа, отвечающего требованиям документации, необходимо убедиться в следующем:

цилиндры при прямодействующем насосе соосны; коленчатый вал уложен в пригнанные подшипники; при этом оси цилиндров перпендикулярны к осям кривошипов при нахождении их на МТ и параллельны направляющим (параллелям);

поршни при перемещении с ВМТ на НМТ сохраняют постоянный круговой зазор по своей кромке;

подшипники движения пригнаны и установлены с требуемыми зазорами;

коленчатый вал сцентрован с приводным валом; на выполненный монтаж органом технического контроля представлены результаты замеров;

проверки выполнены согласованным методом.

5.9.1.8 При проведении стендовых испытаний компрессоров пускового воздуха необходимо руко-

водствоваться требованиями 5.12, а также необходимо:

проверить пусковые характеристики приводного двигателя;

замерить потребляемую мощность от холостого хода до достижения предельного давления;

проверить действие автоматических устройств пуска и остановки компрессора при заданных давлениях, продувки влагомаслоотделителя;

проверить действие предохранительных клапанов всех ступеней.

5.9.1.8.1 В процессе испытаний фиксируются следующие параметры:

подача;

температура воздуха на входе и выходе из компрессора;

температура охлаждающей воды на входе и выхоле:

давление воздуха после каждой ступени компрессора.

- **5.9.1.8.2** По окончании испытаний проводится ревизия компрессора; при этом, как правило, подлежат осмотру втулки цилиндров, поршни, коленчатый вал, подшипники рамовые и шатунные, всасывающие и нагнетательные клапаны.
- **5.9.1.8.3** По окончании ревизии и устранении выявленных дефектов производится сборка компрессора с выборочной проверкой результатов замеров деталей и замеров на монтаж, после чего проводятся контрольные испытания с проверкой необходимых параметров.
- **5.9.1.9** При проведении стендовых испытаний приводных и прямодействующих паровых насосов следует руководствоваться требованиями 5.12 и приведенными ниже.
- **5.9.1.9.1** Проверяется действие предохранительных клапанов.

5.9.1.9.2 Фиксируются следующие параметры:

подача:

давление всасывания;

давление нагнетания;

температура перекачиваемой среды;

число двойных ходов;

параметры пара и расход пара;

потребляемая мощность и характеристики приводного двигателя для приводных насосов.

5.9.1.9.3 По окончании испытания проводится ревизия насоса, при этом подлежат осмотру втулки цилиндров, поршни, всасывающие и нагнетательные клапаны и штоки, а также:

для приводных насосов:

коленчатый вал;

рамовые подшипники;

подшипники шатуна;

направляющие, параллели;

передачи, редукторы;

для прямодействующих насосов:

втулки паровых цилиндров;

поршни паровых цилиндров;

штоки паровых цилиндров;

золотники и золотниковые коробки.

5.9.1.9.4 Проводится сборка насоса с выборочной проверкой результатов замеров деталей и замеров на монтаж, после чего проводятся контрольные испытания с проверкой необходимых параметров.

5.9.2 Насосы, компрессоры центробежные и ротационные.

5.9.2.1 Валы.

При наружном осмотре окончательно обработанных валов необходимо убедиться в следующем:

обработанные поверхности под посадки рабочих органов насосов, полумуфт и облицовок, величины натягов и рабочей шейки выполнены в соответствии с технической документацией;

концентричность поверхностей, бой торцевой поверхности полумуфты проверены согласованным методом.

5.9.2.2 Рабочие колеса и роторы.

При наружном осмотре окончательно обработанных рабочих колес и роторов необходимо убедиться в следующем:

обработанные поверхности под посадку и уплотнения выполнены в соответствии с технической документацией;

пригонка посадочной поверхности, бой торцевых поверхностей, концентричность поверхностей проверены согласованным методом;

рабочие колеса и роторы подвергаются динамической балансировке или только статической.

5.9.2.3 Корпуса.

При наружном осмотре окончательно обработанных корпусов насосов необходимо убедиться в спелующем:

обработанные поверхности уплотнений и соединений выполнены и проверены в соответствии с технической документацией;

концентричность расточек, перпендикулярность оси расточек к торцевой присоединительной поверхности проверены согласованными методами;

корпус подвергается гидравлическому испытанию в соответствии с 5.1.9.

5.9.2.4 При монтаже центробежных и ротационных насосов и компрессоров для контроля монтажа, отвечающего требованиям документации, необходимо убедиться в следующем:

требуемые радиальные и аксиальные зазоры в подшипниках скольжения, уплотнениях, между корпусом и рабочим колесом (ротором) установлены;

вал сцентрован с приводным двигателем;

на выполненный монтаж органом технического контроля представлены результаты замеров;

проверки выполнены согласованным методом.

- **5.9.2.5** При проведении стендовых испытаний центробежных и ротационных насосов следует руководствоваться требованиями 5.12, а также необходимо:
- проверить пусковые характеристики приводного двигателя;
- .2 зафиксировать потребляемую мощность для компрессоров от холостого хода до достижения предельного давления;
- .3 проверить автоматические устройства по пуску и остановке насосов при заданных давлениях;
 - .4 проверить действие предохранительных клапанов;
 - .5 зафиксировать следующие параметры:

подачу (для компрессоров — среду при нормальных условиях);

давление всасывания и нагнетания;

температуру среды (для компрессоров — на входе и выходе).

- .6 у самовсасывающих насосов проверить работу на режиме сухого всасывания с определением времени отсоса воздуха;
- .7 по окончании испытаний провести ревизию механизма; при этом, как правило, осмотреть:

валы:

рабочие колеса и роторы;

корпуса;

шейки валов (при подшипниках скольжения);

.8 после окончания ревизии и устранения дефектов производится сборка механизма и проводятся контрольные испытания с проверкой необходимых параметров.

5.9.3 Насосы и компрессоры винтовые и шестеренчатые.

5.9.3.1 Валы и винты.

При наружном осмотре окончательно обработанных валов и винтов необходимо убедиться в следующем:

обработанные поверхности под посадки, термическая обработка выполнены в соответствии с технической документацией;

концентричность поверхностей, профили винтовой поверхности и зубьев, термическая обработка рабочих поверхностей проверены согласованными методами.

5.9.3.2 Корпуса.

5.9.3.2.1 При наружном осмотре обработанных корпусов необходимо убедиться в следующем:

обработанные поверхности под посадку обойм, подшипников, шестерен и поверхностей соединений выполнены в соответствии с технической документацией;

концентричность расточек под подшипники с расточками под рабочие органы, межцентровые расстояния расточек под рабочие органы и подшипники, параллельность осей расточек и их перпендикулярность к торцевым поверхностям проверены согласованными методами.

5.9.3.2.2 Корпус подвергается гидравлическому испытанию в соответствии с требованиями 5.1.9.

5.9.3.3 Обоймы винтов.

5.9.3.3.1 При наружном осмотре окончательно обработанных обойм винтов необходимо убедиться в следующем:

обработанные поверхности под посадки, межцентровые расстояния расточек под винты выполнены в соответствии с технической документацией;

концентричность расточек, перпендикулярность их образующих к торцовым поверхностям, параллельность осей расточек между собой и общей оси и межцентровые расстояния расточек проверены согласованными методами.

5.9.3.3.2 Обоймы винтов подвергаются гидравлическому испытанию в соответствии с 5.1.9.

5.9.3.4 Шестерни.

При наружном осмотре окончательно обработанных шестерен необходимо убедиться в следующем:

обработанные поверхности под посадку и термическая обработка выполнены в соответствии с технической документацией;

форма зуба, контакт в зацеплении и термическая обработка проверены согласованными методами.

5.9.3.5 При монтаже винтовых и шестеренчатых насосов и компрессоров для определения правильности монтажа, отвечающего рабочей документации, необходимо убедиться в следующем:

требуемые радиальные и аксиальные зазоры между корпусом (обоймой) и рабочим органом (шестерни, винты) установлены;

требуемые межосевые расстояния и контакт в зацеплении выдержаны;

ведущий вал сцентрован с приводным двигателем:

на выполненный монтаж органом технического контроля представляются результаты замеров;

проверки выполнены согласованными методами.

- **5.9.3.6** При проведении стендовых испытаний винтовых и шестеренчатых насосов и компрессоров следует руководствоваться требованиями 5.12, а также:
- **.1** проверить действие предохранительных клапанов;
 - .2 зафиксировать следующие параметры:

подачу (для компрессоров — среду при нормальных условиях);

давление всасывания и нагнетания;

температуру среды (для компрессоров — на входе и выходе);

- .3 при глубоком регулировании подачи винтовых насосов и компрессоров фиксируется мощность от холостого хода до предельного давления; при постоянной подаче мощность на режиме;
- **.4** по окончании испытаний проводится ревизия механизма; при этом, как правило, подлежат осмотру:

валы и винты;

обоймы винтовых насосов;

рабочие полости шестеренчатых насосов; крышки корпусов шестеренчатых насосов; шестерни;

.5 по окончании ревизии и устранения выявленных дефектов проводится сборка механизма с выборочной проверкой результатов замеров деталей и замеров на монтаж и проводятся контрольные испытания с проверкой необходимых параметров.

5.9.4 Сепараторы топлива и масла.

5.9.4.1 Барабаны и их валы.

5.9.4.1.1 При наружном осмотре окончательно обработанных барабанов и их валов необходимо убедиться в следующем:

обработанные поверхности под посадки и соединения, в том числе резьбовые, выполнены в соответствии с технической документацией;

концентричность обработанных поверхностей, пригонка посадочных поверхностей, в том числе резьбовых, и дефектоскопия проверены согласованными методами.

5.9.4.1.2 Барабан в сборе и вал с ведомой шестерней совместно подвергаются динамической балансировке.

5.9.4.2 Корпуса.

При наружном осмотре окончательно обработанных корпусов необходимо убедиться в следующем:

обработанные поверхности под посадки и уплотнения выполнены в соответствии с технической документацией;

соосность расточек под подшипники каждого из валов, межосевое расстояние расточек и угол скрещивания осей проверены согласованными методами.

5.9.4.3 Шестерни.

При наружном осмотре окончательно обработанных шестерен необходимо убедиться в следующем:

обработанные поверхности, в том числе посадки и термическая обработка, выполнены в соответствии с технической документацией;

форма зубьев, контакт зацепления, поверхности посадок и их пригонка, термическая обработка проверены согласованными методами.

5.9.4.4 При монтаже сепараторов топлива и масла для определения правильности монтажа, отвечающего требованиям технической документации, необходимо убедиться в следующем:

требуемые межосевые расстояния и контакт в зацеплении выдержаны;

собранный сепаратор легко проворачивается вручную;

ведущий вал сцентрован с приводным двигателем:

на выполненный монтаж органом технического контроля представлены результаты замеров;

проверки выполнены согласованными методами.

5.9.4.5 При проведении стендовых испытаний сепараторов топлива и масла следует руководствоваться требованиями 5.9.4.5.1 — 5.9.4.5.5 и 5.12.

5.9.4.5.1 Во время испытаний проверяются:

пусковые характеристики сепаратора;

качество сепарирования;

действие фрикционной муфты;

действие стопора тормоза;

ручная и автоматическая системы разгрузки самоочищающихся сепараторов;

работа сепаратора в автоматическом режиме по специальной программе, одобренной Регистром;

работа сепаратора в режимах кларификации и пурификации;

расход воды.

5.9.4.5.2 Во время испытаний фиксируются:

подача насоса;

подача сепаратора;

температура обрабатываемой среды;

вязкость обрабатываемой среды;

температура промывочной воды;

уровни вибрации и шума.

5.9.4.5.3 Испытания проводятся на топливе и масле при различных вязкостях с получением рекомендуемой для принятой вязкости подачи.

5.9.4.5.4 По окончании испытаний проводится ревизия сепаратора, во время которой подлежат осмотру:

барабан и его детали, в том числе результаты дефектоскопии барабана;

вал барабана;

шестерни;

фрикционная муфта.

5.9.4.5.5 По окончании ревизии и устранения дефектов проводится сборка сепаратора с выборочной проверкой результатов замеров деталей и замеров на монтаж и проводятся контрольные испытания с проверкой необходимых параметров.

5.9.5 Газотурбонагнетатели и воздухонагнетатели. **5.9.5.1** Валы и роторы.

При наружном осмотре окончательно обработанных валов, роторов и их деталей (рабочих колес, дисков) необходимо убедиться в следующем:

обработанные поверхности под посадки, натяги выполнены в соответствии с технической документацией;

концентричность поверхностей и отсутствие дефектов проверены одобренным методом;

окончательно собранный ротор подвергался динамической балансировке.

5.9.5.2 Уплотнения.

При наружном осмотре окончательно обработанных уплотнений необходимо убедиться в следующем:

поверхности под посадку и рабочая поверхность выполнены в соответствии с технической документацией;

концентричность поверхностей и обеспечение радиального зазора проверены согласованным методом.

5.9.5.3 Корпуса.

При наружном осмотре окончательно обработанных корпусов газотурбонагнетателей необходимо убедиться в следующем:

обработанные поверхности под посадки, поверхности разъемов выполнены в соответствии с технической документацией;

соосность расточек, перпендикулярность оси расточек к торцевым поверхностям и обеспечение радиальных и аксиальных замеров проверены согласованным методом.

5.9.5.4 Подшипники.

При наружном осмотре окончательно обработанных подшипников скольжения необходимо убедиться в следующем:

обработанные поверхности под постель и шейки выполнены в соответствии с технической документацией:

концентричность обработанных поверхностей, перпендикулярность их оси к торцевым поверхностям, металлография проведены одобренным методом.

- **5.9.5.5** При монтаже газотурбонагнетателей для удовлетворения требованиям рабочей документации необходимо убедиться в следующем:
- .1 укладка ротора произведена в соответствии с технической документацией в отношении:

пригонки подшипников по постелям;

пригонки подшипников по шейкам и установки зазоров;

проверки радиальных и аксиальных зазоров в проточной части и уплотнениях;

при этом проверки выполнены одобренным методом;

- **.2** на выполненный монтаж органом технического контроля представлены результаты замеров.
- **5.9.5.6** При проведении стендовых испытаний газотурбонагнетателей следует руководствоваться требованиями 5.9.5.6.1 5.9.5.6.3 и 5.12.
 - **5.9.5.6.1** Фиксируются следующие параметры: по рабочему телу:

расход, температура и давление на входе и выходе;

время разгона при переходе с одного режима на другой (набор оборотов);

при имитации — потребляемая мощность;

по воздуху:

подача;

температура и давление на входе и выходе.

5.9.5.6.2 По окончании испытаний провести ревизию газотурбонагнетателей; при этом осмотреть:

вал и роторы;

уплотнения;

корпуса;

подшипники.

- **5.9.5.6.3** По окончании ревизии и устранения выявленных дефектов проводятся контрольные испытания с проверкой полученных параметров.
- **5.9.5.7** При массовом (серийном) производстве газотурбонагнетателей следует руководствоваться требованиями 5.9.5.7.1 5.9.5.7.2 и 5.12.
- **5.9.5.7.1** Испытания головных образцов газотурбонагнетателей для оформления СТО должны проводиться на специально оборудованном стенде в течение 1 ч при максимально допустимой эксплуатационной температуре.

В обоснованных случаях эти испытания могут быть проведены на двигателе, для которого газотурбонагнетатели предназначены, при работе его с перегрузкой не менее 10 % расчетной мощности в течение 1 ч.

5.9.5.7.2 Каждый газотурбонагнетатель должен быть подвергнут испытаниям на максимальной эксплуатационной частоте вращения в течение 20 мин.

В обоснованных случаях при положительном опыте надзора в течение длительного времени продолжительность испытаний может быть снижена до 10 мин.

Допускается проведение испытаний на двигателе, если газотурбонагнетатель является штатным или будет таковым для подобных двигателей. Продолжительность испытаний с перегрузкой двигателя не менее 10 % его расчетной мощности должна быть не менее 20 мин.

Там, где в производстве газотурбонагнетателей длительно и эффективно действует система качества, отвечающая одобренным стандартам, при определении количества испытуемых образцов в партии однотипных газотурбонагнетателей по усмотрению инспектора может быть применен принцип статистической выборки.

5.9.5.8 При проведении стендовых испытаний воздухонагнетателей следует руководствоваться требованиями 5.9.5 и 5.12 к параметрам воздуха; при этом зафиксировать потребляемую мощность и характеристику двигателя.

5.10 ПАЛУБНЫЕ МЕХАНИЗМЫ

5.10.1 Техническое наблюдение за изготовлением палубных механизмов проводится в объеме, указанном в табл. 5.10.1, и в соответствии с требованиями настоящей главы.

5.10.2 Рулевые приводы (машины).

5.10.2.1 Румпели основного и запасного приводов.

При наружном осмотре окончательно обработанных румпелей необходимо убедиться в следующем:

Таблица 5.10.1

№ π/π	Объект технического наблюдения	Осмотр материалов, заготовок, узлов, деталей	Проверка сопровождаю- щих документов, клейм	Дефектоскопия	Гидравлические испытания	Специальные испытания	Стендовые испытания
1	Палубные механизмы:						
	рулевые приводы (машины)						+
	румпели основного и запасного приводов	+	+	+			
	рулевые секторы	+	+				
	ползуны (ярмо баллера)	+	+				
	цилиндры	+	+		+		
	шестерни, зубчатые колеса и венцы	+	+	+			
	поршни со штоками	+	+				
	арматура и трубопроводы	+	+		+		
	валы приводные	+	+				
	соединительные пальцы привода румпеля	+	+	+			
2	Брашпили и шпили якорные:						+
	валы приводные, промежуточные и баллеры	+	+				
	звездочки цепные	+	+				
	шестерни, колеса зубчатые силовых передач	+	+	+			
	муфты разобщительные и предельного момента	+	+				
	тормоза ленточные и дисковые	+	+				
3	Шпили и лебедки швартовные:						+
	баллеры и валы грузовые	+	+				
	шестерни, колеса зубчатые силовых передач	+	+				
	муфты предельного момента	+	+				
	тормоза ленточные и дисковые	+	+				
4	Лебедки буксирные:						+
	валы грузовые и промежуточные	+	+				
	шестерни, колеса зубчатые силовых передач	+	+	+			
	устройства регулировки натяжения троса и тросоукладчики	+	+				
	тормоза	+	+				
5	Лебедки шлюпочные:		1				+
	валы грузовые и промежуточные	+	+				
	шестерни, зубчатые колеса силовых передач	+	+				
	тормоза автоматические и ручные	+	+				
	стопорные устройства	+	+				

обработанные поверхности под посадку на баллер, натяги и шпоночные пазы выполнены в соответствии с технической документацией;

перпендикулярность оси расточки под посадку к торцевой поверхности, параллельность осей шпоночных пазов между собой и оси расточки на посадку, для гидравлических машин — перпендикулярность оси румпеля к оси расточки под посадку проверены одобренными методами.

5.10.2.2 Рулевые секторы.

При наружном осмотре окончательно обработанных рулевых секторов необходимо убедиться в следующем:

обработанные поверхности под посадку на баллер, шпоночные пазы, поверхности под крепление зубчатых венцов, направляющие при штуртросовой передаче выполнены в соответствии с технической документацией;

перпендикулярность оси расточки под посадку к торцевой поверхности ступицы, параллельность осей шпоночных пазов между собой и оси расточки под посадку, параллельность образующих поверхностей под зубчатый венец оси баллера проверены одобренными методами.

5.10.2.3 Ползуны, ярмо.

При наружном осмотре окончательно обработанных ползунов необходимо убедиться в следующем:

обработанные поверхности скольжения, поверхности соединений с плунжерами, расточки под посадку втулок цапф шарнира и втулок румпеля выполнены в соответствии с технической документацией;

соосность расточек под втулки цапф шарнира, перпендикулярность осей цапф к оси расточки под втулку румпеля, параллельность поверхностей соединения с плунжерами между собой и перпенди-

кулярность их к поверхности скольжения ползуна проверены одобренными методами.

5.10.2.4 Цилиндры.

5.10.2.4.1 При наружном осмотре окончательно обработанных цилиндров необходимо убедиться в следующем:

обработанные поверхности под уплотнения и крепление выполнены в соответствии с технической документацией;

соосность расточек, перпендикулярность оси расточек к торцевым поверхностям проверены одобренными методами.

5.10.2.4.2 Цилиндры подвергаются гидравлическому испытанию в соответствии с требованиями 5.1.9.

5.10.2.5 Шестерни, зубчатые колеса и венцы.

При наружном осмотре окончательно обработанных шестерен, зубчатых колес и венцов необходимо убедиться в следующем:

обработанные поверхности под посадки, натяги и термическая обработка выполнены в соответствии с технической документацией;

форма зубьев, контакт в зацеплении, перпендикулярность оси расточки под посадку к торцевым поверхностям, термическая обработка проверены одобренными методами;

предусмотренная дефектоскопия проведена одобренным методом.

5.10.2.6 Поршни со штоками.

При наружном осмотре окончательно обработанных поршней со штоками необходимо убедиться в следующем:

обработанные поверхности под посадки и уплотнения выполнены в соответствии с технической документацией;

концентричность поверхностей, пригонка посадочных поверхностей, соосность или перпендикулярность посадочных поверхностей к оси проверены одобренным методом.

5.10.2.7 При монтаже рулевых машин для удовлетворения требований рабочей документации необходимо убедиться в следующем:

гидравлические цилиндры попарно установлены соосно, а их ось параллельна опорной поверхности ползуна и базовой плоскости;

опорная поверхность ползуна параллельна опорной поверхности станины;

ось румпеля параллельна, а ось расточки под головку баллера перпендикулярна к базовой плоскости;

монтаж и испытания гидросистемы выполнены в соответствии с технической документацией;

предохранительные клапаны проверены и отрегулированы;

входной вал редуктора сцентрован с приводным двигателем;

обеспечены требуемый контакт в зацеплении

шестерни выходного вала редуктора с зубчатым венцом сектора и их межцентровое расстояние;

в отношении редукторов — см. 5.7.9;

на выполненный монтаж и проверки органом технического контроля представлены результаты замеров; проверки выполнены одобренными, методами.

5.10.2.8 При проведении стендовых испытаний рулевых машин следует руководствоваться требованиями 5.10.2.8.1 — 5.10.2.8.11 и 5.12.

5.10.2.8.1 Питающие агрегаты испытываются без нагрузки.

5.10.2.8.2 Электрическое оборудование рулевых машин испытывается и подвергается ревизии в соответствии с требованиями разд. 10 части V «Техническое наблюдение за постройкой судов».

5.10.2.8.3 Испытание рулевой машины на холостом ходу с перекладкой румпеля (сектора) на оба борта в положения, отличающиеся друг от друга на 5°, до максимального угла перекладки и от максимального угла перекладки до нуля поочередно каждым агрегатом и при совместной работе агрегатов, если это предусмотрено, с каждого поста управления.

5.10.2.8.4 Испытание рулевой машины при 50-процентной нагрузке и максимальных углах перекладки на каждый борт поочередно каждым агрегатом с основного пульта управления, по 120 циклов.

5.10.2.8.5 Испытание рулевой машины при 100-процентной нагрузке и максимальных углах перекладки на оба борта поочередно каждым агрегатом с основного пульта управления, по 10 пиклов.

5.10.2.8.6 Поставляемый в запас насосный агрегат испытывается в составе рулевой машины на следующих режимах:

без нагрузки при неработающей рулевой машине:

без нагрузки при работе рулевой машины с максимальными углами перекладки в течение 5 циклов;

с полной нагрузкой по давлению.

5.10.2.8.7 При испытании рулевой машины фиксируются следующие параметры:

потребляемая мощность;

давление масла в силовой и вспомогательных системах;

температура масла и воздуха;

углы перекладки и время, необходимое для перекладки.

5.10.2.8.8 У четырехцилиндровой машины проверяется работа на двух цилиндрах по предложенной схеме.

5.10.2.8.9 При испытании рулевой машины проверяется:

сигнализация температуры масла, уровня масла и перегрузки электродвигателя;

действие предохранительных клапанов; нулевое положение органа управления.

5.10.2.8.10 По окончании испытания проводится ревизия рулевой машины, при этом, как правило, подлежат осмотру:

у гидравлических рулевых машин:

румпель, ползуны с ярмом, цилиндры, насосы;

у электрических рулевых машин:

зубчатые венцы сектора, шестерни, редукторы, муфты (устройства) включения (переключения).

5.10.2.8.11 По окончании ревизии и устранения дефектов проводится сборка рулевой машины с выборочной проверкой результатов замеров деталей и замеров на монтаж, и проводятся контрольные испытания с проверкой необходимых параметров.

5.10.3 Брашпили и якорные шпили.

5.10.3.1 Валы приводные, промежуточные и баллеры.

При наружном осмотре окончательно обработанных приводных промежуточных валов и баллеров необходимо убедиться в следующем:

обработанные поверхности под посадки, шейки выполнены в соответствии с технической документапией:

концентричность поверхностей посадок, шеек, пригонка поверхностей посадок проверены одобренными методами.

5.10.3.2 Звездочки цепные.

При наружном осмотре окончательно обработанных цепных звездочек необходимо убедиться в следующем:

обработанные поверхности под посадки, контактные поверхности выполнены в соответствии с технической документацией;

концентричность поверхностей, перпендикулярность оси расточки к торцевым поверхностям, пригонка посадочных поверхностей и контактных поверхностей муфт сцепления проверены одобренными методами.

5.10.3.3 Шестерни, колеса зубчатые силовых передач.

При наружном осмотре окончательно обработанных шестерен, зубчатых колес силовых передач необходимо убедиться в следующем:

обработанные поверхности под посадки, натяги, термическая обработка выполнены в соответствии с технической документацией;

форма зуба, контакт в зацеплении, пригонка поверхностей посадок, перпендикулярность осей расточек к торцевым поверхностям, концентричность и термическая обработка проверены одобренными метолами:

предусмотренная дефектоскопия проведена одобренным методом.

5.10.3.4 Муфты разобщительные и предельного момента.

При наружном осмотре окончательно обработанных ведущих и ведомых деталей разобщительных муфт и муфт предельного момента необходимо убедиться в следующем:

обработанные поверхности посадок, поверхности контакта ведущих и ведомых деталей муфт выполнены в соответствии с технической документацией;

пригонка поверхностей контакта и посадочных мест, концентричность расточек и перпендикулярность их осей к торцевым поверхностям проверены одобренными методами.

5.10.3.5 Тормоза ленточные и дисковые.

При наружном осмотре окончательно обработанных деталей тормозов необходимо убедиться в следующем:

материал фрикционной ленты (или накладок), конструкция, детали натяжения, поверхности контакта выполнены в соответствии с технической документацией;

поверхности контакта, их пригонка и регулировка проверены одобренными методами;

привод тормозных лент легко вращается усилием одного человека и имеет устройство для регулировки прилегания тормозной ленты к барабану.

Все освидетельствования и испытания датчиков и исполнительных механизмов в зависимости от принципа действия рассмотрены в соответствующих частях настоящих Правил.

5.10.3.6 При монтаже брашпилей и якорных шпилей необходимо убедиться в следующем:

валы уложены в подшипники, пригнанные по постелям и шейкам;

оси валов, попарно связанные зубчатым зацеплением, параллельны и обеспечивают требуемое межцентровое расстояние, включая ведущий вал редуктора с ведущей шестерней;

требуемый контакт в зубчатом зацеплении обеспечен;

ведущий вал редуктора сцентрован с приводным двигателем;

звенья якорной цепи правильно размещены в гнездах звездочки;

муфта предельного момента отрегулирована на допустимый момент;

в разобщительных муфтах обеспечен требуемый контакт, фиксированы положения «включено» и «выключено»;

образующие поверхности охватывающих или торцевых частей неподвижной части тормоза параллельны образующим охватываемых или торцовых поверхностей вращающихся частей тормоза;

на выполненный монтаж и проверки органом технического контроля представлены результаты замеров;

проверки выполнены одобренным методом.

- **5.10.3.7** При проведении стендовых испытаний брашпилей и якорных шпилей следует руководствоваться требованиями 5.12, а также необходимо:
- .1 проверить их работу на холостом ходу с изменением направления вращения в течение 30 мин в каждом направлении;
- **.2** испытать тормоз на удержание звездочек при максимально допустимой статической нагрузке в течение 10 мин;
- **.3** проверить работу муфты предельного момента и муфты включения и переключения;
- .4 испытать их при максимальной эксплуатационной нагрузке по тяговому усилию и скорости в течение 60 мин (по 30 мин на каждой звездочке);
- .5 по окончании испытания провести ревизию якорного механизма, при этом осмотреть валы и баллеры, подшипники, шестерни и зубчатые колеса редуктора, муфты разобщительные и предельного момента и тормоза;
- .6 по окончании ревизии и устранения выявленных дефектов, с выборочной проверкой результатов замеров деталей, провести сборку и контрольные испытания с проверкой параметров по тяговому усилию, скорости выбирания и потребляемой мощности.
 - 5.10.4 Шпили и лебедки швартовные.
 - 5.10.4.1 Баллеры, валы грузовые.
 - 5.10.4.2 Шестерни, колеса зубчатые.
 - 5.10.4.3 Муфты предельного момента.
 - 5.10.4.4 Тормоза ленточные и дисковые.
- **5.10.4.5** Техническое наблюдение по 5.10.4.1 5.10.4.4 осуществляется в соответствии с требованиями 5.10.3 в отношении деталей одноименных наименований, монтажа и стендовых испытаний.
 - 5.10.5 Лебедки буксирные.
 - 5.10.5.1 Валы грузовые и промежуточные.
 - 5.10.5.2 Шестерни, колеса зубчатые.
 - **5.10.5.3** Тормоза.
- **5.10.5.4** Техническое наблюдение по 5.10.5.1 5.10.5.3 осуществляется в соответствии с 5.10.3 в отношении деталей одноименных наименований, монтажа и стендовых испытаний.
- **5.10.5.5** Устройства регулировки натяжения троса, тросоукладчики.

При наружном осмотре окончательно обработанных деталей устройств натяжения троса и тросоукладчиков необходимо убедиться в следующем:

поверхности контакта и их термическая обработка выполнены в соответствии с технической документацией;

все освидетельствования датчиков и исполнительных механизмов устройств регулировки натяжения троса рассмотрены, в зависимости от принципа действия, в соответствующих частях Правил;

окончательная проверка в действии при испытании механизма.

- 5.10.6 Лебедки шлюпочные.
- 5.10.6.1 Валы грузовые и промежуточные.
- **5.10.6.2** Шестерни, зубчатые колеса силовых передач.
 - 5.10.6.3 Тормоза автоматические и ручные.
- **5.10.6.4** Техническое наблюдение по 5.10.6.1 5.10.6.3 осуществляется в соответствии с 5.10.3 в отношении деталей одноименных наименований, монтажа и стендовых испытаний.
 - 5.10.6.5 Стопорные устройства.

Окончательная проверка в действии осуществляется при стендовых испытаниях механизма.

Лебедки должны быть испытаны приложением к ним статической нагрузки, в 1,5 раза превышающей максимальную рабочую нагрузку, которая должна удерживаться с помощью тормозов.

5.11 ТЕЛЕГРАФЫ МЕХАНИЧЕСКИЕ

5.11.1 При наружном осмотре деталей механических телеграфов и телеграфов в сборе следует убедиться, что их конструкция и размеры выполнены в соответствии с технической документацией с обеспечением фиксированного положения рукояток и указателей. При освидетельствовании телеграфы подвергаются стендовым испытаниям.

5.12 СТЕНДОВЫЕ ИСПЫТАНИЯ

- **5.12.1** Стендовые испытания проводятся по программе, одобренной Регистром. До начала проведения стендовых испытаний инспектору должны быть предъявлены:
- .1 документ органа технического контроля о готовности стенда к испытаниям механизма на стенде и о тарировке нагрузочного устройства;
- .2 схема оборудования стенда, согласованная с инспектором (системы, механизмы, устройства и приборы, обслуживающие стенды);
- .3 документ органа технического контроля о проведении на предприятии (изготовителе) испытаний с представлением результатов по контролируемым параметрам;
- **.4** документ о проверке контрольно-измерительных приборов стенда или штатных приборов;
- .5 техническая документация на изготовление и поставку изделия;
 - .6 программа испытаний;
 - .7 методика испытаний;
- .8 описание и инструкция по обслуживанию, чертежи, результаты обмеров деталей и замеров на

монтаж, обоснование отступлений от рабочих чертежей;

- .9 формуляр (паспорт) на механизм;
- .10 документация на комплектующее оборудование при его установке на стенд с механизмом, подлежащим испытанию.
- **5.12.2** Как правило, перерыв в стендовых испытаниях более 15 мин вследствие неисправностей влечет за собой, в зависимости от причины, как минимум, повторение прерванного режима, а при замене деталей, являющихся объектами технического наблюдения Регистра, повторение испытаний.

По результатам анализа причин перерыва в испытаниях должно быть сделано заключение о мероприятиях, исключающих повторное появление неисправностей, если они не являются случайными.

При необходимости продолжительность стендовых испытаний может быть увеличена.

- **5.12.3** Методика проведения испытаний согласовывается с инспектором с учетом инструкции по эксплуатации и оборудования стенда. Все монтажные и демонтажные работы также выполняются по инструкциям.
- **5.12.4** Предусмотренный программой объем ревизии может быть изменен инспектором в зависимости от результатов испытаний и характера дефектов, обнаруженных при ревизии.
- **5.12.5** Контрольные испытания после ревизии проводятся в режиме номинальной нагрузки, если номинальные режимы и параметры являются основными в эксплуатации механизма.
- **5.12.6** Как правило, завершающим этапом освидетельствования объекта технического наблюдения являются контрольные испытания с оформлением документов в соответствии с Номенклатурой РС.

Исключение контрольных испытаний является в каждом случае предметом специального рассмотрения Регистром.

- **5.12.7** Предусмотренная программой продолжительность контрольных испытаний может быть изменена инспектором в зависимости от результатов стендовых испытаний и ревизии.
- **5.12.8** Комплектующее оборудование и параметры его работы проверяются в степени, необходимой для стендовых испытаний объекта наблюдения, если комплектующее оборудование само не является предметом стендовых испытаний. Проверка осуществляется в соответствии с требованиями Правил.
- **5.12.9** На каждый объект наблюдения должны быть предъявлены все данные, необходимые для оформления документов Регистра на объект (документы предприятия (изготовителя) на материал, детали, комплектующее оборудование, результаты замеров и т. п.).
- **5.12.10** Если объект технического наблюдения предъявлен инспектору для проведения стендовых

испытаний, все работы на механизме и на стенде должны производиться по согласованию с инспектором.

- **5.12.11** Испытания законченного изготовлением объекта проводятся, как правило, в следующем порядке:
 - .1 стендовые испытания и ревизия;
 - .2 контрольные испытания.

Удовлетворительные результаты испытаний являются основанием для выдачи документов Регистра.

- **5.12.12** При проведении стендовых испытаний двигателей внутреннего сгорания и турбин, в зависимости от их назначения, должны учитываться следующие особенности:
- .1 главные двигатели внутреннего сгорания и турбины, предназначенные для работы на винт фиксируемого шага (ВФШ), испытываются по винтовой характеристике свободного хода судна.

Методика вывода на винтовую характеристику и перехода с режима на режим подлежит согласованию с инспектором;

- .2 главные двигатели (турбины), предназначенные для работы на винт фиксируемого шага и крыльчатые движители (КД), могут испытываться по винтовой характеристике и по нагрузочной (регуляторной) характеристике с выходом на номинальную мощность при постоянной частоте вращения;
- .3 при наличии конструктивных особенностей в комплексе ВРШ двигатель (редуктор, разобщительная муфта и т. п.), влияющих на проведение испытаний, порядок проведения испытаний должен быть предметом специального рассмотрения Регистром;
- .4 двигатели (турбины), предназначенные для приведения в действие генераторов, компрессоров, насосов и тому подобных механизмов, должны испытываться на нагрузочной характеристике с выходом на номинальную мощность при постоянной частоте вращения;
- .5 при проверке действия режимных регуляторов должно обращаться внимание на обеспечение стабильного поддержания частоты вращения на установившихся режимах, а также отклонения частоты вращения и время ее стабилизации при сбросах и набросах нагрузок, которые не должны выходить за пределы норм, установленных Правилами классификации и постройки морских судов;
- .6 при проверке действия предельного выключателя или устройства, предотвращающего превышение предельной допустимой частоты вращения, обращается внимание на частоту вращения, при которой предельный выключатель или устройство вступают в действие.
- **5.12.13** Стендовые испытания должны проводиться в условиях, близких к эксплуатационным, т. е. при нормальном давлении рабочей среды перед турбинами, нормальном давлении вспышки и сгорания топлива для двигателей внутреннего

сгорания, при различных нагрузках агрегата, для чего стенд должен быть оборудован устройствами, обеспечивающими получение необходимых характеристик испытываемого агрегата.

Одновременно с испытанием турбин и двигателей внутреннего сгорания испытываются все штатные обслуживающие их вспомогательные механизмы: насосы, холодильники, фильтры и т. п.

Серийные турбины и ДВС могут испытываться без штатных вспомогательных механизмов и оборудования, кроме случаев, когда эти механизмы и оборудование навешены на турбину или ДВС или являются неотъемлемой частью систем турбины или ДВС в пределах механизма. Стендовые вспомогательные механизмы и оборудование в этом случае должны иметь характеристики, аналогичные штатным.

- **5.12.14** При испытании инспектор должен убедиться, что все части турбин и двигателей внутреннего сгорания работают без ненормальных нагревов, стуков, вибрации; все соединения и стыки плотны и прочны.
- **5.12.15** Продолжительность стендовых испытаний устанавливается в соответствии с указаниями табл. 5.12.15, при этом:
- **.1** с учетом условий использования ДВС в эксплуатации объем испытаний может быть расширен;
- **.2** замеры параметров на расчетной мощности фиксируются дважды с интервалом 30 мин;
- **.3** продолжительность режимов указана при установившихся параметрах;
- **.4** после стендовых испытаний системы подачи топлива главных двигателей, работающих на гребные винты, должны быть отрегулированы таким образом,

чтобы достижение перегрузочной мощности в эксплуатации было невозможно;

- .5 после стендовых испытаний системы подачи топлива ДВС привода главных и вспомогательных дизель-генераторов должны быть отрегулированы таким образом, чтобы в эксплуатации была возможна работа на мощности 110 % от расчетной, и при этом регуляторные характеристики, включая действие механизма защиты, обеспечивались в любое время.
- **5.12.16** При проведении контрольных испытаний продолжительность работы на расчетной мощности должна составлять не менее 25 % времени, указанного в табл. 5.12.15, но во всех случаях не менее 30 мин.
- **5.12.17** При испытаниях механизмов на стенде совместно с системами ДУ и ДАУ следует руководствоваться также указаниями разд. 12 с проведением испытаний по программе для ДУ или ДАУ.
- **5.12.18** Объем испытаний, приведенный в настоящей главе, относится к испытаниям механизмов при установившемся производстве.

Головные образцы механизмов должны испытываться на стенде по специальной программе, одобренной Регистром.

Объем и продолжительность испытаний устанавливаются в каждом конкретном случае в зависимости от степени доводки механизма.

Объем и продолжительность типовых испытаний ДВС для оформления СТО отражены в приложении к настоящему разделу.

5.12.19 Головные образцы двигателей, предназначенных для установки на спасательные шлюпки,

Таблица 5.12.15

Характеристики режима	Главные ДВС, работающие на гребные винты м		ы ДВС привода главных и вспо- могательных дизель - генераторов				, ч, при		
Мощность в % от расчетной	Частота вращения в % от расчетной	Продолжительность испытаний, ч, не менее	Продолжительность испытаний, ч, не менее	более 10000	до 10000	до 5000	до 1000	до 500	менее 200
110 100 90 75 50 25 Холостой ход Задний ход Пуски Реверсы Испытания регулятора и независимой защиты от разноса Испытания «стоп- устройства»	103,2 100 По расчетной винтовой характеристике	0,5 — 0,75 1,0 0,5 0,5 0,5 0,5 + + + +	0,5 1,0 — 0,5 0,5 0,5 0,5 + — +	1,0 16,0 — 3,0 2,0 2,0 1,0 1,0 — +	1,0 12,0 — 3,0 2,0 2,0 1,0 1,0 — +	1,0 8,0 — 3,0 2,0 2,0 1,0 1,0 — +	0,5 6,0 — 1,0 1,0 1,0 0,5 1,0 — +	0,5 4,0 — 1,0 1,0 0,5 1,0 — +	0,5 2,0 — 1,0 1,0 1,0 0,5 1,0 — +

при испытании на стенде, помимо требований, предъявляемых к стендовым испытаниям 5.12, должны быть проверены на соответствие требованиям 6.13.6 и 6.15.4 части ІІ «Спасательные средства» Правил по оборудованию морских судов.

5.12.20 Объединение испытаний.

Для двигателей с электронной системой управления объединенные испытания должны подтвердить, что характеристика комплекта механической, гидравлической и электронной частей системы является такой, как прогнозировалось для работы во всех эксплуатационных режимах. Объем этих испытаний должен быть согласован с Регистром для выбранных ситуаций, основанных на анализе характера и последствий отказов, требуемых 1.2.3.1.26 части IX «Механизмы» Правил классификации и постройки морских судов.

5.13 ДОКУМЕНТЫ РЕГИСТРА

- **5.13.1** При положительных результатах освидетельствования изделий на стенде предприятия (изготовителя) оформляются документы Регистра согласно Номенклатуре РС.
- **5.13.2** О результатах испытаний опытного или головного образца инспектором составляется акт Регистра, в котором дается заключение о возможности допуска изделия на судно и при необходимости указываются условия допуска данных изделий на суда при дальнейшем их изготовлении согласно положениям разд. 1.

ПРИЛОЖЕНИЕ 1

ПРОГРАММА ТИПОВЫХ ИСПЫТАНИЙ ДВС ДЛЯ ОФОРМЛЕНИЯ СТО

1. Обшие положения.

Настоящая программа составлена на основе унифицированных требований MAKO M50.

По окончании разработки и одобрения технической документации судового двигателя один двигатель после испытаний, проведенных предприятием (изготовителем), должен быть подвергнут испытаниям на оформление СТО в соответствующем объеме, указанном ниже.

Возможность работы двигателя на тяжелом топливе должна быть подтверждена результатами соответствующих испытаний на стенде изготовителя, в крайнем случае на первом двигателе, установленном на судно.

2. Испытания, проводимые изготовителем.

- 2.1 Обычные условия.
- **2.1.1** Испытания при 25, 50, 75, 100 и 110 % от номинальной мошности:

вдоль номинальной винтовой характеристики и вдоль нагрузочной характеристики (при постоянной частоте вращения) для двигателей, работающих на винт:

при постоянной частоте вращения для двигателей, предназначенных для привода генераторов.

- **2.1.2** Испытания на границе диапазона допустимых режимов работы (границы диапазона допустимых режимов работы двигателя устанавливаются изготовителем).
 - 2.2 Экстремальные условия.

Для двигателей с турбонаддувом должна быть определена достижимая длительная мощность для случая выхода из строя турбонагнетателя:

при заблокированном или снятом роторе для двигателя с одним турбонагнетателем;

при отключенном(ых) неисправном(ых) турбонагнетателе(ях) для двигателя с несколькими турбона-гнетателями.

2.3 Основные измеренные характеристики и параметры, полученные в результате испытаний на предприятии (изготовителе), включая число часов испытаний на различных режимах, должны быть представлены инспектору Регистра перед проведением испытаний на типовое одобрение.

3. Испытания для оформления СТО.

3.1 Испытания на типовое одобрение проводятся по программе, одобренной Регистром, в присутствии инспектора. Результаты испытания оформляются соответствующим Актом Регистра (форма 6.3.18). Изменения данной программы испытаний на получение СТО должны быть согласованы с Регистром.

3.1.1 Режимы испытаний.

Режимы (точки), на которых двигатель должен быть испытан, показаны на диаграмме режимов (характеристик) двигателя в координатах «мощность — частота вращения» коленчатого вала (см. рис. 3.1.1).

Данные, измеряемые и записываемые во время испытаний на различных режимах, должны включать все необходимые для характеристики режима параметры.

Время работы на одном режиме зависит от размеров двигателя (достижения устойчивости работы на данном режиме) и времени для измерения и записи контролируемых параметров, и обычно составляет не менее 0,5 ч.

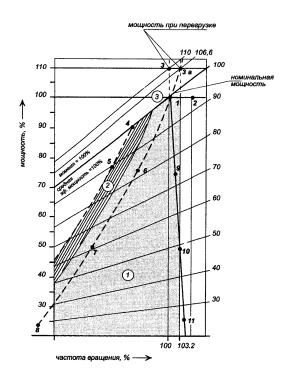


Рис. 3.1.1 Диаграмма режимов: I — диапазон длительных режимов работы; 2 — диапазон эпизодических режимов; 3 — диапазон режимов при кратковременной перегрузке

На номинальной мощности (см. 3.1.1.1) требуемое время работы — 2 ч. При этом интервал между двумя измерениями параметров должен быть не менее 1 ч.

- **3.1.1.1** Режим номинальной мощности (100 % расчетной мощности при 100 % вращающего момента и 100 % частоты вращения) точка 1.
- **3.1.1.2** Режим 100 % мощности и максимальной частоты вращения точка 2.
- **3.1.1.3** Режим максимального допустимого момента (обычно 110 %) при 100 % частоты вращения точка *3* или максимально допустимой мощности и частоты вращения, соответствующей номинальной винтовой характеристике, *3а*.
- 3.1.1.4 Режим минимально допустимой частоты вращения при 100 % вращающем моменте точка 4.
- **3.1.1.5** Режим минимально допустимой частоты вращения при 90 % вращающем моменте точка 5.
- **3.1.1.6** Режимы частичных нагрузок 75, 50 и 25 % номинальной мощности и частоты вращения вдоль номинальной винтовой характеристики точки 6, 7 и 8 и вдоль нагрузочной характеристики точки 9, 10 и 11.

3.1.2 Экстремальные режимы.

Режимы максимально достижимой мощности при работе вдоль номинальной винтовой характеристики и вдоль нагрузочной характеристики при номинальной частоте вращения (см. 2.2).

- 3.1.3 Функциональные испытания.
- **3.1.3.1** Определение наименьшей устойчивой частоты вращения двигателя при работе вдоль винтовой характеристики.
- **3.1.3.2** Испытания пусковых и реверсивных (для реверсивных двигателей) качеств двигателя.
 - 3.1.3.3 Испытания регулятора частоты вращения.
- 3.1.3.4 Испытания систем защиты, в особенности срабатывания защиты при повышении частоты вращения сверх номинальной и при падении давления масла в системе смазки.

Примечание. Для двигателей, используемых при аварийных ситуациях, инспектором Регистра могут быть потребованы дополнительные испытания.

3.1.3.5 Объединенные испытания.

Для двигателей с электронной системой управления объединенные испытания должны подтвердить, что характеристика комплекта механической, гидравлической и электронной частей системы является такой, как прогнозировалось для работы во всех эксплуатационных режимах. Объем этих испытаний должен быть согласован с Регистром для выбранных ситуаций, основанных на анализе характера и последствий отказов, требуемых 1.2.3.1.26 части IX «Механизмы» Правил классификации и постройки морских судов.

4. Ревизия деталей по окончании испытаний.

Сразу по окончании испытаний подлежат осмотру (в количестве: один для рядных двигателей и два для V-образных):

поршень в разобранном виде;

крейцкопф в разобранном виде;

подшипник шатуна и рамовый подшипник в разобранном виде;

втулка цилиндра;

крышка цилиндра с демонтированными клапанами:

зубчатый механизм управления, распределительный вал и картер двигателя с открытыми крышками.

Примечание. В случае необходимости инспектор Регистра может потребовать дальнейшую разборку двигателя для ревизии деталей.

5. Определение типа ДВС.

5.1 Общие требования.

ДВС относятся к одному типу, если они не имеют отличий по характеристикам, перечисленным в 5.2. При этом подразумевается, что ДВС, относимые к одному типу, не имеют существенных отличий конструкции в целом, а также различий в конструкции деталей, коленчатых валов и т. п., отличий в применяемых материалах, отвечающих требованиям правил Регистра и одобренных Регистром.

5.2 Характеристики, определяющие тип ДВС.

Тип ДВС, выраженный в маркировке, присваиваемой предприятием (изготовителем), определяется следующими характеристиками:

диаметром цилиндра;

ходом поршня;

способом впрыска топлива (непосредственный или с форкамерой);

видом топлива (жидкое, двойное, газовое); рабочим циклом (четырех- или двухтактный); газообменом (с естественной продувкой или с наддувом воздуха);

максимальной длительной цилиндровой мощностью при максимальной длительной частоте вращения и/или максимальном давлении сгорания;

способом наддува (импульсный/при постоянном давлении);

системой охлаждения наддувочного воздуха (с промежуточным охлаждением или без промежуточного охлаждения, число ступеней охлаждения);

расположением цилиндров (рядное, V-образное).

Примечания: 1. При наличии достоверных данных об успешном опыте эксплуатации большого числа ДВС допускается увеличение мощности до 10 % включительно без проведения дополнительных испытаний для подтверждения одобрения для такого значения мошности.

- 2. Если ДВС отличаются только числом цилиндров, проведение типовых испытаний для одного двигателя достаточно для одобрения всего типоряда.
- 3. Если двигатель с электронной системой управления подвергался типовым испытаниям как традиционный двигатель, Регистр может не требовать проведения типовых испытаний традиционного двигателя.
- 4. При типовых испытаниях двигателя с электронной системой управления могут быть учтены результаты типовых испытаний традиционного двигателя, которые не зависят от вида системы управления.

ПРИЛОЖЕНИЕ 2

ПРОЦЕДУРА ТИПОВОГО ИСПЫТАНИЯ ДЛЯ ПРЕДОХРАНИТЕЛЬНЫХ КЛАПАНОВ КАРТЕРОВ

1. ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

- 1.1 Настоящая процедура определяет стандартные условия проведения типового испытания предохранительных клапанов картеров ДВС и редукторов с использованием воздушнометановой газовой смеси для подтверждения требований Регистра.
- **1.2** Настоящая процедура применима только к предохранительным клапанам с пламегасителями.

Примечание. Если конструкция клапана предусматривает смачивание пламегасителя смазочным маслом, по согласованию с Регистром могут применяться альтернативные методы, разработанные предприятием (изготовителем) клапанов с целью подтверждения требованиям данной процедуры.

2. НОРМАТИВНЫЕ ССЫЛКИ

- 2.1 Настоящая процедура разработана на основании Унифицированного требования МАКО М66 (Rev.2, Sept. 2007) (Corr. 1 Oct. 2007) «Туре Testing Procedure for Crankcase Explosion Relief Valves». Там, где это целесообразно, могут применяться следующие нормативные документы:
- .1 EN 12874:2001: Пламегасители требования к рабочим характеристикам, методы испытаний и ограничения использования;
- .2 ISO/IEC EN 17025:2005: Общие требования в отношении компетентности испытательных и поверочных лабораторий;

- .3 EN 1070:1998: Безопасность механизмов Терминология;
- .4 VDI 3673: Часть 1: Сброс давления при взрывах пыли;
- .5 IMO MSC/Circular 677: Пересмотренные стандарты проектирования, испытания и размещения устройств предотвращения проникновения пламени в грузовые танки на нефтеналивных судах.

3. ОБЪЕМ ПРОВЕРОК

- **3.1** Типовое испытание предохранительных клапанов картеров предусматривает четыре основных вида проверок в соответствии с 3.1.1 3.1.4.
 - 3.1.1 Проверка эффективности пламегасителя.
 - 3.1.2 Проверка закрытия клапана после взрыва.
- **3.1.3** Проверка газо-/воздухонепроницаемости клапана после взрыва.
- **3.1.4** Установление уровня защиты от превышения давления, обеспечиваемого клапаном.

4. ОБОРУДОВАНИЕ ИСПЫТАТЕЛЬНОЙ ЛАБОРАТОРИИ

4.1 Испытательная лаборатория для проведения типовых испытаний предохранительных клапанов картеров должна удовлетворять требованиям 4.1.1 — 4.1.11.

- **4.1.1** Лаборатория, в которой проводятся испытания, должна иметь признание Регистра, а также соответствовать требованиям применимых национальных и международных стандартов.
- **4.1.2** Испытательная лаборатория должна быть оборудована таким образом, чтобы иметь возможность контролировать и регистрировать ход испытаний взрывом в соответствии с настоящей процедурой.
- **4.1.3** Оборудование для контроля и измерения концентрации воздушно-метановой газовой смеси в воздухе внутри испытательной камеры должно обеспечивать точность измерений $\pm~0.1~\%$.
- **4.1.4** Оборудование должно обеспечивать возможность зажигания воздушно-метановой смеси в эффективной точке воспламенения.
- 4.1.5 Оборудование для измерения давления должно обеспечивать возможность замера давления по меньшей мере, в двух точках испытательной камеры. Одна из них должна находиться у клапана, а другая в центре испытательной камеры. Измерительные приспособления должны обеспечивать возможность замера и регистрации изменений давления на всем протяжении испытания взрывом с частотой регистрации, соответствующей скорости развития событий. Результат каждого испытания должен документироваться путем видеозаписи и путем записи термочувствительной видеокамерой.
- 4.1.6 Размеры испытательной камеры должны быть документально зафиксированы. При этом соотношение размеров должно быть таким, чтобы камера не имела вытянутой «трубоподобной» формы и расстояние между вершинами днищ не превышало 2,5 диаметров камеры. Внутренний объем камеры должен включать любые подводящие устройства и трубы
- 4.1.7 Испытательная камера должна иметь фланец для установки предохранительного клапана, расположенный на одном из ее концов по центру днища перпендикулярно продольной оси камеры. Испытательная камера должна быть устроена таким образом, чтобы обеспечивать положение клапана в пространстве, соответствующее его установке при эксплуатации, т.е. в вертикальной или горизонтальной плоскости.
- **4.1.8** Должна быть предусмотрена круглая пластина с нижеуказанными размерами для установки между фланцем камеры и клапаном, подлежащим испытанию:
- **.1** внешний диаметр пластины должен соответствовать удвоенному внешнему диаметру верхней крышки клапана;
- **.2** внутренний диаметр должен соответствовать внутреннему диаметру клапана, подлежащего испытанию.
- **4.1.9** Испытательная камера должна иметь соединения для возможности замера содержания метана в газовой смеси в верхней и в нижней частях.

- **4.1.10** Испытательная камера должна быть оборудована средствами для установки источника воспламенения в соответствии с требованием 5.3.
- 4.1.11 Объем испытательной камеры должен быть настолько большим, насколько это практически осуществимо по отношению к размеру и пропускной способности предохранительного клапана, подлежащего испытанию. В общем, объем должен соответствовать требованиям 2.3.5.5 части IX «Механизмы» Правил классификации и постройки морских судов в отношении того, что проходное сечение предохранительного клапана должно быть не менее $115 \text{ cm}^2/\text{m}^3$ валового объема картера, т. е. для испытания клапана, проходное сечение которого составляет 1150 см², требуется испытательная камера объемом 10 м³. Если проходное сечение клапана больше $115 \text{ cm}^2/\text{m}^3$ валового объема картера, объем испытательной камеры должен соответствовать проектному соотношению. В любом случае объем испытательной камеры не должен отклоняться на величину ±15 % от проектной величины соотношения проходного сечения клапана к объему картера (cm^2/m^3).

5. ПРОЦЕСС ПРОВЕДЕНИЯ ИСПЫТАНИЯ ВЗРЫВОМ

- **5.1** Все испытания взрывом для проверки функциональных возможностей предохранительных клапанов картера должны проводиться с использованием смеси воздуха и метана, в которой концентрация метана составляет 9,5 % ± 0,5 %. Давление в испытательной камере должно быть не меньше атмосферного и не превышать давление открытия предохранительного клапана.
- **5.2** Концентрация метана в испытательной камере должна измеряться в его верхней и нижней части, и значения не должны различаться более чем на 0,5 %.
- **5.3** Воспламенение воздушно-метановой газовой смеси должно осуществляться в точке, находящейся на линии продольной оси испытательной камеры на расстоянии примерно 1/3 длины или высоты от днища, противоположного концу установки клапана.
- **5.4** Воспламенение должно осуществляться с использованием заряда взрывчатого вещества максимум в 100 Дж.

6. КЛАПАНЫ, ПОДЛЕЖАЩИЕ ИСПЫТАНИЮ

6.1 Клапаны, используемые для типового испытания (включая испытания в соответствии с 6.3), должны отбираться с обычной производствен-

ной линии изготовителя представителем классификационного общества, присутствующим при испытаниях.

- **6.2** Для типового одобрения клапана определенного размера должны быть испытаны три клапана этого размера в соответствии с 6.3 и 7, а для одобрения типоряда клапанов в соответствии с 9.
- **6.3** Клапаны, отобранные для типового испытания, должны быть предварительно испытаны на предприятии (изготовителе) для подтверждения того, что давление открытия составляет 0,05 бар ± 20 %, и клапан является воздухонепроницаемым при давлении ниже давления открытия в течении, как минимум, 30 с. Этот вид испытаний проводится для подтверждения воздухонепроницаемости клапана после сборки и его открытия при заданном давлении, что свидетельствует о правильности выбора и установки пружины.
- **6.4** Типовые испытания клапанов должны подтверждать их работоспособность в том положении, в котором они будут установлены на двигатель или корпус редуктора. Для каждого предполагаемого положения (вертикального и/или горизонтального) должно быть испытано по три клапана каждого размера.

7. МЕТОД ИСПЫТАНИЙ

7.1 В ходе испытания взрывом должны быть выполнены требования 7.1.1 – 7.1.5.

- **7.1.1** Испытания взрывом должны проводиться в присутствии инспектора Регистра.
- 7.1.2 Если клапаны должны устанавливаться на двигатель или корпус редуктора совместно с экранирующими приспособлениями для отражения выбросов продуктов горения от взрыва, клапаны должны испытываться с установленными экранирующими приспособлениями.
- **7.1.3** Последовательные испытания взрывом для определения функциональных возможностей клапана должны проводиться настолько быстро, насколько это возможно при установившихся внешних условиях.
- 7.1.4 Повышение и спад давления должны регистрироваться на протяжении всего испытания взрывом.
- **7.1.5** В ходе каждого испытания должно контролироваться внешнее состояние клапанов для регистрации любого выброса пламени с использованием чувствительной видеокамеры (см. 4.1.5).
- 7.2 Испытание взрывом должно проводиться в три этапа для каждого клапана, для которого требуется одобрение по результатам типового испытания.
 - **7.2.1** Этап 1.
- **7.2.1.1** Два испытания взрывом должны проводиться с использованием круглой пластины,

описанной в 4.1.8, с вырезом, покрытым полиэтиленовой пленкой толщиной 0,05 мм. В результате этих испытаний определяется контрольный уровень давления для определения воздействия предохранительного клапана в отношении повышения давления в испытательной камере, см. 8.1.6.

7.2.2 Этап 2.

- 7.2.2.1 Два испытания взрывом должны проводиться с использованием трех разных клапанов одинакового размера. Каждый клапан должен быть установлен в том положении, для которого требуется одобрение, т. е. в вертикальном или горизонтальном, причем круглая пластина, описанная в 4.1.9, должна располагаться между клапаном и крепежным фланцем камеры.
- 7.2.2.2 Первое из двух испытаний каждого клапана должно проводиться с использованием полиэтиленовой оболочки толщиной 0,05 мм, минимальный диаметр которой должен быть в три раза больше диаметра круглой пластины, а объем не менее 30 % испытательного сосуда, и которая должна закрывать клапан и круглую пластину. Перед началом испытания взрывом в полиэтиленовой оболочке не должно быть воздуха. Полиэтиленовая оболочка служит наглядным средством для оценки того, имеет ли место прохождение пламени через предохранительный клапан после взрыва.

Примечание. В ходе испытаний давление взрыва будет открывать клапан, и часть несгоревшей воздушно-метановой газовой смеси будет собираться в полиэтиленовой оболочке. Поэтому в случае прорыва пламени через пламегаситель это будет заметно внутри оболочки, так как смесь будет воспламеняться.

- 7.2.2.3 Если первый взрыв успешно продемонстрировал отсутствие возгорания за пределами пламегасителя и отсутствие видимых признаков повреждения пламегасителя или клапана, проводится второе испытание взрывом без полиэтиленовой оболочки в возможно короткий промежуток времени после первого испытания. В ходе второго испытания взрывом, необходимо осуществлять визуальный контроль клапана на предмет каких-либо признаков возгорания снаружи пламегасителя; видеозапись должна быть сохранена для последующего анализа. Второе испытание должно продемонстрировать, что клапан может функционировать в случае вторичного взрыва в картере.
- 7.2.2.4 После каждого взрыва испытательная камера должна оставаться закрытой в течение, как минимум, 10 с для того, чтобы удостовериться, что клапан является непроницаемым. Непроницаемость клапана можно проверить в ходе испытания на основании записей давления/времени или с помощью отдельного испытания после завершения второго испытания взрывом.

7.2.3 Этап 3.

7.2.3.1 Проводятся еще два испытания взрывом, как описано на этапе 1. Дальнейшие испытания нужны для того, чтобы получить среднее значение базовой линии для оценки повышения давления с учетом того, что условия окружающей среды испытательного сосуда могли измениться в ходе испытания предохранительных клапанов на этапе 2.

8. ОЦЕНКА СОСТОЯНИЯ И РЕГИСТРИРУЕМЫЕ ПАРАМЕТРЫ

- **8.1** Для подтверждения соответствия клапанов, используемых для испытания взрывом, требованиям настоящей процедуры должна быть выполнена их оценка с документальным подтверждением данных в соответствии с 8.1.1 8.1.9.
- **8.1.1** Техническая документация на клапаны, подлежащие испытанию, должна быть одобрена Регистром.
- **8.1.2** В технической документации и протоколах испытаний указываются обозначение, размеры и характеристики клапанов, подлежащих испытанию. Данные должны включать величину проходного сечения клапана и пламегасителя, а также подъема клапана при давлении 0,2 бар.
- **8.1.3** Должен быть определен и зарегистрирован объем испытательной камеры.
- **8.1.4** Функционирование пламегасителя может считаться приемлемым, если нет никаких признаков пламени или возгорания снаружи клапана в ходе испытания взрывом. Это должно быть подтверждено лабораторией с учетом результатов измерений, полученных при использовании термочувствительной видеокамеры (см. 4.1.5).
- **8.1.5** Повышение и спад давления в ходе взрыва регистрируются, причем указывается изменение давления, демонстрирующее максимальное избыточное давление и устойчивое пониженное давление в испытательной камере в ходе испытания. Изменение давления должно регистрироваться в двух точках камеры.
- 8.1.6 Воздействие предохранительного клапана в отношении повышения давления после взрыва определяется на основании максимальных значений давления, зарегистрированных в центре испытательной камеры в течение указанных трех этапов. Повышение давления в испытательной камере вследствие установки предохранительного клапана представляет собой разницу между средним давлением, зафиксированным во время четырех взрывов на этапах 1 и 3, и средним давлением, полученным по первым испытаниям трех клапанов на этапе 2. Подъем давления не должен превышать предел, установленный изготовителем.

- 8.1.7 Непроницаемость клапана удостоверяется путем проверки на основании записей того, что в испытательной камере поддерживается пониженное давление, составляющее, как минимум, 0,3 бар, в течение, как минимум, 10 с после взрыва. Это испытание подтверждает, что клапан надежно закрыт и достаточно газонепроницаем после динамических нагрузок при взрыве.
- **8.1.8** После каждого испытания взрывом на этапе 2 обследуется внешнее состояние пламегасителя на предмет серьезных признаков повреждения и/или деформаций, которые могут повлиять на работоспособность клапана.
- **8.1.9** После завершения испытаний взрывом, клапаны разбираются, и устанавливается и документируется состояние всех деталей. Следует обратить особое внимание на признаки заедания или неравномерного открытия клапана, влияющие на его функционирование. К отчету должны прилагаться фотографические снимки, демонстрирующие состояние клапана.

9. УСЛОВИЯ ОДОБРЕНИЯ ИЗДЕЛИЙ ИДЕНТИЧНОЙ КОНСТРУКЦИИ

- **9.1** Одобрение устройств для гашения и предотвращения распространения пламени может использоваться в отношении других устройств такого же типа, если одно устройство было испытано и признано удовлетворительным.
- 9.2 Поскольку гасящая способность пламегасителя зависит от общей массы гасящих пластинок/ сеток, то при условии, что материалы, толщина материалов, высота пластинок/толщина слоя сетки и гасящие зазоры являются одинаковыми, огнезащитные экраны разных размеров могут быть признаны как обладающие одинаковой гасящей способностью. При этом должны быть выполнены следующих условия:

$$n_1/n_2 = \sqrt{S_1/S_2}; (9.2-1)$$

$$A_1/A_2 = S_1/S_2, (9.2-2)$$

где n_1 — суммарная толщина пламегасителя, соответствующая числу пластинок гасящего устройства размера 1 для клапана с проходным сечением, равным S_1 ;

 n_2 — суммарная толщина пламегасителя, соответствующая числу пластинок гасящего устройства размера 2 для клапана с проходным сечением, равным S_2 ;

 A_1 — проходное сечение гасящего устройства для клапана с проходным сечением, равным S_1 ;

 A_2 — проходное сечение гасящего устройства для клапана с проходным сечением, равным S_2 .

9.3 Оценка для одобрения предохранительного клапана с размерами большими, чем у клапана, испытанного ранее согласно требованиям разд. 7 и 8 с

удовлетворительными результатами, может быть выполнена, если эти клапаны имеют одинаковую конструкцию и идентичные технические характеристики при выполнении условий, изложенных в 9.3.1 — 9.3.3.

- **9.3.1** Проходное сечение клапана большего размера не должно превышать размеров проходного сечения ранее успешно испытанного клапана меньшего размера более чем в три раза + 5 %.
- **9.3.2** Один клапан наибольшего размера с учетом 9.3.1 должен пройти успешные испытания, требуемые в 6.3 и 7.2.2. При этом допускаются следующие исключения:

только один клапан каждого размера испытывается в соответствии с 7.2.2.1;

объем испытательной камеры должен быть не менее одной трети объема, требуемого в 4.1.11.

- **9.3.3** Оценка состояния и отчетные документы должны соответствовать требованиям разд. 8, за исключением того, что 8.1.6 в данном случае применяется только к единственному клапану на втором этапе испытаний (см. 7.2.2).
- 9.4 Оценка для одобрения предохранительных клапанов с размерами меньшими, чем у клапана, испытанного ранее согласно требованиям разд. 7 и 8 с удовлетворительными результатами, может быть выполнена если эти клапаны имеют одинаковую конструкцию и идентичные технические характеристики при выполнении условий, изложенных в 9.4.1 9.4.3.
- **9.4.1** Проходное сечение клапана меньшего размера должно быть не менее одной трети размера проходного сечения ранее успешно испытанного клапана большего размера.
- **9.4.2** Один клапан наименьшего размера с учетом 9.4.1 должен пройти успешные испытания, требуемые в 6.3 и 7.2.2. При этом допускаются следующие исключения:

только один клапан каждого размера испытывается в соответствии с 7.2.2.1;

объем испытательной камеры должен быть не более одной трети объема, требуемого в 4.1.11.

9.4.3 Оценка состояния и отчетные документы должны соответствовать требованиям разд.8, за исключением того, что 8.1.6 в данном случае применяется только к единственному клапану на втором этапе испытаний (см. 7.2.2).

10. ОТЧЕТ ОБ ИСПЫТАНИЯХ

- **10.1** Испытательная лаборатория должна представить подробный отчет, включающий в себя информацию и документы согласно 10.1.1 10.1.8:
- **.1** техническое задание или программу на проведение испытаний;
- **.2** подробную информацию об испытательной камере и испытываемых клапанах;
- **.3** положение, в котором испытывался клапан (вертикальное или горизонтальное положение);
- .4 данные о концентрации метана в воздухе для каждого испытания;
 - .5 данные об источнике воспламенения;
 - .6 кривые давления для каждого испытания;
 - .7 видеозаписи каждого испытания клапана;
- **.8** оценку состояния и записи в соответствии с требованиями разд. 8.

11. ОДОБРЕНИЕ

11.1 Одобрение предохранительного клапана осуществляется Регистром на основании одобренной технической документации с учетом одобренной программы, оценки результатов испытаний и отчета испытательной лаборатории о выполненных типовых испытаниях.

ПРИЛОЖЕНИЕ 3

ПРОЦЕДУРА ТИПОВЫХ ИСПЫТАНИЙ ПРИБОРОВ ОБНАРУЖЕНИЯ И СИГНАЛИЗАЦИИ МАСЛЯНОГО ТУМАНА В КАРТЕРЕ

1. ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1 Процедура определяет объем испытаний, требуемый для подтверждения соответствия устанавливаемых на ДВС приборах обнаружения и сигнализации масляного тумана требованиям Регистра.

Примечание. Данная процедура испытаний также применима к приборам для обнаружения и сигнализации масляного тумана в корпусах редукторов.

2. НОРМАТИВНЫЕ ССЫЛКИ

2.1 Настоящая процедура разработана на основании Унифицированного требования МАКО M67 (Jan 2005), (Corr.1 Nov. 2005), (Rev.1 Oct. 2006) «Туре Test Procedure for Crankcase Oil Mist Detection and Alarm Equipment».

Там, где необходимо, могут применяться следующие нормативные документы:

Унифицированное требование MAKO E10 «Туре Test Specification»;

НД РС № 2-040301-004 «Процедура испытаний и оформления Свидетельств о типовом одобрении электрического и электронного оборудования автоматизации, компьютеров и периферийного оборудования»;

«Нормы и методы испытаний оборудования автоматизации» — приложение к разд. 12 части IV «Техническое наблюдение за изготовлением изделий» настоящих Правил.

3. ОБЪЕМ ПРОВЕРОК

- **3.1** Процедура типовых испытаний приборов обнаружения и сигнализации масляного тумана в картере включает семь основных видов проверок:
 - .1 проверку выполняемых функций системы;
- **.2** проверку эффективности датчиков масляного тумана;
 - .3 проверку точности датчиков масляного тумана;
 - .4 проверку уставок срабатывания сигнализации;
- .5 проверку временной задержки от выделения тумана из источника до срабатывания сигнализации;
- **.6** проверку обнаружения нарушения функционирования;

.7 проверку влияния оптического затемнения на обнаружение масляного тумана.

4. ИСПЫТАТЕЛЬНОЕ ОБОРУДОВАНИЕ

- **4.1** Испытательная лаборатория, выполняющая типовые испытания приборов обнаружения и сигнализации масляного тумана в картере должна удовлетворять требованиям 4.1.1 4.1.2.
- **4.1.1** Все оборудование для проведения функциональных и других испытаний, требуемых данной процедурой, должно быть доступно для освидетельствования инспектором Регистра.
- **4.1.2** Лаборатория, испытывающая приборы обнаружения и сигнализации масляного тумана, должна быть оборудована таким образом, чтобы она могла контролировать, измерять и регистрировать уровни концентрации масляного тумана в пересчете в мг/л с точностью до $\pm 10~\%$ согласно данной процедуре.

5 ИСПЫТАНИЯ ПРИБОРОВ ОБНАРУЖЕНИЯ И СИГНАЛИЗАЦИИ МАСЛЯНОГО ТУМАНА

- **5.1** Должны быть выполнены следующие виды испытаний.
 - 5.1.1 Панель сигнализации/контроля:
 - .1 функциональные испытания, согласно разд. 6;
- **.2** испытание при неисправности системы электропитания;
- **.3** испытание при отклонении параметров системы питания;
 - .4 испытание на теплоустойчивость;
 - .5 испытание на влагоустойчивость;
 - .6 вибрационные испытания;
- .7 испытание на устойчивость к электромагнитным помехам (ЭМС);
 - .8 испытание сопротивления изоляции;
 - .9 испытание электрической прочности изоляции;
 - .10 статические и динамические наклонения.
 - 5.1.2 Испытания датчиков:
 - .1 функциональные испытания согласно разд. 6;
 - .2 испытание неисправности системы питания;
- .3 испытание отклонения параметров системы питания:
 - .4 испытание на теплоустойчивость;
 - .5 испытание на влагоустойчивость;

- .6 вибрационные испытания;
- .7 испытание сопротивления изоляции;
- .8 испытание электрической прочности изоляции;
- .9 статические и динамические наклонения.

Примечание. См. также приложение к разд. 12 части IV «Техническое наблюдение за изготовлением изделий» настоящих Правил.

6. ФУНКЦИОНАЛЬНЫЕ ИСПЫТАНИЯ

- **6.1** Все испытания для проверки правильного функционирования приборов обнаружения и сигнализации масляного тумана в картере должны проводиться в соответствии с 6.2-6.6 при концентрации масляного тумана в воздухе в пересчете в мг/л с точностью ± 10 %.
- **6.2** Концентрация масляного тумана в камере для испытаний должна быть измерена в верхней и нижней частях камеры. Отличие должно составлять не более 10 % (см. также 8.1.1.1).
- **6.3** Устройства (приборы) контроля масляного тумана должны быть способны определить концентрацию масляного тумана в воздухе от 0 до 10 % от наименьшего уровня взрывоопасности (НУВ) или от 0 до уровня (в %) не менее двойного максимума установки АПС.

Примечание. НУВ соответствует концентрации масляного тумана примерно 50 мг/л (ок. 4,1 % весового содержания масла в воздушно-масляной смеси).

- **6.4** Установка АПС для концентрации масляного тумана в воздухе должна обеспечивать подачу сигнала при максимальной концентрации не более 5 % от НУВ или, приблизительно, 2,5 мг/л.
- **6.5** Если установки срабатывания сигнализации могут быть изменены, средства корректировки и индикации установок должны быть проверены по инструкциям изготовителя оборудования.
- **6.6** Если масляный туман поступает в датчик контроля через трубы, промежуток времени между выходом образца из картера и срабатыванием сигнализации должен быть определен для наибольшей и наименьшей длины трубы, рекомендованной изготовителем. Трубы должны соответствовать инструкциям/рекомендациям изготовителя.
- 6.7 Для оборудования датчиков, находящихся в контакте с газами в картере и незащищенных от попадания брызг и капель смазочного масла, должно быть продемонстрировано, что незащищенные участки не закупориваются и не блокируются при длительном воздействии масляных брызг. Разработанные предприятием (изготовителем или испытательной лабораторией) устройства для этого типа испытаний должны быть согласованы с Регистром.

6.8 Для оборудования датчиков, находящихся в контакте с водяными парами в картере, что может влиять на их чувствительность, должно быть продемонстрировано, что такие условия не ухудшат работоспособности датчиков и оборудования. Если установлено, что контакт с водяным паром или конденсатом способен вызвать неисправность оборудования, при испытаниях должно быть продемонстрировано, что любые устройства, применяемые для уменьшения воздействия пара или конденсата, например подогрев, достаточно эффективны. Разработанные изготовителем или испытательной лабораторией устройства для этого вида испытаний должны быть согласованы с Регистром.

Примечание. Данное испытание проводится в дополнение к указанным в 5.1.2.5 и относится к воздействию конденсата, вызванного более низкой температурой оборудования датчиков по сравнению с температурой газов в картере.

7. ДАТЧИКИ И ПРИБОР (ПАНЕЛЬ) КОНТРОЛЯ И СИГНАЛИЗАЦИИ, ПОДЛЕЖАЩИЕ ИСПЫТАНИЯМ

- **7.1** Датчики и прибор контроля и сигнализации для типового испытания должны быть отобраны с поточной производственной линии изготовителя инспектором Регистра.
- 7.2 Должно быть испытано два датчика. Один из них испытывается при чистой оптике прибора, а второй при условиях, соответствующих максимальной степени затемнения линз, установленной изготовителем.

8. МЕТОД ИСПЫТАНИЙ

- **8.1** При типовых испытаниях должны быть выполнены следующие требования:
- **8.1.1** Создание масляного тумана должно удовлетворять требованиям 8.1.1.1 8.1.1.5.
- **8.1.1.1** Масляный туман должен генерироваться оборудованием, использующим нефтепродукт одной марки (соответствующий SAE 80 или эквивалентный), и подаваться в испытательную камеру объемом не менее 1 м³. Частицы масляного тумана должны иметь максимальный размер не более 5 µм.

Примечание. Размер капель должен быть проверен методом осаждения.

8.1.1.2 Концентрация масляного тумана должна быть установлена гравиметрическим или другим эквивалентным методом.

Примечание. Гравиметрический метод — процесс, при котором разница в весе мембранного фильтра с размером пор 8 µм устанавливается путем взвешивания фильтра до и после пропускания через него 1 л масляного тумана из испытательной камеры, снабженной рециркуляционным вентилятором.

- **8.1.1.3** Пробы масляного тумана должны отбираться через равные промежутки времени, и результаты должны регистрироваться на выходе из датчика. Датчик масляного тумана должен располагаться рядом с местом отбора проб.
- 8.1.1.4 Результаты гравиметрического анализа признаются недействительными и отбраковываются (не учитываются), если результирующая кривая калибровки имеет повышающийся угол наклона при считывании показаний концентрации масляного тумана. Это свидетельствует о недостаточном времени для достижения однородности масляного тумана. Единичные результаты, лежащие ниже 10 % от кривой калибровки, должны отбраковываться. Это свидетельствует о нарушении целостности фильтра, когда не все масло осаждается на его мембране.
- **8.1.1.5** Точность взвешивания фильтра должна быть ± 10 мг, точность объема пробы воздушномасляной смеси +10 мл.
- **8.1.2** Типовые испытания должны проводиться в присутствии инспектора Регистра.
- **8.1.3** Оборудование для обнаружения масляного тумана должно быть испытано в том положении (горизонтальном, вертикальном или под углом), как оно будет установлено на картере ДВС (корпусе редуктора) согласно инструкции предприятия (изготовителя).
- **8.1.4** Типовые испытания должны выполняться для каждого типа прибора обнаружения и сигнализации масляного тумана, на который изготовитель запрашивает типовое одобрение. Если пороги чувствительности могут регулироваться, испытания должны выполняться в точках крайних и серединного значений установочных параметров.

9. ОЦЕНКА СОСТОЯНИЯ ПРИБОРОВ И ДОКУМЕНТАЦИЯ

- **9.1** Оценка состояния приборов контроля масляного тумана после испытаний должна выполняться в соответствии с 9.1.1 9.1.3.
- **9.1.1** Техническая документация на оборудование (приборы), подвергаемое испытаниям, должна быть одобрена Регистром.
- **9.1.2** В протоколах (отчетах) об испытаниях должны быть указаны наименование лаборатории и изготовителя, обозначение типа, диапазоны оценки концентрации масляного тумана и установочные параметры сигнализации.
- 9.1.3 После выполнения испытаний, оборудование для контроля масляного тумана должно быть проверено, и состояние всех компонентов должно быть отражено в протоколе. Фотографии оборудования должны быть приложены к протоколу испытаний.

10. УСЛОВИЯ ОДОБРЕНИЯ ТИПОРЯДА

10.1 По согласованию с Регистром одобрение одного типа оборудования может быть распространено на однотипные устройства, имеющие идентичную конструкцию, что должно быть подтверждено соответствующей документацией изготовителя.

11. ОТЧЕТНЫЕ ДОКУМЕНТЫ

- **11.1** Испытательная лаборатория должна предоставить полный отчет, включающий информацию и документы согласно 11.1.1 11.1.3:
- .1 описание процесса испытаний и испытательного оборудования;
 - .2 описание испытываемого оборудования;
 - .3 результаты испытаний.

12. УСЛОВИЯ ОДОБРЕНИЯ

- **12.1** Одобрение оборудования для контроля масляного тумана в картере выполняется Регистром на основании одобрения технической документации, отчетов и протоколов испытательной лаборатории с результатами типовых испытаний.
- **12.2** Для одобрения приборов контроля и сигнализации масляного тумана должна быть представлена документация в соответствии с 12.2.1 12.2.4.
- **12.2.1** Описание оборудования (компонентов) системы контроля масляного тумана, включая описание сигнализации.
- **12.2.2** Копия отчета об испытаниях в соответствии с требованиями разд. 11.
- **12.2.3** Схема расположения устройств контроля масляного тумана на двигателе с указанием мест установки датчиков и прокладки трубок, а также их размеров.
- **12.2.4** Инструкция по обслуживанию и проверкам, которая должна содержать следующую информацию:
 - .1 назначение оборудования и его эксплуатация;
- .2 функциональные проверки для подтверждения работоспособности оборудования, а также возможности обнаружения любой неисправности и ее устранения;
- .3 рекомендации по обслуживанию и запасным частям;
- **.4** установка ограничений параметров и инструкции по безопасным уровням;
- .5 если необходимо, описание компоновок (взаимного расположения) оборудования, при которых оно должно или не должно использоваться.

6 ДЕТАЛИ ВАЛОПРОВОДОВ

6.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **6.1.1** Положения настоящего раздела применяются при техническом наблюдении за деталями валопроводов, перечисленными в Номенклатуре РС.
- **6.1.2** Раздел устанавливает порядок технического наблюдения за изготовлением вышеуказанных объектов на предприятии (изготовителе).
- 6.1.3 Порядок и объем проверок, испытаний и освидетельствований изделий в процессе их изготовления определяется табл. 6.1.3 и требованиями настоящего раздела, а также перечнем, разрабатываемым предприятием (изготовителем) в соответствии с 12.2 части І «Общие положения по техническому наблюдению» и согласованным с подразделением. При разработке перечня учитываются особенности технологических процессов, принятых на предприятии (изготовителе).

Таблица 6.1.3

Объекты технического наблюдения	Проверка технической документации (см. 6.1.8)	Наружный осмотр	Проверка геометричес- ких размеров	Дефектоскопия	Гидравлические испътания и проверка герметичности	Спаривание валов
Валопроводы:						+
упорный вал	+	+	+	+		+
промежуточ-	+	+	+	+		+
ный вал						
гребной (дейд- вудный) ¹ вал	+	+	+	+	+2	+
облицовка греб-	+	+	+	+	+	
ного (дейд- вудного) ¹ вала						
соединитель- ные муфты	+	+	+			+

¹ Здесь и далее все требования для гребных валов и облицовок гребных валов распространяются, соответственно, на дейдвудные валы и облицовки дейдвудных валов в той мере, в какой они применимы.

6.1.4 Конструкция валопроводов и их деталей должна соответствовать одобренной технической документации и отвечать требованиям части VII «Механические установки» Правил классификации и постройки морских судов. Изготовление валопроводов, их деталей, узлов и выполнение технологических операций осуществляются под техническим наблюдением Регистра по одобренной им технической документации, перечисленной в

части I «Классификация» Правил классификации и постройки морских судов применительно к валопроводам.

- **6.1.5** Формы документов предприятия (изготовителя) (таблицы замеров и испытаний, заявки о предъявлении к освидетельствованию и другие) разрабатываются предприятием (изготовителем) или верфью и согласовываются с Регистром.
- **6.1.6** Методы контроля, инструмент и приспособления для проведения замеров, испытаний и контроля определяются предприятием (изготовителем) или верфью, указываются в технологической документации и, при необходимости, согласовываются с Регистром.
- **6.1.7** Результаты замеров, проводимых в процессе изготовления деталей, и таблицы замеров при их сборке должны охватывать все точки замеров, регламентируемые технической документацией, инструкциями на сборку, монтаж и эксплуатацию валопровода. Контроль замеров инспектором Регистра проводится выборочно.
- 6.1.8 Материалы, комплектующее оборудование и детали (заготовки), идущие на изготовление и комплектацию подлежащих техническому наблюдению объектов и изделий, должны иметь маркировку (клейма) и документы, подтверждающие техническое наблюдение Регистра за их изготовлением в соответствии с Номенклатурой РС. Перенесение клейм Регистра и маркировки предприятия (изготовителя) с заготовок в процессе обработки деталей должно производиться в соответствии с Инструкцией по клеймению объектов технического наблюдения Регистра (см. приложение 2 к части I «Общие положения по техническому наблюдению»).
- 6.1.9 Материалы, детали (заготовки), а также комплектующие изделия перед их обработкой, установкой или сборкой подвергаются наружному осмотру с целью проверки их состояния и соответствия сопроводительной документации. В отдельных случаях осмотр и проверка проводятся инспектором Регистра. При наружном осмотре проводится визуальный осмотр материала, детали или изделия, при этом проверяются сопровождающие документы, а также сертификаты предприятия (изготовителя), таблицы замеров, результаты дефектоскопии, наличие клейм и маркировки.

По результатам наружного осмотра и наличию документов, указанных в 6.1.8, определяется возможность запуска в производство материалов и изделий.

² Для составных облицовок, свариваемых на валу.

- 6.1.10 При необходимости и возможности исправления дефектов отливок и поковок сваркой следует руководствоваться требованиями, оговоренными в технической документации. В технических требованиях чертежей указывается способ исправления дефектов, их характер, количество и размеры, расположение дефектов или даются ссылки на руководящие материалы и технологическую документацию.
- **6.1.11** Механическая и другие виды обработки, как правило, должны исключать нагрев и наклеп. Наличие таковых должно устраняться термообработкой.
- 6.1.12 При проведении гидравлических испытаний следует руководствоваться требованиями технической документации, определяющими условия проведения испытаний, и требованиями 1.3 части IX «Механизмы» и 5.9 части VII «Механические установки» Правил классификации и постройки морских судов.
- **6.1.13** На окончательно изготовленные изделия (детали) должен оформляться документ, определяемый формой технического наблюдения. Необходимость оформления свидетельства Регистра и клеймения изделий оговорены Номенклатурой РС.

6.2 УПОРНЫЕ, ПРОМЕЖУТОЧНЫЕ И ГРЕБНЫЕ ВАЛЫ

- **6.2.1** Обработанные валы должны удовлетворять требованиям технической документации и настоящей главы.
- **6.2.2** В процессе изготовления валов и по окончании их обработки проводятся:
- .1 проверка соответствия качества материалов требованиям технической документации;
- **.2** термическая обработка и проверка результатов дефектоскопии;
 - .3 проверка шероховатости рабочих поверхностей;
- **.4** проверка размеров и формы обработанных поверхностей;
- .5 проверка радиального биения валов, торцевого биения плоскостей фланцев и гребней упорных валов, концентричности наружных и внутренних поверхностей или разностенности валов;
- .6 проверка формы сечений и разделки шпоночного паза, а также проверка положения оси симметрии шпоночного паза относительно оси вала и конуса;
- .7 проверка сборки и соблюдения соосности при спаривании валов, натягов и зазоров в соединениях;
- **.8** наружный осмотр валов для выявления возможных дефектов поверхности.
- **6.2.3** Поковки гребных валов после их термообработки, как правило, должны подвергаться ультразвуковому контролю. По согласованию с

Регистром ультразвуковой контроль может производиться на любой стадии изготовления валов.

В материалах по испытанию валов ультразвуком должна содержаться оценка результатов испытаний.

- 6.2.4 Проверку размеров и погрешностей формы цилиндрических поверхностей вала следует выполнять в двух взаимно перпендикулярных направлениях и в нескольких сечениях по длине проверяемого участка вала. Число сечений должно быть достаточным для точного определения размеров и формы проверяемого участка вала, но не менее двух. Овальность в любом сечении шейки под подшипники и конусность, измеренная на длине подшипника, не должна превышать 50 % допуска на размер диаметра шейки, если нет других указаний в рабочих чертежах.
- **6.2.5** Радиальные биения следует проверять при медленном вращении валов.

Радиальные биения шеек, конусов и нерабочих участков валов, шейки которых вращаются с окружной скоростью менее 10~m/c, не должны превышать величин, приведенных в табл. 6.2.5.

Таблица 6.2.5

Отношение длины вала	Радиальное биение валов, мм, при контроле				
к его диаметру	шеек и конус	нерабочих участков в			
	на опорах	на 1 м длины	центрах и на опорах		
5 - 20 $20 - 25$ $25 - 30$ $30 - 40$ $40 - 50$	0,04 0,05 — 0,06 0,07				

При использовании в качестве опор плавающих призм, способных под воздействием изогнутого вала свободно перемещаться в горизонтальной плоскости, допуски на радиальные биения увеличиваются в 1,5 раза.

Значение предельного радиального биения в каждом сечении получают умножением норм табл. 6.2.5 на величину удвоенного расстояния, м, до ближайшей торцевой оконечности вала.

Для гребных валов, упрочненных обкаткой роликами, радиальное биение конуса под гребной винт со шпонкой не должно превышать норм, принятых для нерабочих участков валов.

6.2.6 Торцевое биение присоединительных поверхностей фланцев, полумуфт или рабочих поверхностей гребня упорных валов проверяется при вращении вала, установленного в центрах и на опорах. Допустимое торцевое биение присоединительных поверхностей, а также поверхностей гребня упорных валов не должно превышать: у валов при диаметре фланца (гребня) до 500 мм — 0,03 мм; от 500 до 800 мм — 0,04 мм и более 800 мм — 0,05 мм.

- 6.2.7 Неплоскостность присоединительной поверхности фланцев или рабочих поверхностей гребня упорного вала контролируется поверочной линейкой. Отсутствие выпуклости на контролируемой поверхности определяется поверочной линейкой на краску. При установке линейки в диаметральной плоскости или по наибольшей хорде (в случае проверки гребней) незакрашенное место может быть только в средней части проверяемого участка.
- 6.2.8 Конусность и прямолинейность образующей конических поверхностей валов контролируется конусомерными линейками, длина которых должна быть не менее 0,7 длины конуса. Прямолинейность образующей может контролироваться поверочной линейкой, при этом суммарная длина окрашенной поверхности (в процентах длины конуса) для конусов длиной 80 — 2000 мм должна быть в пределах 90 — 40 % (конкретные значения определяются линейной интерполяцией). Допускается контроль конусными калибрами на краску. В этом случае краска должна равномерно располагаться по всей поверхности и иметь суммарную площадь (в процентах площади конической поверхности) для конусов длиной 80 — 2000 мм в пределах 90 — 40 % (конкретные значения определяются интерполяцией). При этом отсутствие пятен по концам конуса не допускается. Шабрение конусных поверхностей валов не допускается.
- 6.2.9 Методы контроля шпоночных пазов устанавливаются предприятием (изготовителем) в зависимости от принятых технологических процессов и средств контроля. Проверка прилегания установленной шпонки к боковым поверхностям шпоночного паза производится щупом, при этом суммарный зазор должен лежать в пределах допуска на размеры ширины шпоночного паза.
- 6.2.10 Участки гребных валов под посадку облицовок необходимо выполнять с допусками для посадки с натягом, предусмотренной технической документацией. Допускается обработка участков под посадку по фактическим размерам отверстий облицовок с соблюдением характера соединения такой посадки.
- 6.2.11 По окончании механической обработки гребные валы рекомендуется подвергать поверхностному упрочнению обкаткой роликами. Упрочнение должно производиться в районе конуса под ступицу гребного винта, в районе кормового фланца, включая 1/3 длины дуги галтеля, и под концами каждой облицовки. Длина упрочняемого участка на конусе должна составлять половину диаметра вала в месте упрочнения, а на остальных участках один диаметр вала.
- **6.2.12** Фланцевые полумуфты после окончательной обработки конусного отверстия и шпоночного паза должны быть насажены на вал и

окончательно обработаны по наружным диаметрам, присоединительным торцам и центрирующим выточкам. При этом торцевое биение не должно превышать значений, указанных в 6.2.6, а радиальное биение — значений для фланцев, указанных в 6.2.13.

6.2.13 Окончательно собранные при спаривании судовые валы должны быть соосны. При проверке двух собранных смежных валов в центрах на станке с опорами радиальные биения шеек должны отвечать требованиям 6.2.6 (для вала суммарной длины), а радиальные биения фланцев с диаметрами 200 — 800 мм и более — 0,03 — 0,05 мм (конкретное значение определяется интерполяцией).

При спаривании валов, не имеющих рабочих шеек, биение проверяется по наружной поверхности фланцев. При спаривании валов с помощью центрирующих дисков валы должны устанавливаться один относительно другого таким образом, чтобы торцевые биения присоединительных поверхностей обоих фланцев вызывали бы минимальный излом общей оси соединяемых валов.

При наличии специального указания в технической документации фланцы собранных валов или полумуфт должны быть обточены в один размер по наружному диаметру. Относительное положение валов по результатам проверки соосности должно быть соответствующим образом замаркировано на фланцах.

- 6.2.14 Болтовые соединения фланцев валов должны выполняться таким образом, чтобы в соединениях обеспечивалась посадка, предусмотренная технической документацией. Отверстия под болты должны окончательно обрабатываться совместно для обоих фланцев смежных валов. После обработки на длине поверхности отверстия 15 мм допускается не более одной кольцевой риски шириной до 1 мм и глубиной до 0,3 мм.
- 6.2.15 Сборка соединений валов с применением фланцевых (шпоночных, бесшпоночных), а также втулочных муфт должна проводиться с гарантированным натягом гидропрессовым способом. Допускается производить установку бесшпоночных муфт, в том числе муфт с цилиндрическими соединениями, на валы диаметром до 200 мм тепловым способом. Насадка муфт гидропрессовым способом на валы производится по расчетным параметрам насадки (усилие установки деталей в начальное положение, осевое перемещение, давление масла, подаваемого на сопрягаемые конические поверхности, усилие окончательной напрессовки) и допустимым отклонениям от них. При тепловом способе насадки в качестве расчетных параметров принимаются температура нагрева полумуфты и осевое перемещение.

Определение точки отсчета осевого перемещения полумуфты по конусу вала должно проводиться таким образом, как это указано в 7.3.3 для гребных винтов.

Допускаются следующие отклонения параметров насадки: осевого перемещения — от -2 до +8 %; осевого усилия при установке охватывающей детали в начальное положение — от -5 до +10 %, температуры нагрева полумуфт — от -5 до +20 °C.

6.2.16 Изготовленные валы подвергаются наружному осмотру. На валах не допускаются расслоения, трещины, черновины, закаты, заковы, плены, шлаковины, песочины, волосовины, заусенцы и царапины. Результаты проверки валов, в том числе результаты дефектоскопии, а также выполненных замеров должны заноситься в таблицы замеров (формуляр валопровода, акты). При положительных результатах проверок, дефектоскопии и замеров на валы наносится клеймо и оформляется свидетельство Регистра.

6.3 ОБЛИЦОВКИ ГРЕБНЫХ ВАЛОВ

- **6.3.1** Полностью изготовленные облицовки, в том числе гидроизоляционные покрытия гребных валов, должны отвечать требованиям технической документации и настоящей главы.
- **6.3.2** В процессе и по окончании изготовления облицовок проводятся:
- **.1** проверка соответствия качества материалов требованиям технической документации;
 - .2 дефектоскопия;
- .3 наружный осмотр облицовки перед посадкой на вал и после окончательной обработки на валу;
- **.4** проверка размеров, обеспечивающих гарантированный натяг при посадке облицовки на вал;
- .5 испытания на плотность облицовок перед посадкой их на вал и составных облицовок, свариваемых на валу;
 - .6 проверка стыков составных облицовок;
- .7 проверка размеров, формы и чистоты обработанных поверхностей шеек под дейдвудные подшипники после окончательной обработки облицовок, насаженных на вал;
- **.8** проверка радиального биения окончательно обработанных облицовок на валу.
- **6.3.3** Облицовки должны насаживаться на гребные валы с натягом. Крепление облицовок к валу гужонами или другими средствами, а также уплотнение концов облицовок с помощью пайки, заклеивания и тому подобных способов не допускается.
- **6.3.4** Обработанные облицовки или обечайки для сварных облицовок до насадки на гребной вал должны подвергаться гидравлическому испытанию на плотность давлением 0,2 МПа. Сварные швы и околошовная зона (шириной 40 мм) облицовок,

сваренных вне вала, должны подвергаться до гидравлических испытаний на плотность внешнему осмотру, рентгенографированию или гаммаграфированию. Сварные швы облицовок, сваренных на валу, должны контролироваться цветной дефектоскопией до испытания их на плотность воздухом или маслом давлением 0,2 МПа.

- 6.3.5 Насаженная на гребной вал облицовка подвергается окончательной обработке, после чего проверяются шероховатость рабочих поверхностей, размеры и погрешности формы цилиндрических поверхностей облицовки (овальность и конусность), а также радиальное биение по рабочим шейкам под дейдвудные подшипники и уплотнительные сальники в соответствии с 6.2.4 6.2.5. Окончательно обработанные наружные поверхности облицовок проверяются на отсутствие дефектов визуально. В сомнительных случаях должна производиться цветная дефектоскопия или местное травление с последующим осмотром протравленных участков через лупу.
- 6.3.6 На окончательно обработанных поверхностях облицовок и на сварных швах состыкованных облицовок не должно быть дефектов, влияющих на работоспособность дейдвудного устройства. На поверхностях окончательно обработанных облицовок могут быть допущены отдельные участки мелкой пористости площадью не более 50 мм² и отдельные газовые раковины, не превышающие по диаметру и глубине 3 мм, в количестве не более трех на одном квадратном дециметре при условии обеспечения гидроплотности. Общая площадь указанных дефектов не должна превышать 1 % всей наружной поверхности облицовки. На внутренней поверхности облицовок или обечаек после обработки для насадки на гребной вал допускается мелкая пористость, не влияющая на гидроплотность. Общая площадь такой пористости не должна превышать 3 % площади внутренней поверхности.

В сварных швах состыкованных облицовок допускаются:

отдельные внутренние газовые раковины размером до 3 мм и шлаковые включения размером до 5 мм площадью не более 5 мм 2 ;

цепочки газовых раковин размером до 3 мм и несплошных шлаковых включений длиной до 5 мм и протяженностью не более 20 % длины участка шва, проконтролированного снимком;

местные скопления несплошных газовых раковин размером до 3 мм и шлаковых включений до 4 мм на участке шва длиной не более 20 мм.

При этом суммарная протяженность всех дефектов не должна превышать 20 % длины шва, проконтролированного снимком. На окончательно обработанной поверхности сварного шва облицовки

допускаются отдельные раковины размером 1—1,5 мм и глубиной до 1 мм, отстоящие друг от друга на расстоянии 10—15 мм, а их общее число не должно превышать пяти. Другие дефекты, не указанные выше, должны быть исправлены. Возможность их исправления в каждом отдельном случае является предметом специального рассмотрения Регистром.

6.3.7 Участки валов между облицовками должны быть защищены гидроизоляцией. Гидроизоляция должна быть гладкой, ровной, без потеков, вздутий, воздушных включений. Контроль наружной поверхности изоляции производится визуально. Проверка внутренних дефектов в гидроизоляции и дефектов между поверхностью вала и гидроизоляцией должна быть выполнена одобренными Регистром методами. Участки гидроизоляции на расстоянии 0,4 м, но не более диаметра вала от торцов облицовки должны быть проконтролированы полностью; остальные участки — выборочно. Площадь участков, контролируемых выборочно, должна быть не менее 20 % общей площади гидроизоляции.

6.4 СОЕДИНИТЕЛЬНЫЕ БОЛТЫ И МУФТЫ ВАЛОВ

- **6.4.1** В процессе и по окончании изготовления соединительных муфт проводятся:
- .1 проверка соответствия качества материалов и конструкции требованиям технической документации;
- .2 проверка размеров, обеспечивающих требуемую посадку муфты на вал, и болтов во фланцевых соединениях валопровода;
- **.3** проверка геометрии шпоночного паза и его положения относительно оси муфты;
- **.4** проверка радиального и торцевого биений окончательно обработанных муфт;
 - .5 наружный осмотр муфт.
- **6.4.2** Болты изготавливаются по технической документации, одобренной Регистром.
- 6.4.3 Конусные поверхности муфт, сопрягаемые с валами, должны быть чистыми и прямолинейными; овальность сечений конического отверстия не должна превышать 50 % значения допуска, принятого по большому диаметру конуса. Проверка конусных поверхностей осуществляется в соответствии с требованиями 6.2.8. Проверка шпоночных пазов и установки шпонки осуществляется в соответствии с требованиями 6.2.9. Кроме того, конические

отверстия фланцевых полумуфт должны контролироваться посадкой их на конус сопрягаемого вала на краску. Допускается также контроль конусным калибром-пробкой. При контроле число пятен на площади 25×25 мм должно быть от пяти до одного для конусов длиной 80 - 320 мм (промежуточные значения определяются интерполяцией). При длине конуса более 320 мм число пятен на той же площади должно быть не менее 1.

- **6.4.4** Чистовую обработку и контроль фланцевых полумуфт по наружным цилиндрическим и торцевым поверхностям следует выполнять в насаженном на вал состоянии в соответствии с требованиями 6.2.6, 6.2.12, 6.2.13. Положение полумуфт на валах и относительно друг друга должно быть соответственным образом замаркировано.
- **6.4.5** Окончательно изготовленные муфты подвергаются наружному осмотру. Результаты проверок и произведенных замеров должны заноситься в таблицы (протокол, формуляр).
- **6.4.6** Техническое наблюдение за изготовлением компенсирующих, разобщающих и звукоизолирующих муфт является в каждом случае предметом специального рассмотрения Регистром.

6.5 УПОРНЫЕ И ОПОРНЫЕ ПОДШИПНИКИ

6.5.1 Окончательно изготовленные подшипники должны отвечать требованиям технической документации, одобренной Регистром.

6.6 ДЕЙДВУДНЫЕ УСТРОЙСТВА

6.6.1 Окончательно изготовленные трубы, втулки и подшипники дейдвудных устройств, в том числе и подшипники кронштейнов, должны отвечать требованиям технической документации, одобренной Регистром.

6.7 УПЛОТНЕНИЯ И САЛЬНИКИ ДЕЙДВУДНЫХ УСТРОЙСТВ

6.7.1 Окончательно изготовленные уплотнения масляной смазки и сальники водяной смазки дейдвудных устройств должны отвечать требованиям технической документации, одобренной Регистром.

7 ДВИЖИТЕЛИ

7.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **7.1.1** Положения настоящего раздела применяются при техническом наблюдении за движителями, их узлами и деталями, перечисленными в Номенклатуре PC.
- **7.1.2** Раздел устанавливает порядок технического наблюдения за изготовлением вышеуказанных объектов технического наблюдения на предприятии (изготовителе).
- 7.1.3 Общие положения по организации технического наблюдения за изготовлением упомянутых объектов приведены в части I «Общие положения по техническому наблюдению», по технической документации в части II «Техническая документация».
- 7.1.4 Порядок и объем освидетельствований и испытаний объектов технического наблюдения в процессе их изготовления и монтажа на предприятии (изготовителе) определяются перечнем (см. 11.2 части І «Общие положения по техническому наблюдению»), разработанным предприятием (изготовителем) и одобренным подразделением Регистра на основании Номенклатуры РС, а также требованиями табл. 7.1.4.

При составлении перечня учитываются особенности технологического процесса, принятые на предприятии (изготовителе).

7.1.5 Техническое наблюдение за изготовлением движителей, их узлов и деталей осуществляется в

соответствии с требованиями табл. 7.1.4, перечня и Номенклатуры РС.

7.1.6 Изготовление движителей, их узлов, деталей и выполнение технологических операций осуществляется под техническим наблюдением Регистра по одобренной им технической документации, перечисленной в части I «Классификация» Правил классификации и постройки морских судов применительно к движителям.

Конструкция движителей и их деталей должна соответствовать одобренной технической документации и отвечать требованиям части VII «Механические установки» Правил классификации и постройки морских судов.

7.1.7 Поковки, отливки и другие заготовки, идущие для изготовления и комплектации движителей, должны иметь документы, подтверждающие их соответствие одобренной технической документации согласно форме технического наблюдения, предусмотренной Номенклатурой РС.

При поступлении заготовок, поковок, отливок и других изделий без документов Регистра возможность их применения в каждом отдельном случае является предметом специального рассмотрения Регистром.

7.1.8 При поставке на предприятие (изготовитель) готовых деталей по кооперации проверяется наличие документов и клейм Регистра в соответствии с Номенклатурой РС и формой технического наблюдения. При наружном осмотре движителей и их деталей

Таблица 7.1.4

№ π/π	Объект технического наблюдения	Проверка техни- ческой докумен- тации	Наруж- ный осмотр	Проверка геометри- ческих размеров	скопия	Баланси- ровка	Гидрав- лические испыта- ния, про- верка на герметич- ность	Стендо- вые испы- тания	Ревизия
1	Гребные винты фиксированного шага (ВФШ):	+	+	+	+	+			
1.1	ступицы	+	+	+	+				
1.2	лопасти	+	+	+	+				
2	Гребные винты регулируемого шага	+	+	+		+	+	+	+
	(ВРШ) и обслуживающие их								
	системы:								
2.1	ступицы	+	+	+	+				
2.2	лопасти	+	+	+	+				
2.3	гидроцилиндры и валы механизма	+	+	+			+		
	изменения шага, сервомоторы в								
 	ступице								
2.4	детали ВРШ:								
l	ползуны, силовые штанги, шайбы	+	+	+	+				
2.5	системы управления ВРШ	+	+				+		
3	Крыльчатые движители	+	+	+			+	+	+
4	Движительные колонки	+	+	+			+	+	+

проверяются: соответствие документов и клейм принятой форме надзора, карты обмеров, отсут-ствие дефектов.

- **7.1.9** Поковки, отливки и другие заготовки движителей должны подвергаться дефектоскопии неразрушающими методами согласно требованиям одобренной технической документации.
- **7.1.10** Дефектные участки, исправленные сваркой и правкой, как правило, подлежат обязательной проверке неразрушающим контролем.

В отдельных случаях метод контроля назначается по усмотрению Регистра.

7.1.11 Детали движителей после окончательной обработки не должны иметь поверхностных и внутренних дефектов: трещин, раковин, шлаковых включений и т. п. Дефекты должны устраняться по принятой на предприятии (изготовителе) технологии. Нормы допустимых к исправлению дефектов, а также нормы допустимых без исправления дефектов окончательно обработанных гребных винтов, ступиц и лопастей оговариваются в технической документации, одобренной Регистром, с учетом гл. 4.2 части XIII «Материалы» Правил классификации и постройки морских судов для гребных винтов из медных сплавов (см. также приложение 1) и с учетом гл. 3.12 части XIII «Материалы» Правил классификации и постройки морских судов для гребных винтов из стали.

Если характер дефектов и способы их устранения не соответствуют оговоренным в одобренных документах, то они являются предметом специального рассмотрения Регистром.

- **7.1.12** Детали крепления (болты, шпильки и штифты) изготавливаются по технической документации, одобренной Регистром.
- **7.1.13** Проверка пригонки конусного отверстия ступицы проводится по калибру или валу. Качество пригонки определяется числом пятен, приходящихся на единицу площади конусного отверстия ступицы (не менее двух на площади 25×25 мм, если нет особых указаний в технической документации на винт).
- 7.1.14 Гребные винты ВФШ и ВРШ после механической обработки и в окончательно собранном виде должны быть проверены на статическую балансировку контрольным грузом в соответствии с указаниями чертежей по норме Регистра (см. 6.4 части VII «Механические установки» Правил классификации и постройки морских судов). У винтов со съемными лопастями должна быть проверена разница в массе между штатными и запасными съемными лопастями в соответствии с указаниями чертежей.
- **7.1.15** Каждый движитель, за исключением ВФШ, должен быть испытан на стенде по программе, одобренной Регистром.

- 7.1.16 До начала стендовых испытаний движителя проверяются монтаж, центровка, зазоры, контакт в сопрягаемых деталях, проводятся гидравлические испытания и другие виды контроля в соответствии с указаниями в одобренной технической документации.
- **7.1.17** К стендовым испытаниям допускаются движители, прошедшие обкатку по программе изготовителя и принятые органом технического контроля.
- **7.1.18** Перед стендовыми испытаниями движителя инспектору Регистра должны быть предъявлены следующие документы:
- .1 формуляр или паспорт движителя, заполненный построечными данными (замеры деталей, зазоров, центровки, гидравлических испытаний, балансировки и т. п.);
- **.2** технические условия, рабочие чертежи и программа испытаний, одобренные Регистром;
- .3 паспорт стенда или акт его приемки контрольными органами предприятия (изготовителя) со схемами обслуживающих систем;
- .4 свидетельства на материалы основных деталей движителя и комплектующее оборудование или иные документы, подтверждающие техническое наблюдение Регистра за изготовлением;
 - .5 акт о дефектоскопии.
- 7.1.19 Стендовые испытания движителя должны проводиться со штатным оборудованием и должны быть максимально приближены к судовым условиям. Отступления от этих требований являются в каждом случае предметом специального рассмотрения Регистром.
- **7.1.20** После стендовых испытаний должна быть проведена ревизия узлов движителей в разобранном виде.

Объем ревизии определяется на основании результатов стендовых испытаний и согласовывается с инспектором Регистра.

- **7.1.21** Техническое наблюдение за изготовлением моторов и насосов гидросистемы, трубопроводов и арматуры, оборудования автоматизации движителей проводится согласно разд. 5, 8 и 12.
- 7.1.22 При положительных результатах освидетельствования и испытания на движитель ставится клеймо Регистра и оформляется свидетельство Регистра.

7.2 ГРЕБНЫЕ ВИНТЫ ФИКСИРОВАННОГО ШАГА

- **7.2.1** Общие положения по техническому наблюдению за изготовлением движителей изложены в 7.1.
- **7.2.2** После механической обработки гребного винта инспектору Регистра предъявляются докумен-

ты контрольного органа с замерами геометрических размеров, а также с замерами толщин лопастей на радиусе, равном 0,6 радиуса винта, и на концевых кромках.

- **7.2.3** При предъявлении окончательно обработанного гребного винта инспектор проверяет:
 - .1 статическую балансировку;
 - .2 положение и размеры шпоночного паза;
- .3 пригонку конусного отверстия ступицы (при наличии гребного вала или калибра).

При наружном осмотре особое внимание обращается на шероховатость шпоночного паза по боковым плоскостям и конусного отверстия ступицы.

- **7.2.4** Допускается обработка конусного отверстия ступицы и шпоночного паза с припуском на окончательную пригонку, что должно быть оговорено в выдаваемых документах.
- 7.2.5 При посадке лопастей в ступицу с гарантированным натягом («холодом») проверяется положение лопасти в ступице по развороту (шагу лопасти) с допуском, оговоренным в чертежах.
- **7.2.6** Штатные и запасные съемные лопасти должны быть проверены на взаимозаменяемость.
- **7.2.7** При техническом наблюдении за изготовлением пластмассовых гребных винтов следует руководствоваться следующим:
- .1 документация на изготовление пластмассовых гребных винтов должна подлежать специальному рассмотрению Регистром;
- .2 лопасти пластмассовых гребных винтов должны выборочно подвергаться прочностному испытанию сосредоточенной статической нагрузкой до полного разрушения. Разрушающая статическая нагрузка, $Q_{\rm p}$, H, определяется по формуле

$$Q_{\mathbf{p}} \geqslant K_{\mathbf{\Phi}} R_{\mathbf{n}},\tag{7.2.7.2}$$

где K_{Φ} — коэффициент запаса прочности, равный:

6 — для пассажирских и транспортных судов;

7 — для буксирных и промысловых судов;

 $R_{_{\Pi}} = \sqrt{P_{_{\Pi}}^2 + T_{_{\Pi}}^2}$ — равнодействующая гидравлических сил на лопасти в рабочем режиме, H;

 $P_{\rm m} = P/z$ — упор, приходящийся на лопасть, H;

 $T_{\rm II} = M/(0.65Rz)$ — тангенциальная сила на лопасти, H;

M = 9550 N/n — крутящий момент на валу, Н·м;

N — мощность, подводимая к винту, кВт;

z — число лопастей;

n — частота вращения, мин $^{-1}$;

R — радиус винта, м.

Примечания: 1. Нагрузка прилагается перпендикулярно к хорде сечения на радиусе r=0.65R в точке пересечения ее с осевой линией лопасти.

- 2. Формула применима для винтов со съемными лопастями из стеклопластика диаметром до $2\,$ м.
- 3. Разрушающая статическая нагрузка $Q_{\rm p}$ для винтов диаметром более 2 м подлежит рассмотрению в каждом конкретном случае;
- .3 каждая партия пресс-материала должна иметь документ предприятия (изготовителя) с указанием содержания компонентов и механических свойств: предела прочности при растяжении, при сжатии и

при статическом изгибе; ударной вязкости и модуля упругости при растяжении;

.4 при внешнем осмотре проверяется качество изготовленных винтов и лопастей. Не должно быть явно выраженных побелений и резких почернений (свидетельства пережога), трещин, раковин, отслоений, волнистости, складок, короблений и т. п. Допустимые дефекты на винтах и лопастях, их количество и размеры должны быть оговорены в технических условиях или другой одобренной документации.

7.3 ГРЕБНЫЕ ВИНТЫ РЕГУЛИРУЕМОГО ШАГА И ОБСЛУЖИВАЮЩИЕ ИХ СИСТЕМЫ

- **7.3.1** Общие положения по техническому наблюдению за изготовлением и испытаниями движителей на предприятии (изготовителе) изложены в 7.1.
- 7.3.2 Изготовление деталей механизма изменения шага (МИШ), поршня, силовой штанги, гидроцилиндра, труб подвода масла в ступицу ползунов и других ответственных деталей ВРШ, а также систем, обслуживающих ВРШ, производится в соответствии с требованиями технической документации, одобренной Регистром.
- **7.3.3** Рабочие полости гидроцилиндра должны быть испытаны гидравлическим давлением, указанным в рабочих чертежах.
- **7.3.4** При сборке ВРШ и его узлов в соответствии с указаниями чертежей проверяются:
- .1 зазоры в подшипниках лопастей, механизмах привода лопастей, маслобуксах и масловводах, в исполнительных механизмах, гидроусилителях и т. п.;
- .2 моменты затяжки и стопорения стяжных болтов, шпилек или болтов крепления упорных шайб, лопастей и МИШ к гребному валу, гайки полумуфты гребного, вала, крепления гидроцилиндров и т. п.;
- .3 центровка поршня, штанги или труб подвода масла к поршню в ступице.
- **7.3.5** На окончательно изготовленные движители распространяются требования, изложенные в 7.2.2, 7.2.3 и 7.2.6.
- **7.3.6** По окончании всех сборочных работ ВРШ подлежат испытанию на стенде по программе, одобренной Регистром.
- 7.3.6.1 Перед испытаниями под нагрузкой необходимо проверить «нулевое положение», согласованность показаний стрелок выносных указателей шага и механического указателя шага, исполнительных механизмов и механизмов обратной связи. Показания снимаются на всем диапазоне перекладок «Полный вперед» «Полный назад» («Пв» «Пн») и обратно.

Согласованность показаний стрелок выносных указателей шага и механического указателя шага

должна быть также проверена на режиме номинальной частоты вращения.

7.3.6.1.1 При стендовых испытаниях невращающегося валопровода проверке подлежат:

плотность соединений ВРШ и трубопроводов в соответствии с требованием технической документации, одобренной Регистром. При испытании поршень гидроцилиндра последовательно переводится на носовой и кормовой упоры. Протечки масла не допускаются;

предохранительные устройства, исключающие превышение расчетного давления в гидросистеме;

диапазон поворота лопастей;

давление смазочного масла в ступице при перекладке лопастей из положения («Пв») в положение («Пн») и обратно;

работа местного и дистанционного управления;

перекладка лопастей из положения «Пв» в положение «Пн» и обратно, для чего производятся по четыре перекладки в оба положения. Перекладки должны осуществляться без заеданий и дополнительных усилий, значение которых контролируется по давлению масла в гидросистеме и времени перекладки;

аварийная фиксация лопастей в положении переднего хода.

7.3.6.1.2 При стендовых испытаниях в ращающегося валопровода проверке подлежат:

давление масла в гидросистеме, обеспечивающее надежную перекладку лопастей из положения «Пв» в положение «Пн» и обратно, с замерами времени при работе каждого насоса, для чего производятся по четыре перекладки в оба положения при номинальной частоте вращения гребного вала;

согласование положений рукояток пультов управления с положениями выносных и местных указателей шага. Показания снимаются со шкалы маневровой рукоятки на всем диапазоне перекладок из положения «Пв» в положение «Пн» и обратно. Для ВРШ с пневматическим и пневмогидравлическим управлением производятся замеры давлений воздуха и масла в системе управления на исполнительных механизмах и механизмах обратной связи;

включение резервного агрегата питания гидросистем при имитации выхода из строя основного агрегата питания;

минимальное давление масла в гидросистеме, обеспечивающее надежную перекладку лопастей;

перекладка лопастей в положение переднего хода при имитации выхода из строя силовой гидравлической системы ВРШ или обесточивания электромасляных насосов силовой системы, а также при выходе из строя системы дистанционного управления или возможности аварийной установки и фиксации лопастей в положении переднего хода.

7.3.7 Стендовые испытания головных образцов ВРШ принципиально новых конструкций должны

проводиться с нагрузочными приспособлениями вместо штатных лопастей. Эти приспособления должны обеспечивать не менее 110 % расчетной нагрузки на основные детали поворота лопастей.

Конструкция и расчеты нагрузочных приспособлений должны быть представлены Регистру для сведения.

Испытания ВРШ с нагрузочными приспособлениями при установившемся производстве являются в каждом случае предметом специального рассмотрения Регистром.

7.4 КРЫЛЬЧАТЫЕ ДВИЖИТЕЛИ

- **7.4.1** Общие положения по техническому наблюдению за изготовлением и испытаниями крыльчатых движителей (КД) на предприятии (изготовителе) изложены в 7.1.
- **7.4.2** При изготовлении деталей и узлов КД, а также при их сборке проверке подлежат:
- .1 боковые зазоры и пятна контакта в зацеплениях редукторов, осевые и радиальные зазоры в подшипниках валов роторов и ведущих валов, осевые зазоры в опорных плитах, в упорных подшипниках лопастей;
- **.2** правильность сборки и кинематические характеристики механизмов привода лопастей;
- .3 статическая балансировка ведущих валов в сборе с муфтами и роторов в сборе.
- **7.4.3** Во время стендовых испытаний КД обязательной проверке подлежат:
 - .1 при невращающемся роторе:

герметичность уплотнений ротора и корпуса КД; герметичность зароторного пространства наружным гидравлическим давлением при отсоединенной системе масляного подпора;

работа систем сигнализации, защиты и автоматических устройств;

.2 при вращающемся роторе:

пусковые свойства КД трехкратным пуском с проверкой выхода на режим;

работа аварийного управления путем трехкратной перекладки рычага управления из положения «Пв» в положение «Пн» и обратно и из положения «Правый борт» («Пб») в положение «Левый борт» («Лб») и обратно;

возврат рычага управления в нулевое положение из всех крайних положений «Пв», «Пн», «Пб», «Лб» при остановке двигателя;

работа системы дистанционного управления и механизмов управления движителя при трехкратных перекладках лопастей из положения «Пв» в положение «Пн» и обратно, а также из положения «Пб» в положение «Лб» и обратно;

точность установки эксцентриситета путем трехкратной перекладки лопастей из положения

«Стоп» в каждое крайнее положение «Пв», «Пн», «Пб», «Лб» и обратно.

На режиме номинальной частоты вращения и максимального подъема иглы должно быть произведено по десять перекладок из положения «Пв» в положение «Пн» и обратно, из положения «Пб» в положение «Лб» и обратно.

7.5 ДВИЖИТЕЛЬНЫЕ КОЛОНКИ

- **7.5.1** Общие положения по техническому наблюдению за изготовлением и испытаниями движительных колонок на предприятии (изготовителе) изложены в 7.1.
- **7.5.2** Гребные винты, шестерни верхних редукторов (при наличии в конструкции) и соединительные муфты должны быть статически отбалансированы.
- **7.5.3** При изготовлении деталей и узлов колонок, а также при их сборке проверке подлежат:

- **.1** боковые зазоры и пятна контакта в зубчатых зацеплениях редукторов;
- .2 осевые и радиальные зазоры в подшипниках валов редукторов;
 - .3 механизмы подъема, поворота и блокировки.
- **7.5.4** Во время стендовых испытаний колонок обязательной проверке подлежат:
- .1 при невращающемся гребном винте:

герметичность нижнего редуктора при статическом масляном подпоре;

работа механизмов опускания, подъема и поворота колонки;

.2 при вращающемся гребном винте: пусковые свойства колонки при местном и дистанционном управлении;

подъемы и опускания, повороты колонки;

соответствие всех параметров и характеристик одобренной документации.

7.5.5 Стендовые испытания проводятся по программе, одобренной Регистром, с учетом требований к объему стендовых испытаний движительных колонок (см. Приложение 2).

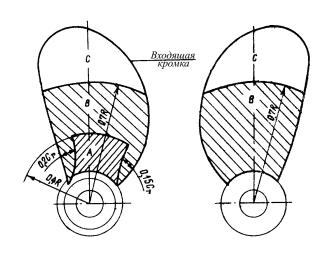
ПРИЛОЖЕНИЕ 1

ИНСТРУКЦИЯ ПО УСТРАНЕНИЮ ДЕФЕКТОВ ГРЕБНЫХ ВИНТОВ ИЗ МЕДНЫХ СПЛАВОВ

1. Общие положения.

- **1.1** Настоящая Инструкция устанавливает способы устранения дефектов гребных винтов ВФШ и ВРШ, изготовленных из медных сплавов.
- **1.2** Инструкция предназначается для исправления дефектов гребных винтов, выявленных в процессе их изготовления и при ремонте в эксплуатации.
- **1.3** При разработке технологических процессов ремонта гребных винтов необходимо учитывать:

материал винта, его механические характеристики и способность к свариванию;


результаты освидетельствования, в том числе неразрушающим контролем;

место расположения и характер дефекта или повреждения;

размеры лопастей и запасы прочности.

2. Способы установления дефектов.

- **2.1** Дефекты, расположенные в зоне A (см. рис. 2.1), а также в местах, где можно ожидать пористости, определяются визуально и неразрушающим контролем, одобренным Регистром.
- **2.2** Рентгенография применяется, если толщина лопасти не превышает 160 мм.

Нагнетательная сторона

Всасывающая сторона

Рис. 2.1 Разбивка поверхности лопасти винта на зоны: R — радиус винта; C_r — длина хорды на радиусе

2.3 Ультразвуковой контроль применим для гребных винтов, изготовленных из медных сплавов типов CU3 и CU4 (см. табл. 4.2.2.1 и 4.2.3 части XIII «Материалы» Правил классификации и постройки морских судов).

3. Устранение дефектов механическими способами.

- **3.1** Небольшие дефекты (пористость, сыпь, включение окисных плен и т.п.) могут устраняться механическим способом и последующей шлифовкой. При этом переход от места удаления дефекта к лопасти винта должен быть плавным.
- 3.2 Холодную правку погнутой лопасти разрешается производить только в случаях исправления небольшого прогиба кромок лопасти с углом отклонения до 20° при толщине лопасти в месте прогиба не более 20 мм.
- **3.3** Не допускается производить холодную правку лопастей с приложением ударных нагрузок.
- 3.4 После правки гребных винтов, изготовленных из сплавов типов CU1, CU2, CU4 (см. табл. 4.2.2.1 и 4.2.3 части XIII «Материалы» Правил классификации и постройки морских судов), необходимо провести отжиг при температурах, указанных в табл. 3.4.

Тип сплава	Температура, °С				
винта	Предвари- тельный подогрев	Отжиг	Горячая правка		
CU1	150 — 250	350 — 550	500 — 800		
CU2	150 — 250	350 — 550	500 — 800		
CU3	50 — 150	Не рекомендуется	750 — 950		
CU4	50 — 250	450 — 600	775 — 875		

Таблица 3.4

- 3.5 Как правило, перед правкой лопастей место ремонта и окружающий район шириной около 500 мм должны быть подогреты. Рекомендуемые температуры предварительного подогрева приведены в табл. 3.4.
- **3.6** Подогрев должен производиться постепенно и равномерно. Запрещается пользоваться ацетилено-кислородным или пропано-кислородным пламенем. Рекомендуется применять электроподогрев.
- **3.7** Во время горячей правки температура должна поддерживаться в пределах, указанных в табл. 3.4, и быть одинаковой по всей толщине лопасти.

Контроль температуры рекомендуется проводить контактными или радиационными термометрами, а также термокарандашом.

- 3.8 После горячей правки лопастей необходимо дать гребному винту медленно остыть. При этом рекомендуется накрыть лопасти гребного винта негорючими теплоизолирующими материалами.
- **3.9** После устранения дефектов осуществляются визуальный контроль и цветная или люминесцентная дефектоскопия участков устранения дефектов.

4. Устранение дефектов сваркой.

4.1 Сваркой устраняются такие дефекты гребных винтов, которые невозможно устранить механическим путем.

Применения сварки для устранения небольших поверхностных дефектов следует избегать.

- **4.2** Особенности устранения дефектов гребных винтов сваркой регламентируются в зависимости от места (зоны) их расположения и степени влияния дефектов на прочностные характеристики винта. Вся поверхность лопасти гребного винта делится на зоны A, B и C (см. рис. 2.1).
- **4.3** Устранение дефектов в зоне A сваркой, как правило, не допускается. Каждый случай исправления дефектов в зоне A сваркой требует специального согласования с Регистром.
- **4.4** Устранение дефектов в зоне *В* сваркой может быть допущено по технологическому процессу, одобренному Регистром для конкретного гребного винта.
- **4.5** Устранение дефектов в зоне *C* сваркой допускается проводить по типовым технологическим процессам ремонта гребных винтов, одобренных Регистром, и под его техническим наблюдением.
- **4.6** Разделка под сварку должна иметь плавный контур без острых и прямых углов, резких выступов и углублений, а также должна быть тщательно зачищена и высушена.

Концы несквозных трещин перед вырубкой необходимо засверлить сверлом диаметром от 8 до 12 мм на 2 — 3 мм глубже распространения трещины. Концы сквозных трещин засверливаются насквозь.

- **4.7** При сварке лопасть винта должна находиться в горизонтальном положении.
- **4.8** Устранение дефектов сваркой должно проводиться сварщиком удостоверенной квалификации.
- 4.9 Рекомендуется применять электроды со специальным покрытием или вести сварку в защитной газовой среде способом, одобренным Регистром. Электроды с покрытием необходимо подогреть перед сваркой до температуры, рекомендованной предприятием (изготовителем).

Устранение дефектов в зоне C допускается проводить газовой сваркой.

- **4.10** При применении сварки с подогревом рекомендуется не превышать температур предварительного подогрева, указанных в табл. 3.4.
- **4.11** Сварку рекомендуется выполнять медленно во избежание сварочных деформаций и появления трещин. Перед нанесением очередного шва следует тщательно удалить шлак, а также возможные загрязнения с выполненного шва.
- **4.12** После устранения дефектов сваркой должна быть проведена термическая обработка в соот-

ветствии с требованиями технической документации, одобренной Регистром, и табл. 3.4.

4.13 После устранения дефектов и окончательной обработки поверхности шва или наплавки прилегающую к ней зону термического влияния контролируют как до проведения термической

обработки, так и после нее. Контроль включает в себя визуальный осмотр, а также цветную или люминесцентную дефектоскопию.

В необходимых случаях инспектор может потребовать провести балансировку винта.

ПРИЛОЖЕНИЕ 2

ТРЕБОВАНИЯ К ОБЪЕМУ СТЕНДОВЫХ ИСПЫТАНИЙ ДВИЖИТЕЛЬНЫХ КОЛОНОК

- 1. Испытания верхнего и нижнего редуктора под воздействием расчетного крутящего момента для контроля пятна контакта зубчатых зацеплений. Расчетным для движительной колонки является крутящий момент, обеспечиваемый приводным двигателем на расчетной мощности. Испытания выполняются на движительной колонке в сборе или отдельно для верхнего и нижнего редуктора при условии обеспечения соответствующих крутящих моментов. Фотографии пятен контакта каждой зубчатой пары прилагаются к протоколу испытаний вместе с заключением изготовителя движительной колонки о приемлемости полученного пятна контакта зубчатого зацепления в сравнении с эталонным согласно требованиям изготовителя. Пятна контакта и зазоры в зубчатых зацеплениях подлежат контролю и согласованию с Регистром.
- 2. Движительные колонки испытываются без нагрузки при поэтапном увеличении частоты вращения гребного вала в диапазоне от минимально устойчивой частоты вращения до расчетной. Длительность каждого этапа должна составлять не менее 15 мин, а их количество не менее четырех. На каждом этапе регистрируются температуры масла и подшипников валов привода гребного вала. При этом контролируется время, необходимое на стабилизацию температур, и их максимальные значения. На каждом этапе регистрируется частота вращения привода колонки и гребного вала.
- **3.** Испытания в соответствии с п. 1. и 2. могут совмещаться, если одна движительная колонка испытывается с нагрузочным устройством или гребным винтом, а также при испытаниях двух однотипных движительных колонок по схеме «back to back» (со встречным упором).
- **4.** Контроль механизма поворота и реверса движительной колонки.
- **4.1** Одновременно с передачей вращения на гребной вал осуществляется проверка фиксации угла положения колонки. При этом регистрируется отклонение действительного угла положения от заданного. Контроль осуществляется при управлении с местного и дистанционного постов

- управления для четырех положений колонки через 90° .
- **4.2** Проверяется время реверса поворотом колонки на 180°. Результат проверки должен удовлетворять требованиям 7.2 части VII «Механические установки» Правил классификации и постройки морских судов.
- 4.3 В случае невозможности проведения испытаний согласно 4.1 и 4.2 на колонках большой мощности по условиям стенда предприятия (изготовителя) может быть рассмотрена возможность их проведения на собранном верхнем редукторе. В противном случае эти испытания должны быть перенесены на судно, о чем делается запись в Свидетельстве Регистра (ф. 6.5.30/6.5.31) на движительную колонку.
- **5.** Если конструкция предусматривает встроенное тормозное устройство, предотвращающее свободное вращение гребного вала при нерабочем состоянии колонки, осуществляется контроль функционирования этого устройства.
- **6.** Выполняется 3-кратная проверка срабатывания встроенной муфты, разобщающей колонку и двигатель ее привода.
- 7. В случае использования в колонке винта регулируемого шага должны быть выполнены испытания винта и обслуживающих его систем согласно применимым требованиям 7.3.
- 8. Согласно одобренной документации посредством переносных насосов проверяется давление срабатывания предохранительных клапанов контуров высокого и низкого давления системы гидравлического привода и управления поворотом колонки. В случае электрического привода и управления поворотом колонки контролируются параметры электродвигателей в соответствии с применимыми требованиями разд. 10 «Электрическое оборудование».
- 9. Контролируется работа системы смазки колонки посредством регистрации давления, а также функционирование охладителей масла, в случае подключения последних к стендовым системам.

10. Согласно одобренной документации проверяются параметры срабатывания датчиков системы аварийно-предупредительной сигнализации и защиты. Как правило, проверки осуществляются имитацией критических параметров при неработающей колонке.

11. После испытаний проводится ревизия в объеме, установленном программой. Как правило, внешнему осмотру подлежат зубчатые зацепления верхнего и нижнего редукторов, а также поворотного механизма колонки. В зависимости от результатов испытаний объем ревизии может быть изменен по требованию инспектора Регистра.

8 СИСТЕМЫ И ТРУБОПРОВОДЫ

8.1 ОБЩИЕ ПОЛОЖЕНИЯ

8.1.1 Область распространения.

- **8.1.1.1** Положения настоящего раздела применяются при техническом наблюдении за изготовлением элементов систем, перечисленных в Номенклатуре РС, на верфи и на предприятии (изготовителе).
- **8.1.1.2** Общие положения по организации технического наблюдения за изготовлением элементов систем приведены в части І «Общие положения по техническому наблюдению», по технической документации в части ІІ «Техническая документация».
- **8.1.1.3** Трубы, предназначенные для изготовления трубопроводов, а также материалы и комплектующие изделия, применяемые при изготовлении элементов систем, должны иметь документы, предусмотренные Номенклатурой РС.

8.1.2 Определения и пояснения.

Элементы системы — трубопроводы и их отдельные участки, гибкие соединения и компенсаторы, арматура всех типов и назначений, съемные соединительные элементы (штуцеры, муфты, фланцы и т. п.), арматура воздушных труб, вентиляционных каналов и газоотводных систем, искрогасители газовыпускных систем и дымоходов.

Участки трубопроводов — прямые и гнутые трубы с приварными элементами и без них.

8.1.3 Объем и порядок освидетельствований.

- **8.1.3.1** В общем виде объем и порядок освидетельствований при техническом наблюдении за изготовлением элементов систем приведен в табл. 8.1.3.1.
- **8.1.3.2** Независимо от предписанного настоящим разделом объема освидетельствований, техническое наблюдение должно предусматривать периодический контроль за технологическими процессами, влияющими на регламентируемые Регистром характеристики изделий.
- 8.1.3.3 Объем и порядок освидетельствований головных и опытных образцов (партий) изделий устанавливаются с учетом табл. 8.1.3.1 и изложенных ниже специальных требований. Результаты освидетельствования и испытаний головного (опытного) образца отражаются в Акте освидетельствования головного (опытного) образца.

8.1.4 Техническая документация.

- **8.1.4.1** Техническая документация на объекты, указанные в Номенклатуре РС, должна быть одобрена Регистром.
- **8.1.4.2** Объекты, входящие в Номенклатуру РС, допускаются к применению по назначению при наличии документов, предписываемых Номенклатурой РС.

Таблица 8.1.3.1

Объект технического наблюдения	Контроль применяемых материалов	1	Испытание пробным давлением	Контроль процессов сварки	Проверка в действии
Арматура трубопроводов I и II классов (а также донная, бортовая, устанавливаемая на форпиковой переборке и дистанционно управляемая)		+	+	_	+
Арматура газоотводной системы, системы выдачи паров груза и системы воздушных труб	+	+	_	+	+
Гибкие соединения (включая компенсаторы)	+	+	+	+	_

8.2 АРМАТУРА ТРУБОПРОВОДОВ І И ІІ КЛАССОВ, А ТАКЖЕ ДОННАЯ, БОРТОВАЯ, УСТАНАВЛИВАЕМАЯ НА ФОРПИКОВОЙ ПЕРЕБОРКЕ И ДИСТАНЦИОННО УПРАВЛЯЕМАЯ

- **8.2.1** Техническое наблюдение за изготовлением арматуры трубопроводов I и II классов, а также донной, бортовой, устанавливаемой на форпиковой переборке и дистанционно управляемой должен предусматривать проверки:
- **.1** соответствия применяемых материалов требованиям технической документации;
- .2 отсутствия поверхностных дефектов (трещин, разрывов, свищей и т. п.), а также дефектов в местах присоединения к трубопроводам;
- .3 работы местных и дистанционных приводов арматуры;
- .4 прочности гидравлическими испытаниями пробным давлением согласно 21 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов;
- .5 герметичности закрытий гидравлическими испытаниями арматуры в сборе расчетным давлением.
- 8.2.2 Регулирующая, предохранительная и измерительная арматура, а также автоматически действующие закрытия воздушных труб подлежат проверке в действии для подтверждения соответствия требованиям одобренной технической документации.
- **8.2.3** При проверках дистанционно управляемой арматуры следует убедиться в способности клапанов занимать предусмотренное технической документацией положение при выходе из строя системы дистанционного автоматического управления, а также в правильности установки указателей положений «открыто» и «закрыто».
- 8.2.4 При техническом наблюдении за опытными и головными образцами арматуры должны предусматриваться дополнительная проверка ее длительной работы в условиях вибрации, при предельных значениях температуры и давления, а также ее действие в условиях других специальных режимов, определяемых назначением.

8.3 АРМАТУРА ТРУБОПРОВОДОВ III КЛАССА

- **8.3.1** Арматура трубопроводов III класса после изготовления должна поставляться с документами согласно Номенклатуре РС.
- **8.3.2** Если условиями заказа не оговорено назначение арматуры, техническое наблюдение за ее изготовлением следует осуществлять согласно 8.2.

8.4 АРМАТУРА ГАЗООТВОДНОЙ СИСТЕМЫ И ВОЗДУШНЫХ ТРУБ

- **8.4.1** Техническое наблюдение за изготовлением арматуры газоотводной системы всех типов должно предусматривать проверки:
- .1 соответствия применяемых материалов требованиям технической документации;
- .2 отсутствия поверхностных дефектов и повреждений, качества обработки уплотнительных и присоединительных поверхностей, непроницаемости корпусов арматуры;
- .3 соответствия конструкции арматуры одобренной технической документации.
- **8.4.2** При освидетельствовании арматуры, оборудованной пламепрерывающими устройствами, следует обращать внимание на соответствие площадей проходного сечения таких устройств и воздушных труб.
- **8.4.3** Автоматически действующие закрытия воздушных труб должны быть испытаны согласно 21.4 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.
- **8.4.4** При освидетельствовании дыхательных клапанов и высокоскоростных газоотводных устройств следует проверять, при каких значениях давления и вакуума происходит их срабатывание.
- **8.4.5** Арматура газоотводной системы должна пройти типовые испытания согласно требованиям циркуляра ИМО MSC/Circ. № 677.
- **8.4.6** При освидетельствовании головных образцов арматуры, снабженной пламепрерывающей сеткой, проверяется невоспламеняемость паров горючих смесей при обусловленной температуре.

8.5 МЕХАНИЧЕСКИЕ, ГИБКИЕ СОЕДИНЕНИЯ И КОМПЕНСАТОРЫ

- **8.5.1** Техническое наблюдение за изготовлением механических, гибких соединений и компенсаторов, предназначенных для трубопроводов систем, поднадзорных Регистру, должно предусматривать проверки:
- .1 соответствия марок материалов требованиям технической документации;
- .2 соответствия конструктивных особенностей, размеров и прочих характеристик изделий одобренной технической документации;
- .3 прочности соединений и компенсаторов при испытании их гидравлическим давлением согласно 21.2 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов;
- .4 соответствия механических соединений требованиям 2.4.5 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

- **8.5.2** При освидетельствовании головных и опытных образцов неметаллических гибких соединений проверяется их огнестойкость согласно 2.5.3.5 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.
- **8.5.3** Объем испытаний механических соединений должен соответствовать требованиям 2.4.5.14 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов, а методика требованиям 8.5.4 настоящей главы.

8.5.4 Типовые испытания механических соединений.

8.5.4.1 Документация.

Для рассмотрения и одобрения предприятием (изготовителем) должна быть представлена следующая техническая документация:

- .1 полное описание изделия;
- **.2** чертеж поперечного сечения с указанием размеров для оценки конструкции соединения;
- **.3** полный перечень материалов для всех деталей сборки;
- **.4** данные о внедренной на предприятии (изготовителе) системе качества продукции;
 - .5 проект программы испытаний;
 - .6 первоначальная информация:

максимальное расчетное давление и вакуум;,

максимальная и минимальная расчетная температура;

проводимые среды;

назначение;

допустимые осевые, горизонтальные и угловые отклонения;

требования к монтажу.

8.5.4.2 Материалы.

Используемые материалы должны соответствовать требованиям 2.4.5.4 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

Предприятие (изготовитель) должно представить обоснованные подтверждения того, что все компоненты имеют достаточную стойкость к рабочей среде при расчетном давлении и температуре.

8.5.4.3 Испытания, процедуры и требования.

Целью испытаний является подтверждение работоспособности соединений трубопроводов в предписанных эксплуатационных условиях. Объем и вид испытаний, последовательность проверок, количество испытываемых образцов должны быть одобрены Регистром в зависимости от типа соединения, его назначения и с учетом настоящих требований.

Если не оговорено иное, в качестве испытательной среды может быть использована вода или машинное масло.

8.5.4.4 Программа испытаний.

Требования к испытаниям механических соединений изложены в табл. 8.5.4.

Таблица 8.5.4

Виды	Ti	Ссылки и		
испытаний	Обжим- ные,	Муфтовые		примеча- ния
	штуцерно- ниппель- ные	Фиксиро- ванные	Скользящие	
На герметич-	+	+	+	8.5.4.8.1
На вибрацию	+	+	+	8.5.4.8.2
(усталостную прочность) Пульсирую-	+	+	_	8.5.4.8.5
щим давле- нием ¹				
Разрушающим давлением	+	+	+	8.5.4.8.6
Растягивающей	+	+	+	8.5.4.8.7
нагрузкой На огнестой-	+	+	+	8.5.4.8.8
кость Вакуумом	+2	+	+	см. 2.4.5.6 8.5.4.8.9 ³
Сборка-разборка	+4	+	-	8.5.4.8.10

Условные обозначения:

8.5.4.5 Отбор образцов.

Образцы соединений должны быть отобраны с производственной линии или склада предприятия (изготовителя).

Когда типоряд представлен значительным количеством типоразмеров, как минимум, три образца каждого типоразмера должны быть подвергнуты испытаниям, перечисленным в табл. 8.5.4.

8.5.4.6 Испытательная сборка.

Сборка механического соединения должна состоять из компонентов, отобранных в соответствии с 8.5.2, и отрезков труб приемлемого для соединения размера.

Если материал трубы может повлиять на характеристики соединений, это следует учитывать при выборе труб.

Если особо не оговорено, длина отрезков труб, предназначенных для испытания соединения, должна быть не менее пяти ее диаметров. Перед сборкой должно быть подтверждено соответствие деталей соединения требованиям проектной документации. Установка образца должна выполняться в полном соответствии с инструкцией предприятия (изготовителя). Дополнительные подгонки соединения, не предусмотренные предприятием (изготовителем), в течение испытаний не допускаются.

⁺ требуется;

не требуется.

 $^{^{1}}$ Для систем, работающих в условиях пульсирующего давления.

²Кроме соединений с металлическими уплотняющими элементами.

³Только для всасывающих участков.

⁴Кроме обжимных соединений.

8.5.4.7 Критерии оценки результатов испытаний.

Если соединение не прошло все или часть испытаний, упомянутых в табл. 8.5.4, те же испытания должны быть повторены на двух таких же сборках. При неудовлетворительных результатах повторных испытаний данный типоразмер рассматривается как не выдержавший проверку.

8.5.4.8 Методы испытаний.

8.5.4.8.1 Проверка на герметичность.

Для проверки правильности сборки все соединения должны быть подвергнуты следующим испытаниям на герметичность:

.1 испытательная сборка, собранная с учетом рекомендаций предприятия (изготовителя), должна быть заполнена жидкостью и деаэрирована.

Сборки с механическими соединениями, предназначенными для продольной фиксации концов труб, не должны разгружаться от осевых нагрузок.

В случае падения давления или обнаружения признаков протечек испытания должны быть проведены повторно для двух образцов. Если во время повторных испытаний обнаружатся протечки одного из образцов, то результаты испытаний считаются неудовлетворительными.

Пневматические испытания допускаются как альтернатива гидравлическим испытаниям;

.2 способность обжимных соединений сохранять герметичность при воздействии газообразных сред должна подтверждаться пневматическими испытаниями. Давление должно быть равно максимальному расчетному давлению или 7 МПа в зависимости от того, что меньше;

.3 если испытания герметичности выполнены в соответствии с процедурой, описанной в 8.5.4.8.1.1 с использованием газообразной среды, в их повторении с использованием процедуры 8.5.4.8.1.2 нет необходимости.

8.5.4.8.2 Вибрационные испытания (на усталость).

Для подтверждения работоспособности механических соединений в условиях воздействия усталостных нагрузок, вызываемых вибрацией, они должны быть подвергнуты вибрационным испытаниям.

После завершения испытаний не должно быть протечек или других признаков повреждений.

8.5.4.8.3 Испытания обжимных и щтуцерно-ниппельных соединений.

Обжимные, щтуцерно-ниппельные и другие подобные соединения, предназначенные для жесткой фиксации концов труб, исключающей возможность их углового или осевого перемещения, должны быть испытаны в соответствии с представленной ниже методикой.

Два отрезка трубы должны быть собраны с использованием испытываемого соединения. Один конец сборки должен быть жестко зафиксирован, а

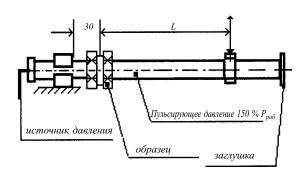


Рис. 8.5.4.8-1

другой подключен к вибрационной установке. Принципиальная схема монтажа испытательной сборки на стенде представлена на рис. 8.5.4.8-1.

Испытательная сборка должна быть заполнена жидкостью, деаэрирована, и давление в ней должно быть поднято до расчетного. Это давление должно поддерживаться и контролироваться на протяжении испытаний. При обнаружении падения давления или протечек испытания следует повторить, как это предписано в 8.5.4.8.1.

Отсутствие повреждений, которые в дальнейшем могут привести к протечкам, подтверждается визуальной проверкой.

При необходимости после 1000 циклов допускается повторное обжатие соединений.

Амплитуда вибрации должна поддерживаться с отклонением не более 5 % от значения, определяемого по формуле

$$A = \frac{2SL^2}{3ED} \,, \tag{8.5.4.8.3}$$

где A – амплитуда, мм;

L – длина трубы, мм;

S — допустимое изгибающее напряжение, равное 0,25 предела текучести, H/mm^2 ;

E — модуль упругости материала трубы (для малоуглеродистой стали $E=210~\mathrm{кH/mm}^2$);

D — наружный диаметр трубы, мм.

Образец должен выдержать не менее 107 циклов с частотой 20 –50 Гц без протечек или повреждений.

8.5.4.8.4 Муфтовые соединения со стопорными кольцами или с установочными канавками.

Муфтовые соединения, содержащие в своем составе эластичные уплотняющие элементы, должны испытываться в соответствии с описанным ниже методом.

Может применяться испытательный стенд консольного типа, используемый при испытаниях на усталость. Схема установки образца на испытательном стенде представлена на рис. 8.5.4.8-2.

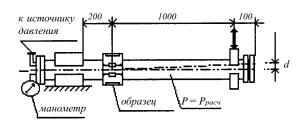


Рис. 8.5.4.8-2

Два отрезка трубы должны быть соединены посредством испытываемого образца. Один конец сборки должен быть жестко зафиксирован, а другой соединен с вибрационным приводом. Фиксированный отрезок трубы должен быть как можно короче и, ни в коем случае, не превышать 200 мм.

Соединения, предназначенные для жесткой фиксации концов труб, не должны разгружаться от осевых нагрузок.

Сборка должна быть заполнена испытательной жидкостью, деаэрирована, и давление в ней должно быть поднято до расчетного давления. Предварительное угловое отклонение оси трубы должно соответствовать максимальному отклонению, допустимому предприятием (изготовителем).

Амплитуда колебаний должна замеряться на расстоянии 1 м от опоры на свободном конце трубы, соединенным с вращающим элементом (см. рис. 8.5.4.8-2).

Параметры испытаний должны соответствовать указанным ниже:

Количество циклов	Амплитуда, мм	Частота, Гц
3×10^{6}	± 0.06	100
3×10^{6}	± 0.5	45
3×10^{6}	± 1.5	10

Давление в течение испытаний должно контролироваться. В случае появления протечек или падения давления испытания должны быть повторены в соответствии с 8.5.4.8.1. Отсутствие повреждений должно быть подтверждено визуальной проверкой.

8.5.4.8.5 Испытания пульсирующим давлением.

Данные испытания проводятся для подтверждения работоспособности механических соединений в условиях воздействия пульсирующего давления. Жесткие соединения должны быть испытаны по настоящей методике. Для испытаний может использоваться образец, прошедший проверку в соответствии с 8.5.4.8.1.

Для прессовых, штуцерных и муфтовых соединений вибрационные испытания и испытания

пульсирующим давлением должны проводиться одновременно.

Испытательная сборка должна быть подключена к источнику давления, способному генерировать импульсное давление в соответствии с графиком на рис. 8.5.4.8-3.

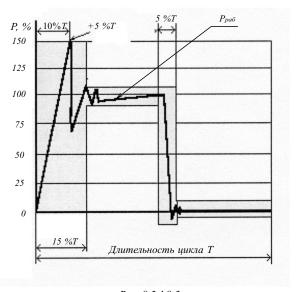


Рис. 8.5.4.8-3 Диаграмма изменения давления в течение одного цикла

Импульсное давление должно изменяться от 0 до 1,5 расчетного давления частотой 30-100 циклов в минуту. Число циклов должно быть не менее 5×10^5 .

Отсутствие признаков протечек и повреждений подтверждается визуальной проверкой.

8.5.4.8.6 Испытание разрушающим давлением.

Для подтверждения способности механических соединений выдержать давление, указанное в 2.4.5.5 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов, они должны быть подвергнуты проверке разрушающим давлением.

Сборка должна быть выполнена с учетом рекомендаций 8.5.4.6, заполнена испытательной жидкостью, деаэрирована и нагружена до давления испытания со скоростью увеличения давления не более 10 % в минуту. Соединения, предназначенные для жесткой фиксации концов труб, не должны разгружаться от осевых нагрузок.

Продолжительность выдержки под максимальным давлением — не менее 5 мин.

При необходимости для данных испытаний допускается использование образцов, прошедших испытание на герметичность в соответствии с 8.5.4.8.1.

Допускается наличие деформации образца при воздействии пробного давления без видимых повреждений или протечек.

8.5.4.8.7 Испытание растягивающей нагрузкой.

Испытание растягивающей нагрузкой проводится для подтверждения способности образца выдерживать аксиальные нагрузки без рассоединения с концами труб.

Два отрезка труб должны быть соединены образцом, предназначенным для испытания. Сборка при расчетном давлении должна быть подвергнута растягивающему усилию, определяемому по формуле

$$L = \pi D^2 p/4, \tag{8.5.4.8.7}$$

где D – наружный диаметр трубы, мм;

L – растягивающее усилие, H;

p – расчетное давление, H/мм².

Время выдержки под нагрузкой должно составлять не менее 5 мин. Давление в течение испытаний и относительное положение соединения и концов труб должны контролироваться.

Образец должен быть проверен на отсутствие падения давления, протечек или повреждений.

Перемещения соединения относительно концов труб быть не должно.

8.5.4.8.8 Испытание на огнестойкость.

Для определения способности сохранять работоспособность при воздействии пожара, который может возникнуть в эксплуатации, механическое соединение должно быть подвергнуто испытаниям на огнестойкость. Испытание на огнестойкость должны проводиться на выбранных образцах в соответствии со следующими стандартами:

ISO 19921: 2005(E): Ships and marine technology — Fire resistance of metallic pipe components with resilient and elastomeric seals — Test methods (Судовые и морские технологии. Пожаростойкость компонентов металлических труб с пружинистыми эластомерными уплотнениями. Методы испытаний);

ISO 19922: 2005(E): Ships and marine technology - Fire resistance of metallic pipe components with resilient and elastomeric seals - Requirements imposed on the test bench (Судовые и морские технологии. Огнестойкость компонентов металлических труб с эластичными уплотнениями. Требования к испытательным стендам).

Пояснения по применению стандартов:

- 1. Если испытания на огнестойкость проводились с циркуляцией воды при давлении, отличном от расчетного давления соединения (допускается не менее 0,5 МПа), то последующее испытание давлением должно проводиться пробным давлением в два раза больше расчетного.
- 2. При выборе условных диаметров образцов могут быть учтены испытания одного образца для оценки огнестойкости типоряда в определенном диапазоне. Если испытано механическое соединение с номинальным диаметром DN, то все механические соединения, попадающие в диапазон от DN до 2DN

(включительно), рассматриваются как прошедшие испытания.

8.5.4.8.9 Вакуумные испытания.

Для подтверждения работоспособности механических соединений при давлении менее атмосферного должны быть выполнены вакуумные испытания.

Испытательная сборка должна быть подключена к вакуумному насосу, и давление в ней должно быть снижено до абсолютного давления 17 кПа. Когда давление стабилизируется, сборка должна быть отключена от вакуумного насоса и выдержана при давлении испытания в течение 5 мин.

Величина давления должна контролироваться. Повышение давления не допускается.

8.5.4.8.10 Проверка повторной сборки.

Механическое соединение должно быть установлено и снято 10 раз в соответствии с инструкцией предприятия (изготовителя) и затем проверено на герметичность в соответствии с 8.5.4.8.1.1.

8.6 ИСКРОГАСИТЕЛИ ГАЗОВЫПУСКНЫХ СИСТЕМ И ДЫМОХОДОВ КОТЛОВ

- **8.6.1** Искрогасители должны изготавливаться по одобренной Регистром технической документации. При техническом наблюдении следует проверить:
- .1 соответствие материалов, технологических процессов, методов и объема контроля сварных соединений одобренной технической документации;
- **.2** обеспечение плотности соединений, закрытий, мест прохода труб и арматуры;
- **.3** наличие конструктивных мероприятий, обеспечивающих эффективное искрогашение;
- **.4** наличие устройств для очистки и спуска гудрона;
- .5 надежность устройств, предотвращающих в искрогасителях мокрого типа попадание воды в двигатели и/или котлы;
- **.6** надежность мер по предохранению изоляции от повреждений.

8.7 ТРУБЫ

- **8.7.1** Трубы систем, подлежащих техническому наблюдению Регистра, должны отвечать требованиям части XIII «Материалы» Правил классификации и постройки морских судов. Документы Регистра на трубы оформляются согласно указаниям Номенклатуры РС.
- **8.7.2** Пластмассовые трубы должны быть испытаны согласно 21.5 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

8.7.3 Для получения СТО на пластмассовые трубы, фасонные части труб и их соединения Регистру должна быть представлена на рассмотрение информация, указанная в 8.7.3.1 – 8.7.3.3.

8.7.3.1 Общая информация:

- .1 размеры труб и фасонных частей;
- **.2** максимально допустимые внутреннее и внешнее давление;
 - .3 допустимый рабочий интервал температур;
 - .4 назначение и допустимое место установки;
 - .5 уровень огнестойкости;
 - .6 электрическая проводимость;
 - .7 допустимые среды;
 - .8 максимально допустимые скорости потока;
 - .9 допустимый срок службы;
 - .10 инструкция по монтажу;
 - .11 расшифровка маркировки.
- **8.7.3.2** Чертежи и дополнительная техническая информация:
 - .1 сертификаты и акты ранее проводимых испытаний;
- .2 данные применявшихся при испытаниях стандартах;
- **.3** необходимые чертежи, каталоги, таблицы данных, расчеты и технические описания;
 - .4 подробные сборочные чертежи.

8.7.3.3 Материалы:

- .1 тип применяемой полимерной смолы;
- **.2** тип катализаторов, акселераторов (с указанием их концентрации), употребляемых в случае приме-

нения армированных полиэфиров, или тип отвердителя в случае применения эпоксидных смол;

- .3 типы всех используемых армирующих материалов с указанием их удельной массы (массы на единицу площади ткани) или данных по числу и частоте ткацких нитей;
- **.4** полная информация о типе покрытий или термопластических слоев, если они применяются;
- .5 условия вулканизации с указанием температур и времени выдержки при различных температурах для различных применяющихся соотношений армирования и смолы;
- **.6** ориентация и угол наклона нитей армирования.

8.7.3.4 Испытания.

Испытания для получения СТО должны продемонстрировать соответствие труб, фасонных частей труб и их соединений требованиям разд. 3 части VIII «Системы и трубопроводы» и 6.8 части XIII «Материалы» Правил классификации и постройки морских судов для каждого одобряемого типа. Образцы труб, фасонных частей и их соединения должны быть испытаны в соответствии с требованиями стандартов, признанных Регистром допустимыми для применения. Рекомендуемые стандарты и требования к проведению испытаний пластмассовых труб и фасонных частей трубопроводов приводятся в табл. 8.7.3.4.

Таблица 8.7.3.4

№ 1/п	Испытания	Рекомендуемые стандарты или пункты правил	Примечания				
Рекомендуемые стандарты и требования к проведению испытаний труб всех систем							
1	Внутренним давлением	6.8.2 [1], ASTM D 1599, ASTM D 2992, ISO 15493	1, 2, 6, 7				
2	Наружным давлением	6.8.2 [1], ISO 15493	1, 2, 6, 7				
3	На продольную прочность	6.8.3 [1]	1, 2				
4	На деформацию	ASTM D 2412	1				
5	На предельно допустимую температуру	6.8.5 [1], ISO 75 Method A	3				
6	На ударную прочность	ISO 9854, ISO 9653, ISO 15493, ASTM D2444	4				
7	На устойчивость к старению	ISO 9142	4				
8	На усталостную прочность	Стандарты предприятия (изготовителя)	4				
9	На поглощение жидкости	ISO 8361					
0	На совместимость с другими материалами	ASTM C581	5, 6				
		ндарты и требования к проведению испытаний труб от назначения системы и расположения на судне					
1	На огнестойкость	Приложения 1 и 2 к резолюции ИМО А.753(18)	4, 5, 6, 7				
2	На распространение пламени	3.3.2 [2]	4, 5, 6, 7				
3	На дымообразование	[3]	4, 6				
4	На токсичность	[3]	5, 6				
5	На электропроводность	ASTM F1173-95 или ASTM D257	5, 6, 7				

- 2. Испытания проводятся на сборках труб и фитингов различных размеров.
- 3. Для каждого типа материала.
- 4. Для каждого типа конструкции.
- 5. Для каждого типа соединения.
- 6. Проводится, если применимо.
- 7. Проводится в присутствии инспектора.

Ссылки: [1] — часть XIII «Материалы» Правил классификации и постройки морских судов;

- [2] часть VIII «Системы и трубопроводы» Правил классификации и постройки морских судов;
- [3] Международный кодекс по применению методик испытаний на огнестойкость.

8.8 СУДОВЫЕ ШЛАНГИ

8.8.1 Техническое наблюдение за изготовлением судовых шлангов, предназначенных для приема и передачи химического груза, сырой нефти, нефтепродуктов, топлива, масла, льяльных вод и загрязненных балластных вод, а также передачи паров груза, должно предусматривать:

проверку соответствия марок материалов, примененных для изготовления рукавов шлангов, требованиям технической документации относительно показателей, регламентированных правилами Регистра;

испытание гидравлическим давлением, равным 1,5 рабочего;

проверку маркировки шлангов; проверку электропроводимости.

- **8.8.2** При освидетельствовании головных образцов проводятся испытания шланга согласно 6.2 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.
- **8.8.3** Рукава для грузовых шлангов должны, как правило, поставляться с СТО. При отсутствии СТО допускается использовать рукава для производства шлангов при условии испытания образцов от каждой поставляемой партии рукавов согласно 6.2.1 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

9 КОТЛЫ, ТЕПЛООБМЕННЫЕ АППАРАТЫ И СОСУДЫ ПОД ДАВЛЕНИЕМ

9.1 ОБШИЕ ПОЛОЖЕНИЯ

- **9.1.1** Положения настоящего раздела применяются при техническом наблюдении за котлами, теплообменными аппаратами и сосудами под давлением, перечисленными в Номенклатуре РС.
- **9.1.2** Раздел содержит требования технического наблюдения за изготовлением указанных объектов технического наблюдения на предприятии (изготовителе).
- **9.1.3** Общие положения по организации технического наблюдения за изготовлением объектов технического наблюдения приведены в части I «Общие положения по техническому наблюдению», по технической документации в части II «Техническая документация».
- 9.1.4 Комплектующие изделия и все материалы, включая поковки и отливки, предназначенные для котлов, теплообменных аппаратов, сосудов под давлением и их деталей, должны иметь документы, подтверждающие их соответствие одобренной технической документации. Документы на изделия и материалы должны быть оформлены согласно указаниям Номенклатуры РС.
- 9.1.5 Объем и порядок освидетельствований при установившемся производстве деталей, узлов и изделий в целом должен отвечать требованиям табл. 9.1.5, причем состав объектов технического наблюдения в зависимости от их параметров уточняется согласно 1.3.2 части X «Котлы, теплообменные

аппараты и сосуды под давлением» Правил классификации и постройки морских судов.

9.2 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

9.2.1 Изготовление котлов, теплообменных аппаратов и сосудов под давлением, их деталей и узлов, а также выполнение технологических операций осуществляются под техническим наблюдением Регистра по одобренной технической документации, приведенной в 1.3.4 части X «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов.

9.3 МАТЕРИАЛЫ

9.3.1 Материалы, предназначенные для изготовления деталей и узлов котлов, теплообменных аппаратов и сосудов под давлением, должны отвечать требованиям технической документации, одобренной Регистром.

При этом должно быть проверено наличие клейм Регистра и соответствие маркировки предприятия (изготовителя) документам, подтверждающим качество этого материала.

При несоответствии маркировки представленным документам на материал или отсутствии

Таблица 9.1.5

№ п/п	Объект технического наблюдения		Проверка				
11/11	гехнического наолодения	документации на материал и наружный осмотр	обработки деталей	сварочных работ	изготовления деталей и узлов изделий	сборки изделия	Гидравлические испытания
1	Паровые и водогрейные котлы, котлы с органическим теплоносителем:			+	+	+	+
1.1	корпуса, обечайки, днища и барабаны	+	+	+	+		
1.2	коллекторы и камеры	+	+	+	+	+	+
1.3	огневые камеры	+	+	+	+		
1.4	жаровые трубы	+	+	+	+		
1.5	котельные трубы и змеевики	+	+	+	+		+
1.6	связи котельные	+			+	+	
1.7	топочное устройство	+			+	+	
1.8	экономайзеры	+				+	+
1.9	паросборники (сепараторы пара)	+	+	+	+	+	+
	пароперегреватели	+	+	+	+	+	+
2	Теплообменные аппараты и сосуды под давлением:						l , l
2.1	подогреватели и деаэраторы питательной воды	+			,	+	+
2.2	конденсаторы главных турбин и турбин электрогенераторов	+	+	+	+	+	+
2.3	конденсаторы вспомогательных паровых турбин	+	+	+	+	+ +	+
	опреснительные установки						+
2.5 2.6	подогреватели топлива и масла	+ +				+ +	+
2.0	охладители масла и воды главных и вспомогательных механизмов	+	+	+	+	+	+
2.7	воздухохранители гидроаккумуляторы	+				+	+
2.9		+		+		+	+
3	сосуды и аппараты, работающие под давлением в системах тушения пожара Арматура:						
3.1	Арматура. клапаны предохранительные	+				+	+
3.1	клананы предохранительные	'					

клейм инспектор Регистра вправе потребовать повторных испытаний данного материала.

- **9.3.2** Материал, предназначенный для изготовления деталей и узлов, проверяется наружным осмотром на отсутствие дефектов (забоин, вмятин, трещин и т. п.), которые могут служить браковочным признаком материала.
- **9.3.3** Материалы, подлежащие клеймению Регистром, приведены в Номенклатуре РС.
- **9.3.4** Порядок клеймения, переноса клейм при обработке деталей и т. п. изложен в Инструкции по клеймению объектов технического наблюдения Регистра (см. приложение 2 к части I «Общие положения по техническому наблюдению»).

9.4 ОБРАБОТКА МАТЕРИАЛОВ

9.4.1 Холодная гибка стальных листов допускается на радиус не менее утроенной толщины листа. При холодной гибке профильной стали минимальные радиусы гиба *r* должны быть следующими:

для угольников $r \ge 50(a-0.95s)$;

для швеллера по горизонтальной оси $r \ge 25h$;

для швеллера по вертикальной оси $r \ge 45h$,

где a и s — соответственно, высота и толщина угольника;

h — высота швеллера.

9.4.2 Отверстия в трубных досках после их рассверловки должны быть проверены для выявления дефектов (трещин, расслоений) и на соответствие размеров отверстий и межтрубных перемычек (мостиков) указанным на чертеже.

Допустимые отклонения приведены в табл. 9.4.2.

Таблица 9.4.2

Диам	етр, мм	Допустимые отклонения			
		отверстия	прямого мостика	косого мостика	
Трубы	29,0 44,5	±0,1 ±0,2	$\pm 0,5 \\ \pm 0,7$	± 0,7 ± 1,1	
Отверстия	29,2 44,8	±0,1 ±0,2	$\pm 0.5 \\ \pm 0.7$	±0,7 ±1,1	

Допустимые отклонения на расстояние между центрами крайних отверстий ряда должны быть не более ± 3 мм, а между осями крайних рядов по дуге — не более ± 4 мм.

9.4.3 Нагрев листов для штамповки, фланжировки, вальцовки и других аналогичных работ, а также режим и способ контроля нагрева должны проводиться по технологии, одобренной Регистром.

Штампованные и вальцованные части и другие детали после горячей обработки не должны иметь разрывов, трещин, уступов, морщин, складок, расслоений, забоин и др.

9.5 СВАРОЧНЫЕ РАБОТЫ

9.5.1 Перед сваркой проверяется разделка кромок, которая должна быть выполнена в соответствии с национальными стандартами или с чертежами, одобренными Регистром.

При этом поверхность кромок не должна иметь трещин, расслоений и других дефектов.

- **9.5.2** Выполнение сварочных работ может быть разрешено после проверки соответствия применяемых сварочных материалов одобренной Регистром технической документации; при этом сварщики должны иметь документы, удостоверяющие их квалификацию.
- **9.5.3** Сварка деталей, последующая их правка и термическая обработка после сварки осуществляются в соответствии с технологическим процессом, одобренным Регистром.
- **9.5.4** Контроль качества сварных соединений должен проводиться после термической обработки, если таковая предусматривается.
- 9.5.5 Объем контроля стыковых сварных соединений, а также выбор метода контроля (внешний осмотр поверхности сварных швов, механические испытания сварных образцов и испытания методами неразрушающего контороля) должны отвечать одобренной Регистром технической документации; при этом объем контроля должен быть не менее указанного в части XIV «Сварка» Правил классификации и постройки морских судов.
- **9.5.6** При оценке качества сварного шва следует также руководствоваться указаниями части XIV «Сварка» Правил классификации и постройки морских судов.

9.6 ПРОВЕРКА ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ И УЗЛОВ ИЗДЕЛИЙ. СБОРКА

9.6.1 Общие положения.

9.6.1.1 Детали изделий до сборки должны проверяться на соответствие чертежным размерам (толщина листов, радиусы отфланцовок, шаг отверстий и т. п.), маркировкам и документам на них. Правильность сферических поверхностей

проверяется по шаблонам; разделка кромок под сварку — в соответствии с 9.5.1.

- **9.6.1.2** Сборка деталей и узлов изделий должна выполняться в пределах допусков на зазоры между элементами согласно технической документации, одобренной Регистром.
- **9.6.1.3** Соединяемые детали изделий для получения требуемого между ними сопряжения не должны выправляться за счет чрезмерного натяга болтами, прихватками или подгоняться в холодном состоянии ударами.

При необходимости, по согласованию с инспектором Регистра, подгонка может осуществляться нагревом.

- **9.6.1.4** Приведенные в настоящей главе отклонения в размерах применяются, если в технической документации не оговариваются другие допуски на изготовление и сборку деталей и узлов изделий.
- 9.6.2 Изготовление обечаек, днищ, трубных решеток.
- **9.6.2.1** Изготовление сварных обечаек, днищ и трубных решеток должно осуществляться по технологии, разработанной предприятием (изготовителем) и одобренной Регистром.
- **9.6.2.2** После сварки обечайки должны быть откалиброваны для устранения искажений формы.

Отклонения в размерах обечаек (см. рис. 9.6.2.2) диаметром до 3000 мм должны быть не более следующих значений:

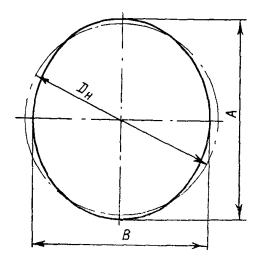
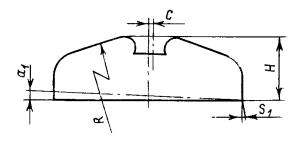


Рис. 9.6.2.2


для номинального наружного диаметра $\Delta D_{\rm H}$ — $\pm 0.20\%$;

для относительной овальности $(A-B)/D_{\rm H}$ и при толщине стенки s \leq 30 мм — 0,7 % и при s > 30 мм — 0,45 %.

Перекос продольного шва относительно оси барабана должен быть не более 2 мм на 1 м; прогиб обечайки — не более 2 мм на 1 м.

9.6.2.3 Днища после термической и механической обработки должны быть тщательно осмотрены. Не допускаются выпучины, забоины, глубокие риски, утонение металла. На цилиндрической части допускаются продольные риски глубиной не более 1 мм.

9.6.2.4 Отклонения в размерах штампованных днищ должны находиться в следующих пределах (см. рис. 9.6.2.4):

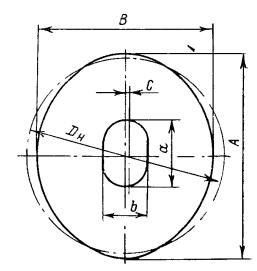


Рис. 9.6.2.4

по наружному диаметру $\Delta D_{\rm H}$ — ± 0.2 %; по относительной овальности $(A-B)/D_{\rm H}$ не более 0.4 %;

по перекосу кромки борта $a_1/D_{\scriptscriptstyle {
m H}}$ не более 2,5 мм на 1 м;

по толщине бурта $s_1 - \pm 10$ %;

смещение осей отверстия лаза $c - \pm 5$ мм;

отклонение размеров отверстия лаза, мм: $\Delta a = {0 \atop -1,0}; \; \Delta b = {+1 \atop -3};$

по радиусу днища $\Delta R = \pm 0.5 \%$;

по высоте днища ΔH не более 0,02H, мм.

Отклонения диаметра кованых днищ не должны превышать ± 1 мм, а размер отверстия лаза — ± 0.5 мм.

9.6.3 Изготовление коллекторов и камер.

9.6.3.1 Изготовление коллекторов и камер должно осуществляться по технологии, разработанной предприятием (изготовителем) и одобренной Регистром.

9.6.3.2 Смещение стыкуемых кромок обечайки и днища не должно превышать $a \le 0,1s \le 3$ мм, где s — толщина стенки.

9.6.3.3 Приварка штуцеров, патрубков и приварышей к коллектору должна осуществляться с предварительным подогревом. При этом смещение осей отверстий и штуцеров, патрубков или приварышей не должно превышать ± 2 мм.

9.6.3.4 Каждый коллектор после сборки и термической обработки должен быть подвергнут гидравлическому испытанию в соответствии с 9.7.

После испытаний коллектор должен быть обмерен. При этом отклонения длины Δl и прогиба Δy коллектора, мм, должны находиться в следующих пределах:

при длине коллектора до 5000 мм

$$\Delta l = {}^{-5}_{+10}; \ \Delta y = 2.0;$$

при длине коллектора 5000 мм и более

$$\Delta l = {}^{-10}_{+20}; \ \Delta y = 1.5.$$

9.6.4 Изготовление котельных труб и змеевиков.

9.6.4.1 Оборудование, используемое для гибки труб, должно обеспечивать получение гнутого участка трубы правильной геометрической формы.

Утонение стенки трубы Δs не должно превышать 18 % при $R/d_{\rm H} < 2.5$.

Относительная овальность трубы $\theta = 2$ $(d_{\rm H\ max} - d_{\rm H\ min})/(d_{\rm H\ max} + d_{\rm H\ min})\cdot 100$ не должна превышать 11 % при $R/d_{\rm H} \leqslant 3,5$ и 8 % при $R/d_{\rm H} > 3,5$, где $d_{\rm H}$ — наружный диаметр; R — радиус гиба.

Для труб из сталей аустенитного класса относительная овальность не должна превышать 5%.

Минимальный радиус гиба при холодной гибке должен быть больше $2d_{
m H}$, при горячей — больше $1{,}5d_{
m H}$.

9.6.4.2 Каждая труба после гибки должна быть подвергнута:

проверке на овальность прокаткой стального шара (диаметр шара принимается по стандарту);

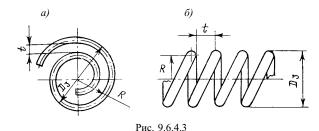
проверке на плите по шаблону для определения конфигурации и отклонений радиусов погибов, которые не должны превышать:

+2 мм для труб диаметром до 32 мм и

 ± 3 мм для труб диаметром 32 мм и более;

визуальному осмотру на отсутствие поверхностных дефектов (забоин, рисок и т. д.);

гидравлическому испытанию по правилам Регистра.


9.6.4.3 Изготовление плоских и цилиндрических змеевиков для котлов и теплообменных аппаратов должно осуществляться по одобренной Регистром технологии предприятия (изготовителя).

После изготовления и термической обработки змеевики должны быть обмерены и подвергнуты гидравлическому испытанию в соответствии с 9.7.1.

Отклонения в размерах змеевиков должны находиться в пределах, указанных в табл. 9.6.4.3 (см. рис. 9.6.4.3, a и δ).

Таблица 9.6.4.3

Тип змеевика	Допустим	ные отклонени	я, мм
	наружного диаметра змеевика ΔD_3	радиуса змеевика ΔR	шага змеевика Δt
Плоский спиральный Цилиндрический:	±10	±5	<u>±</u> 4
для подогревателей для паровых котлов	±5 ±3	$\pm 3 \\ \pm 2$	±3 ±1

Овальность змеевиков должна проверяться прокаткой стального шара диаметром, равным 0,8 внутреннего диаметра трубы.

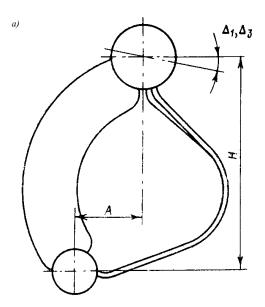
9.6.5 Изготовление жаровых труб, огневых камер, связей и креплений.

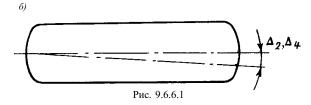
9.6.5.1 Изготовление волнистых жаровых труб должно осуществляться по технологии предприятия (изготовителя), одобренной Регистром.

9.6.5.2 Не допускаются к установке волнистые жаровые трубы со сквозными трещинами или утонением стенки в месте отбуртовки более чем на 2 мм.

Исправление незначительных надрывов на волнистой поверхности жаровой трубы глубиной до 2-3 мм допускается по технологии, одобренной Регистром.

- **9.6.5.3** В размерах жаровых труб допускаются следующие отклонения: по толщине стенки $_0^{+10\%}$, по длине $_0^{+15\%}$, овальность 1~% среднего диаметра.
- **9.6.5.4** Погибы и неровности на поверхности плоских днищ и трубных решеток не должны превышать 0,2 % диаметра или наибольшего размера прямоугольной решетки.
- **9.6.5.5** Правильность установки связей и длина выступающих частей проверяются наружным осмотром. Плотность сварных швов проверяется при гидравлическом испытании котла.


9.6.6 Сборка корпуса котла.


9.6.6.1 При установке коллекторов необходимо проверять правильность их положения по осям и размерам между центрами коллекторов.

Отклонения (см. рис 9.6.6.1, a и δ) не должны превышать следующих значений:

между осями коллекторов по горизонтали $A\pm 2$ мм, по вертикали $H\pm 5$ мм;

разворот горизонтальной оси коллектора $\Delta_1 - 3$ мм на 1 м;

уклон продольной оси коллектора Δ_2 — 0,35 мм на 1 м.

9.6.6.2 Концы труб перед установкой в котлах должны быть очищены до металлического блеска на длине около 100 мм, а кромки концов притуплены. При креплении труб развальцовкой концы их перед зачисткой должны быть отожжены.

На наружной поверхности труб не должно быть плен, трещин, раковин, забоин, рисок и т. п. Особое внимание при этом должно обращаться на зачищенность концов труб.

Трубы, подготовленные для одного ряда, не должны повторно перегибаться для использования их в другом ряду.

9.6.6.3 Отверстия в трубных решетках должны быть чистыми, без рисок и забоин. Эллиптичность отверстий не должна превышать 0,25 мм для диаметров 50 мм и менее. Максимальное значение эллиптичности отверстий диаметром более 50 мм является в каждом случае предметом специального рассмотрения Регистром.

9.6.6.4 Степень развальцовки труб должна отвечать стандартам, одобренным Регистром.

9.6.6.5 Сварные соединения труб и змеевиков с коллекторами и камерами должны выполняться по одобренной Регистром технологии предприятия (изготовителя) (см. 9.5).

9.6.6.6 После развальцовки всех труб и демонтажа сборочного каркаса разворот горизонтальной

оси Δ_3 и уклон пароводяного коллектора Δ_4 не должны превышать, соответственно, 2 — 6 мм и 5 — 14 мм на 1 м (см. рис. 9.6.6.1).

9.6.6.7 Вальцовочные соединения проверяются наружным осмотром. Внутренние поверхности концов труб после развальцовки должны быть гладкими, без вмятин, задиров, накатов, трещин и расслоений. Переход от развальцованного участка на неразвальцованную часть трубы должен быть плавным, без надрезов, спиральных и кольцевых рисок.

Высота выступающих концов труб и угол их раздачи проверяются шаблоном и должны соответствовать чертежным размерам.

- **9.6.6.8** Смонтированные трубы должны быть проверены на проходимость стальными калиброванными шарами диаметром на 10 % меньше внутреннего диаметра трубы.
- **9.6.6.9** Плотность вальцовочных соединений должна быть проверена при проведении гидравлических испытаний (см. 9.7.2).

Одна и та же труба не должна быть подвальцована более двух раз, в противном случае, она подлежит замене.

9.6.6.10 Перед установкой арматуры поверхности приварышей и фланцев арматуры должны быть очищены от грязи, масла, ржавчины.

Царапины и риски (особенно радиальные) на поверхности приварышей и фланцев не допускаются.

- 9.6.6.11 Котельная арматура до установки на штатные места должна быть подвергнута гидравлическому испытанию в соответствии с требованиями табл. 1.7.1 части X «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов.
- **9.6.6.12** Качество монтажа арматуры контролируется наружным осмотром. При этом проверяется положение водомерных приборов, внутренних частей коллекторов и других устройств в соответствии с требованиями технической документации.

Плотность соединений арматуры проверяется при проведении гидравлических испытаний котла.

- 9.6.6.13 После установки изоляции и окончательной сборки должно быть проведено испытание кожуха котла на плотность (воздухом); при этом испытательное давление и допустимое падение давления воздуха должны отвечать требованиям одобренной технической документации.
- **9.6.6.14** Перед началом монтажа кирпичной кладки должны быть осмотрены стенки обшивки и поддоны. Они не должны иметь бухтин, прогибов и неровностей, превышающих 10 мм на 1 м.
- 9.6.6.15 Качество кирпичной кладки после монтажа проверяется наружным осмотром. Поверхность кладки должна быть гладкой; в виде исключения допускаются отдельные уступы по стыкам не более 2 3 мм и общая неровность не более 10 мм на 1 м.

Отклонение диаметра фурменного отверстия от заданных размеров не должно превышать \pm 5 мм, а несовпадение осей фурменного отверстия форсунки — 2 мм.

9.6.6.16 Качество монтажа изоляции коллекторов, арматуры и других горячих частей котла проверяется наружным осмотром.

9.6.7 Сборка теплообменных аппаратов и сосудов под давлением.

- **9.6.7.1** Все детали и узлы при сборке теплообменных аппаратов и сосудов под давлением должны быть осмотрены для выявления поверхностных дефектов.
- **9.6.7.2** При сборке таких деталей и узлов следует руководствоваться требованиями 9.6.1 9.6.4 и 9.6.6, если они применимы.

9.7 ГИДРАВЛИЧЕСКИЕ ИСПЫТАНИЯ

9.7.1 Общие положения.

9.7.1.1 Гидравлические испытания на пробное давление должны проводиться с разрешения и в присутствии инспектора Регистра при условии, что:

все работы по сборке, сварке и контролю сварных швов закончены и приняты органом технического контроля предприятия (изготовителя);

элементы изделий не имеют изоляции и других защитных покрытий;

проверены записи построечного журнала, а также записи об отсутствии отступлений от технической документации, одобренной Регистром;

имеется документ органа технического контроля предприятия (изготовителя) о готовности детали или изделия к гидравлическому испытанию;

деталь или изделие освидетельствованы инспектором Регистра;

устройства, предназначенные для проведения испытания (прессы, измерительные приборы и т. п.), имеют действующие документы соответствующих компетентных органов.

- **9.7.1.2** Гидравлические испытания должны проводиться при соблюдении действующих положений и инструкции предприятия (изготовителя).
- **9.7.1.3** Заполнение водой деталей и изделий должно осуществляться таким образом, чтобы было обеспечено полное удаление воздуха. Температура воды и окружающего воздуха должна быть не ниже +5 °C. Разница температур воды и наружного воздуха должна исключать отпотевание.
- **9.7.1.4** Манометры, применяемые при гидравлических испытаниях, должны иметь класс точности не ниже 1,5 и диаметр корпуса не менее 160 мм. Верхний предел измерений манометра должен выбираться таким образом, чтобы в процессе

испытаний стрелка прибора находилась в средней трети шкалы. Манометры должны быть проверены и иметь маркировку даты поверки компетентными органами.

На испытываемом изделии должно устанавливаться не менее двух одинаковых манометров, располагающихся на одном уровне в верхней части изделия, и еще одного — непосредственно на насосе. Во всех случаях разница в показаниях установленных манометров не должна превышать 3 % верхнего предела показания манометра.

- **9.7.1.5** Повышение давления при испытании должно происходить плавно, без гидравлических ударов. Применение инжекторов или питательных насосов для создания давления не допускается.
- **9.7.1.6** Во время гидравлических испытаний не должно проводиться каких-либо посторонних работ, сопровождаемых шумом, препятствующим проведению испытаний.
- **9.7.1.7** При гидравлических испытаниях труб и змеевиков давление поднимается до пробного и поддерживается в течение времени, необходимого для осмотра, но не менее 10 мин.
- 9.7.1.8 При гидравлическом испытании корпусов коллекторов, камер и узлов котла давление должно быть постепенно поднято до рабочего. При этом давлении проводится обстукивание сварных швов на всем их протяжении медным молотком массой не не более 1 кг с рукояткой длиной не более 300 мм. Затем давление поднимается до пробного, выдерживается в течение 5 10 мин, вновь снижается до рабочего и поддерживается постоянным до окончания осмотра.
- **9.7.1.9** Если во время испытания в изделии будут услышаны стуки, удары или обнаружены дефекты, влияющие на его прочность, испытание должно быть прервано и вновь возобновлено только после устранения этих дефектов.

Во время выдержки под пробным давлением не должно быть падения давления.

Появление отпотевания и капель воды на сварных швах недопустимо. Такие швы должны быть вырублены и заново заварены.

Исправление дефектов сварных швов чеканкой, кернением или другими механическими способами не допускается. Подвальцовка или подварка деталей изделий, находящихся под давлением, не допускается.

- 9.7.1.10 После гидравлического испытания изделия инспектор Регистра должен провести его внутренний осмотр (если изделие доступно для осмотра), при котором в доступных местах проверяется состояние рабочих поверхностей, отсутствие остаточных деформаций и других дефектов.
- 9.7.1.11 Изделия считаются выдержавшими испытание пробным давлением, если не будет обнаружено течи в швах, трещин, местных выпучин, остаточных деформаций и других признаков нарушения каких-либо соединений.

9.7.2 Гидравлические испытания котлов.

- 9.7.2.1 До проведения гидравлических испытаний котлов следует убедиться, что все их детали были подвергнуты гидравлическим испытаниям пробным давлением, указанным в табл. 1.7.1 части X «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов.
- **9.7.2.2** Котлы в собранном виде без арматуры должны быть испытаны в цеху на прочность пробным давлением, указанным в табл. 1.7.1 части Х «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов.

9.7.3 Гидравлические испытания теплообменных аппаратов и сосудов под давлением.

9.7.3.1 Теплообменные аппараты, сосуды под давлением и их элементы должны быть испытаны на прочность в цеху пробным давлением, указанным в табл. 1.7.1 части X «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов.

9.7.4 Оформление документов Регистра и клеймение.

9.7.4.1 При удовлетворительных результатах внутреннего осмотра и гидравлического испытания котла, теплообменного аппарата или воздухохранителя инспектор Регистра оформляет свидетельство. При этом на изделие должна быть нанесена маркировка и поставлено клеймо Регистра в соответствии с указаниями Инструкции по клеймению объектов технического наблюдения Регистра (см. приложение 2 к части I «Общие положения по техническому наблюдению»).

9.8 ОСОБЕННОСТИ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ ЗА ИЗГОТОВЛЕНИЕМ ГОЛОВНЫХ ОБРАЗЦОВ

- **9.8.1** Освидетельствование головных образцов осуществляется инспектором Регистра согласно Номенклатуре РС.
- **9.8.2** Все требования настоящего раздела, относящиеся к изготовлению объектов технического наблюдения при установившемся производстве, в равной степени относятся к изготовлению головных образцов.

Дополнительно особой проверке со стороны Регистра подвергаются узлы и детали принципиально новых конструктивных решений или изготовленные по новой технологии.

9.8.3 Головной образец котла, кроме утилизационных, подвергается всесторонним испытаниям на стенде по расширенной программе, одобренной Регистром, для проверки надежности и длительной работоспособности деталей, узлов и изделий в целом, а также проверки соответствия параметров и характеристик одобренной технической документации.

Если проверку головного образца по всем показателям со штатным оборудованием в стендовых условиях выполнить практически невозможно, то по особому согласованию с Регистром часть стендовых испытаний может быть выполнена на судне.

9.8.4 Результаты освидетельствований и испытаний головного образца отражаются в Акте освидетельствования головного (опытного) образца.

В случаях, предусмотренных разделом 6 части I «Общие положения по техническому наблюдению», этот Акт служит основанием для выдачи СТО.

9.8.5 Если по результатам освидетельствований и испытаний принимается решение о возможности установки головного образца на судно, инспектор оформляет свидетельство и наносит клеймо Регистра в соответствии с 9.7.4.

10 ЭЛЕКТРИЧЕСКОЕ ОБОРУДОВАНИЕ

10.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **10.1.1** Положения настоящего раздела применяются при техническом наблюдении за электрическим оборудованием, перечисленным в Номенклатуре РС.
- 10.1.2 Раздел содержит основные положения по освидетельствованию и испытаниям на предприятиях (изготовителях) головных образцов изделий и изделий при установившемся производстве.

Технические указания и нормы испытаний, указанные в 10.3 — 10.7, относятся в равной мере к головным образцам изделий и к изделиям при установившемся производстве.

В 10.8 даны указания, относящиеся к объему проверок и испытаний при освидетельствовании изделий при установившемся производстве.

Общие и специальные виды испытаний и проверок головных образцов изделий и изделий при установившемся производстве приведены в табл. 10.1.2-1 и 10.1.2-2.

10.1.3 Общие положения по организации технического наблюдения за изготовлением объектов технического наблюдения приведены в части I «Общие положения по техническому наблюдению», по технической документации — в части II «Техническая документация».

10.2 ОБЪЕМ И ПОРЯДОК ОСВИДЕТЕЛЬСТВОВАНИЯ ЭЛЕКТРИЧЕСКОГО ОБОРУДОВАНИЯ

- **10.2.1** Перед испытаниями электрического оборудования на предприятии (изготовителе) должно быть проверено наличие:
- .1 одобренной Регистром технической документации на испытываемое электрическое оборудование и согласованного перечня объектов

технического наблюдения (см. 12.2 части I «Общие положения по техническому наблюдению»);

- .2 документов на комплектующие изделия, подтверждающих техническое наблюдение Регистра при их изготовлении, если такое наблюдение требуется Номенклатурой РС;
 - .3 одобренной Регистром программы испытаний;
- .4 документов компетентных органов, подтверждающих положительные результаты специальных видов испытаний, если они предусмотрены программой испытаний (на взрывозащищенность и др.);
- .5 предусмотренного программой испытательного оборудования с необходимыми документами, подтверждающими его характеристики, свидетельства или акты о признании испытательной лаборатории;
- **.6** измерительных приборов с классом точности не менее 1,5.
- 10.2.2 При освидетельствовании инспектор должен удостовериться в том, что испытания проводятся в соответствии с одобренной Регистром программой по методикам испытаний, изложенным в настоящем разделе или другим равноценным методикам.
- **10.2.3** В процессе проведения отдельных видов испытаний и между ними допускается делать перерывы, если они не влияют на ход испытаний.
- 10.2.4 Инспектор может отказаться от проведения освидетельствования и испытаний, если объект испытаний недостаточно подготовлен, а также при обнаружении дефектов, влияющих на безопасность проведения освидетельствования или испытания.
- 10.2.5 При выявлении повреждений отдельных деталей или при нарушении работоспособности изделия во время испытаний должен быть проведен осмотр изделия в присутствии инспектора с целью выявления дефектов, после чего инспектор определяет возможность проведения дальнейших испытаний изделия.

Таблица 10.1.2-1

Общие виды испытаний и проверок головных образцов изделий и изделий при установившемся производстве электрического оборудования

<u>№</u> π/π	Изделия	илаевоан и алоко	Ocmoth a aposopan	Измерение сопротив-	ления изоляции	Проверка работоспо-	собности	Испытания электри-	ческои прочности изоляции	Испытания на соответствие эксплуатапионным	условиям (механические и климатические)	Испытания защитного	исполнения оболочек	Испытания	на нагревание	Испытания на пере-	грузку по току	Проверка уровня	радиопомех	Испытания на устойчи-	вость к электромагнит- ным помехам (ЭМС)
		Γ	С	Γ	C	Γ	С	Γ	C	Γ	С	Γ	С	Γ	С	Γ	С	Γ	С	Γ	С
1	Электрические машины	+	+	+	+	+	+	+	+	+		+	+	+		+	+	+			
2	Трансформаторы	+	+	+	+	+	+	+	+	+		+	+	+		+1	+				
3	Статические преобразователи	+	+	+	+	+	+	+	+	+		+	+	+		+	+	+		+	
4	Аккумуляторы	+	+	+	+			+	+	+		+						١.			
5	Распределительные устройства	+	+	+	+	+	+	+	+	+		+	+	+				+2		+	
6	Электрические аппараты (коммутационные,	+	+	+	+	+	+	+	+	+		+	+	+				+		+	
	защиты и др.)																				
7	Конденсаторы и конденсаторные установки для	+	+	+	+			+	+	+		+									
	повышения коэффициента мощности											١.				١.					
8	Шинопроводы	+	+	+	+	١.	١.	+	+	+		+	+	+		+					
9	Электроизмерительные приборы	+	+	+	+	+	+	+	+	+		+	+	+				+		+	
10	Электрические приводы (в комплексе)	+	+	+	+	+	+	+	+	+		+		١.				+		+	
11	Электрооборудование ДВС со стартерным	+	+	+	+	+	+	+	+	+		+		+				+		+	
12	пуском	+	+	+3	+	+	+	+3	+	+		+	+	+3				+4		+	
12	Светильники и пускорегулирующая аппаратура газоразрядных ламп		_	Т	_	_	_	Т.				_	_	_				Т.			
13	Электроустановочные изделия и арматура	+	+	+	+	+	l_	+	+	+		+		+				l_			
14	Приборы контроля и управления судном, связи	+	+	+	+	+	+	+	+	+		+		+				+5		+	
1	и сигнализации							1		1											
15	Кабельные изделия	+	+	+	+	<u> </u>	<u> </u>	+	+	+		+		+							
16	Нагревательные и отопительные приборы	+	+	+	+	+	+	+	+	+		+									
17	Фильтры защиты от радиопомех	+	+	+	+	+	+	+	+	+		+		+						+	

Условные обозначения: Г — головной образец; С — серийный образец.

- ¹ Только для силовых трансформаторов.
- ² Для коммутаторов сигнально-отличительных фонарей.
- Кроме светильников аккумуляторных, переносных, взрывозащищенных.
- Для светильников с газоразрядными лампами.
- Для машинных телеграфов, датчиков указателей положения пера руля и лопастей, тахометров, телефонных коммутаторов и аппаратов световых сигнальных и звуковых приборов, замыкателей.
 - Только для электрических двигателей переменного и постоянного тока.
- 7 Для гребных электрических двигателей, двигателей, предназначенных для якорных и швартовных механизмов, и двигателей непосредственного привода рулевых устройств. Только для генераторов постоянного и переменного тока.
- 9 Для генераторов и двигателей постоянного тока, электромашинных усилителей, электродвигателей с фазным ротором и других коллекторных машин.
 - Для силовых трансформаторов и трансформаторов тока.
 - Для силовых трансформаторов с жидким диэлектриком.
 - ¹² Испытания на термостойкость мастики кислотных батарей.
 - ¹³ Проверяется герметичность моноблоков кислотных батарей.
- ¹⁴ Подвергаются автоматические выключатели, переключатели, выключатели, разъединители, контакторы, реле тока и другие реле, включенные последовательно в силовой цепи.
- Для автоматических выключателей, пускателей, контроллеров, электромагнитных тормозов, электрогидравлических толкателей.
- Для автоматических выключателей, переключателей, выключателей, разъединителей, пускателей, контроллеров реостатов возбуждения.

 - ¹⁷ Для изоляторов, шинопроводов и других изоляторов.

 18 Для якорных и швартовных механизмов и рулевых механизмов с непосредственным приводом.
 - 19 Для шлюпочных лебедок, лифтов, приводов водонепроницаемых дверей.
 20 Для рулевых механизмов и механизмов водонепроницаемых дверей.

 - ²¹ Периодически выборочно по согласованию с Регистром.
- ²² Подогреватели топлива и масла, если подпадают под действие 1.3.2.1 части XI «Электрическое оборудование» Правил классификации и постройки морских судов.

Таблица 10.1.2-2 производстве электрического оборудования при установившемся и изделий Специальные виды испытаний и проверок головных образцов изделий

свойств кабелей и термопластических и термопластических + и сигнализации Проверка систем защиты + + угла потерь Измерение тангенса восстановления напряжения Проверка автозапуска после -22 моноблоков и др. изделий Испытания на плотность и герметичность баков, банок, + иидилоги Мспытания на пробой разрядки конденсаторов Проверка времени нягрузкой и без нагрузки Проверка работы под на термостойкость Испытания ++ +и предельных выключателей + Проверка действия путевых + кинэжкqпьн отонысминим то Проверка защиты электромагнитных тормозов Проверка действия Проверка ручного привода и указателя коммутационных + bовок с b
λаным приводом Проверка действия блоки-+ **втъ**qаеоа и **к**иньаит Проверка величин срабакоммутационную устойчивость Испытания на предельную вторичного напряжения Проверка величины изменения при сбросе и набросе нагрузки Проверка работоспособности + коллекторных машин Проверка коммутации ной частоте вращения Испытания при повышенк короткому замыканию Испытания на стойкость под током Испытания на стоянку по вращающему моменту Испытания на перегрузку Конденсаторы и конденсаторные Приборы контроля и управления установки для повышения коэфотопительные Электрические аппараты (комму-Светильники и пускорегулирующая аппаратура газораз-Электрические приводы (в ком-Электроизмерительные приборы Фильтры защиты от радиопомех Распределительные устройства Электрооборудование ДВС судном, связи и сигнализации Статические преобразователи гационные, защиты и др. Электрические машины Электроустановочные фициента мощности И стартерным пуском Кабельные изделия Грансформаторы Нагревательные Шинопроводы Аккумуляторы рядных ламп арматура приборы плексе) Z : 13 4 15 & 6 <u>2</u> Ξ 12 17 2 6 4 6 9

Условные обозначения и сноски — см. табл. 10.1.2-1.

10.2.6 Если изделие не выдержало какого-либо вида испытаний и в его конструкцию в связи с этим введено изменение или усовершенствование, испытания должны быть проведены вновь в соответствии с программой испытаний. Объем повторных испытаний определяется инспектором.

10.3 ПОСЛЕДОВАТЕЛЬНОСТЬ ПРОВЕДЕНИЯ ИСПЫТАНИЙ И ПРОВЕРОК

10.3.1 Осмотр.

10.3.2 Испытания:

- .1 функциональные;
- .2 механические и климатические:
- на обнаружение резонансных частот;
- на вибропрочность;
- на виброустойчивость;
- на ударную прочность;
- на ударную устойчивость;
- на воздействие смены температур;
- на теплоустойчивость;
- на влагоустойчивость;
- электрической прочности изоляции;
- на холодоустойчивость;
- на устойчивость к инею и влаге после оттаивания;
 - на устойчивость к качке;
 - на устойчивость к длительным наклонам;
- .3 прочие виды испытаний в последовательности, указанной в программе испытаний отдельных типов изделий;
- **.4** проверка уровня напряжения и напряженности поля радиопомех;
- .5 испытания на устойчивость к электромагнитным помехам.

Примечания: 1. Допускается совмещение испытаний на виброустойчивость и вибропрочность или удароустойчивость и ударопрочность при безусловном выполнении предусмотренных методик испытаний.

- 2. Вне зависимости от указанной последовательности и не обязательно на образцах, подвергаемых другим видам испытаний, допускается проводить следующие испытания:
 - .1 на воздействие соляного тумана;
 - .2 на воздействие солнечной радиации;
 - .3 на грибоустойчивость;
- .4 некоторые другие, указанные в положениях по испытаниям конкретных видов изделий.
- Допускается совмещение испытаний на воздействие смены температур и на тепло- и холодоустойчивость.
- 4. Для отдельных изделий может быть совмещено испытание на теплоустойчивость с испытанием на нагревание.
- **10.3.3** Испытания и проверки должны проводиться на одних и тех же образцах в последовательности, которая должна быть отражена в программах и методиках испытаний.

Виды испытаний и проверок, не требующиеся для отдельных типов изделий, могут не включаться в программу, однако общая последовательность должна быть сохранена. Перед началом и после окончания каждого вида испытаний проводится измерение сопротивления изоляции.

10.4 ОСНОВНЫЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ИСПЫТАНИЙ И ПРОВЕРОК

10.4.1 Осмотр и проверки.

- **10.4.1.1** Осмотр и проверки проводятся с целью определения:
- **.1** соответствия образцов изделий одобренной технической документации;
- .2 соответствия образцов изделий требованиям правил Регистра, выполнение которых не указано в одобренной технической документации;
- .3 готовности представленного на испытание изделия.
- **10.4.1.2** При осмотре (при необходимости со вскрытиями и отдельными разборками) проверяются:
- .1 техническая документация на материалы, примененные в изделии;
- .2 комплектующие изделия, входящие в осматриваемое оборудование;
 - .3 монтаж электрической схемы изделия;
 - .4 конструктивное исполнение изделия;
- .5 прочность соединения и крепления узлов, токоведущих частей, сварных, винтовых и других конструктивных и контактных соединений;
 - .6 наличие антикоррозионных покрытий;
 - .7 наличие необходимых маркировок и надписей;
- .8 контактные и защитные оконцевания кабелей и проводов;
- .9 мероприятия, обеспечивающие электробезопасность (защитное заземление, блокировки и т. п.).

10.4.2 Функциональные испытания.

- **10.4.2.1** Функциональным испытаниям подвергается каждый образец изделия на предприятии (изготовителе) до проведения отдельных видов испытаний.
- **10.4.2.2** До проведения функциональных испытаний должно быть установлено, что комплектность изделия, запасные части и сопротивление изоляции соответствуют технической документации.
- 10.4.2.3 Функциональные испытания электрического оборудования должны проводиться при номинальных режимах, предусмотренных технической документацией, при нормальных климатических условиях.
- **10.4.2.4** Во время функциональных испытаний проводятся необходимые замеры и снятие характеристик, как при номинальном напряжении питания и частоты, так и при длительных (одновременных) отклонениях напряжения на +6~% и -10~% и частоты на $\pm5~\%$ и кратковременных (одновременных) отклонениях напряжения $\pm20~\%$ и частоты $\pm10~\%$. Оборудование, предназначенное для работы

от аккумуляторных батарей, должно быть испытано при отклонении напряжения от номинального значения в пределах +30 до -25 % для оборудования, питающегося от аккумуляторной батареи, подключенной к зарядному устройству, и от +20 до -25 % для оборудования, не подключенного к батарее во время зарядки. Проверяется соответствие замеров и характеристик значениям, указанным в технической документации, и работоспособность изделия в заданных параметрах.

10.4.2.5 Для электрического оборудования, работающего под нагрузкой, снятие характеристик проводится по достижении установившейся рабочей температуры.

10.4.3 Измерение сопротивления изоляции.

- **10.4.3.1** При испытаниях электрического оборудования на предприятии (изготовителе) сопротивление изоляции должно быть не менее указанного в приложении 1.
- **10.4.3.2** Измерение сопротивления изоляции является обязательным на следующих этапах проведения испытаний:
- .1 в практически холодном состоянии изделия при нормальных климатических условиях перед началом и после окончания всех видов испытаний;
- .2 в нагретом состоянии в условиях испытаний на теплоустойчивость, а также при испытаниях на нагревание сразу после окончания этих испытаний;
- .3 в конце испытаний на влагоустойчивость и на устойчивость к инею и влаге после оттаивания;
- **.4** после испытания на холодоустойчивость и на устойчивость к инею и влаге после оттаивания;
- .5 после испытаний изделия на короткое замыкание при нормальных климатических условиях.
- **10.4.3.3** Напряжение постоянного тока, развиваемое мегомметром при измерениях сопротивления изоляции, должно быть не менее указанного:

Номинальное н	ап	ря	же	ни	e					И	3М	epi	ите	ельное
изделия или це	пи	U	н,	В							Н	ап	ря	жение
										N	ег	ОМ	ме	тра, В
До 50														100
51 - 100.														250
101 — 500.														500
501 — 1000														1000
Более 1000														2500

Примечания: 1. Для электрических машин и трансформаторов при $U_{\rm H}{<}100~{\rm B}$ измерительное напряжение должно быть не менее 500 В.

- 2. Для конденсаторов установок повышения коэффициента мощности ($\cos \phi$) на напряжение $U_{\rm H}\!\!>\!\!380\,$ В измерительное напряжение должно быть равно 2500 В.
- **10.4.3.4** Сопротивление изоляции должно измеряться:
- .1 между всеми частями изделия, предназначенными для работы под одинаковым напряжением и соединенными вместе на время измерения, и любой

- доступной для прикосновения металлической частью изделия (оболочкой, рукояткой и т. п.);
- .2 между частями изделия, предназначенными для работы под напряжением, электрически не связанными между собой, между различными обмотками;
- .3 между каждой изолированной жилой кабельных изделий и остальными жилами, в любой последовательности, и металлической оболочкой (броней, экраном) кабеля, а при отсутствии последних с электродом в воде, куда погружается кабельное изделие.
- **10.4.3.5** Отсчет показаний величины сопротивления изоляции на мегомметре должен проводиться после того, как приложенное напряжение установится постоянным.

10.4.4 Испытание электрической прочности изоляции.

10.4.4.1 Электрическая прочность изоляции изделий, за исключением отдельных видов, указанных в 10.4.6, где время, напряжение и частота оговорены особо, должны испытываться в течение 1 мин приложением переменного напряжения практически синусоидальной формы с частотой 50 Гц при нормальных климатических условиях согласно следующему:

Напряжение, В

Номинальное $U_{\rm H}$	Испытательное
До 65	 $2U_{\rm H} + 500$
$66 - 250 \dots \dots$	 1500
251 — 500	 2000
501 — 1000	 $2U_{\rm H} + 1000$
$1001 - 3600 \dots$	 10000
3601 — 7200	 20000
7201 — 11000	 28000

Примечания: 1. Для электрических устройств с полупроводниковыми элементами испытательное напряжение является в каждом случае предметом специального рассмотрения Регистром.

- 2. Погрешность при измерении испытательного напряжения не более $\pm 1.5~\%$.
- **10.4.4.2** Общие указания по проведению испытаний прочности электрической изоляции и пояснения к испытаниям даны в табл. 10.4.4.2.
- **10.4.4.3** Испытательное напряжение должно прикладываться поочередно между обмотками или другими токоведущими частями изделия, а также между обмотками и другими токоведущими частями и металлическим корпусом изделия.
- 10.4.4.4 Результаты испытания считаются удовлетворительными, если не произошло пробоя или повреждения изоляции, перекрытий по ее поверхности, которые контролируются визуально, по резкому снижению показаний вольтметра, включенного в испытательную цепь, или заметному нагреванию изоляции.

			Таблица 10.4.4
№ п/п	Этапы проведения испытаний	Испыта- тельное напря- жение	Примечание
2	В нагретом состоянии при нормальных климатических условиях сразу же после окончания испытаний на теплоустойчивость (нагревание) при температуре отдельных частей, равной или близкой к наибольшей температуре, достигнутой при испытании на теплоустойчивость (нагревание) После испытания изделия	Полное нормированное О,8 нор-	Для изделий с об-
_	на короткое замыкание (если такие испытания проводятся) при нормальных климатических условиях ¹	м и р о - ванного	мотками и для изделий с недоступными для осмотра элементами, изоляция которых подвергалась воздействию токов короткого замыкания
3	В практически холодном состоянии изделия при нормальных климатических условиях испытаний после проведения комплекса вибрационных и ударных воздействий на изделие	0,7 нор- м и р о - ванного	-
4	В конце испытаний изделий на влагоустойчивость в условиях, нормированных для испытания в камере влажности	0,5 нормированного, но не менее 1,25 номинального напряжения изделия	

¹ Это испытание распространяется также на аппараты, испытываемые на предельную коммутационную способность током, равным расчетному току короткого замыкания (или близким к токам короткого замыкания).

10.4.4.5 При испытаниях электрической прочности изоляции допускается применение постоянного тока (от установки выпрямленного напряжения). Испытаниям постоянным током могут подвергаться кабельные изделия и некоторые другие изделия в зависимости от конструктивных особенностей. Различие между этими испытаниями состоит в значениях испытательного напряжения, которые указываются для каждого конкретного изделия. Для изделий, которые не указаны в настоящем разделе, значения испытательного напряжения являются в каждом случае предметом специального рассмотрения Регистром.

10.4.5 Испытание электрической прочности межвитковой изоляции.

10.4.5.1 Испытаниям электрической прочности межвитковой изоляции подвергаются обмотки электрических машин, трансформаторов, электромагнитных муфт и др.

- 10.4.5.2 Межвитковая изоляция обмоток электрических машин (электромагнитных муфт) испытывается на холостом ходу машины (муфты). Испытания проводятся на нагретой машине (муфте) при температуре, близкой к максимально достигнутой при испытании на нагревание. Испытательное напряжение должно быть равным 1,3 номинального. Продолжительность испытания 3 мин (для турбогенераторов 5 мин), если не оговорены особые случаи.
- **10.4.5.3** Межвитковая изоляция обмоток трансформаторов напряжения испытывается путем приложения двукратного номинального напряжения (повышенной частоты), величина которого указана в 10.4.6.2.1.
- **10.4.5.4** Результаты испытания межвитковой изоляции считаются удовлетворительными, если не произошло пробоя или повреждения изоляции.
- 10.4.6 Испытания электрической прочности изоляции отдельных видов оборудования.
- **10.4.6.1** Электрические машины и электромагнитные муфты.
- **10.4.6.1.1** Изоляция обмоток электрических машин должна выдерживать без пробоя или повреждения испытательное напряжение, действующие значения которого указаны в табл. 10.4.6.1.1.
- **10.4.6.1.2** Кроме испытаний, указанных в табл. 10.4.6.1.1, электрические машины и электромагнитные муфты подвергаются испытаниям межвитковой изоляции, как указано в 10.4.5.2; при этом должно приниматься во внимание следующее:
- .1 машины, работающие в определенном пределе напряжений, должны выдерживать испытание межвитковой изоляции приложением напряжения, равного не менее 1,3 самого высокого предела напряжения;
- .2 если у синхронных машин (кроме турбогенераторов) при номинальном токе возбуждения напряжение холостого хода превышает 1,3 номинального, испытание должно проводиться при этом повышенном напряжении холостого хода, соответствующем номинальному току возбуждения;
- .3 если в системе возбуждения синхронных машин имеется силовой трансформатор, его межвитковая изоляция испытывается совместно с изоляцией обмоток машины тем же напряжением;
- .4 межвитковая изоляция трехфазных многоскоростных электрических двигателей должна испытываться на каждой скорости;
- .5 если у машин постоянного тока с более чем четырьмя полюсами повышение испытательного напряжения до 1,3 $U_{\rm H}$ приводит к недопустимому повышению напряжения между коллекторными пластинами, то испытания допускается проводить при меньшем значении испытательного напряжения, которое устанавливается одобренной технической документацией на машину;

Таблица 10.4.6.1.1

№ π/π	Электрическая машина или ее части	Испытательное напряжение (действующее значение), В
1	Машины мощностью менее 1 кВт (1 кВА) на номинальное напряжение ниже 100 В	500 плюс двукратное номинальное напряжение
2	Машины мощностью от 1 кВт (1 кВА) и выше на номинальное напряжение ниже 100 В	1000 плюс двукратное номинальное напряжение
3	Машины:	
3.1	мощностью до 1000 кВт (1000 кВА), за исключением	1000 плюс двукратное номинальное напряжение, но не менее
3.2	перечисленных в пп. 1 и 2 таблицы мощностью от 1000 кВт (1000 кВА) и выше на номинальное напряжение, В:	1500
	до 3300	1000 плюс двукратное номинальное напряжение
	3301 - 6600	2,5-кратное номинальное напряжение
١.,	более 6600	3000 плюс двукратное номинальное напряжение
4	Обмотки возбуждения синхронных генераторов	Десятикратное номинальное напряжение системы возбужде-
5	Обмотки возбуждения синхронных двигателей и	ния, но не менее 1500 и не более 3500
3	синхронных компенсаторов:	
5.1	если машина предназначена для непосредственного пуска от	Десятикратное номинальное напряжение системы возбужде-
	источника переменного тока с обмоткой возбуждения, замкнутой	ния, но не менее 1500
	на сопротивление, не превышающее десятикратное	
	сопротивление обмотки возбуждения при постоянном токе, или	
	на источник своего питания	
5.2	то же, но предназначенная для пуска с разомкнутой обмоткой	100 плюс десятикратное номинальное напряжение возбуди-
5.2	возбуждения, подразделенной на секции	тельной системы, но не менее 1500
5.3	то же, но предназначенная для пуска с разомкнутой обмоткой возбуждения, не секционированной	1000 плюс двадцатикратное номинальное напряжение возбудительной системы, но не менее 1500 и не более 8000
5.4	синхронные двигатели и синхронные компенсаторы,	Десятикратное номинальное напряжение возбудительной
3.4	пускаемые специальными пусковыми двигателями	системы, но не менее 1500
6	Возбудители электрических машин:	
6.1	мощностью до 1 кВт на номинальное напряжение ниже 100 В,	500 плюс двукратное номинальное напряжение
	кроме возбудителей, указанных в 6.4 и 6.5	
6.2	мощностью свыше 1 кВт на номинальное напряжение ниже	1000 плюс двукратное номинальное напряжение
	100 В, кроме возбудителей, указанных в 6.4 и 6.5	
6.3	на номинальное напряжение выше 100 В, кроме возбудителей.	1000 плюс двукратное номинальное напряжение
6.4	указанных в 6.4 и 6.5 возбудители синхронных генераторов	Десятикратное номинальное напряжение, но не менее 1500 и не более 3500
6.5	возбудители синхронных двигателей и синхронных компенсаторов	Десятикратное номинальное напряжение, но не менее 1500
7	Вторичные обмотки асинхронных двигателей, не находя-	
	щиеся непрерывно в короткозамкнутом состоянии:	
7.1	для двигателей, допускающих торможение противо- включением	1000 плюс четырехкратное номинальное напряжение вторичной обмотки
7.2	для двигателей не предназначенных для торможения противовключением	1000 плюс двукратное номинальное напряжение вторичной обмотки
8	Собранные в группы электрические машины и аппараты	Если испытанию подвергается группа, собранная из нескольких новых только что установленных и соединенных вместе электрических машин и аппаратов, из которых каждая машина и каждый аппарат проходили испытания на электрическую прочность, то испытательное напряжение не должно превышать 85 % испытательного напряжения той машины (или того аппарата), у которой это напряжение наименьшее

Примечания: 1. Испытательное напряжение для машин с разными классами изоляции устанавливается в технической документации и является в каждом случае предметом специального рассмотрения Регистром.

.6 если у возбудителя в режиме форсирования возбуждения напряжение превышает 1,3 номинального, то испытание должно проводиться при наибольшем форсированном напряжении в течение 1 мин.

10.4.6.2 Трансформаторы.

10.4.6.2.1 При испытании на предприятии (изготовителе) изоляции обмоток трансформаторов на напряжение до 1000 В обмотки должны выдерживать

^{2.} Для двухфазных обмоток, имеющих общий вывод, в качестве номинального напряжения $U_{\rm H}$, по которому определяется испытательное напряжение, следует принимать напряжение, равное 1,4 напряжения отдельной фазы.

^{3.} Для обмоток одной или нескольких машин, которые связаны электрически, в качестве номинального принимается максимальное напряжение по отношению к корпусу.

испытательное напряжение, действующие значения которого указаны в табл. 10.4.6.2.1.

Τ	аб	Л	И	п	a	10	1.4.	6	.2.	. 1

		•
Трансформаторы	Номинальное	Испытатель-
	напряжение	ное напряже-
	обмоток, В	ние, кВ
Силовые:		
трехфазные до 6,3 кВА	До 50	1,0
однофазные до 4,0 кВА	51 — 250	1,5
	251 — 400	2,0
	401 — 660	2,5
	661 — 1000	3,0
трехфазные более 6,3 кВА	127 — 1000	3,0
однофазные более 4,0 кВА	127 — 1000	3,0
Измерительные:		
напряжения	Первичная (до 660)	6,0
_	Вторичная —	2,0
тока	Первичная (до 660)	3,0
	Вторичная —	2,0

10.4.6.2.2 Межвитковая изоляция обмоток трансформаторов испытывается путем приложения к выводам одной из обмоток удвоенного номинального напряжения повышенной частоты при разом-кнутых остальных обмотках.

Продолжительность испытания t, мин, должна быть не менее определенной по формуле

$$t = 2f_{\rm H}/f, \tag{10.4.6.2.2}$$

где $f_{\rm H}$ — номинальная частота, Γ ц;

f — повышенная частота испытательного напряжения, равная $2f_{\rm H} - 5f_{\rm H}$ (любое значение в этих пределах).

Во всех случаях продолжительность испытания — не менее 15 с.

10.4.6.2.3 Для трансформаторов тока межвитковая изоляция вторичной обмотки в течение 1 мин должна выдерживать в разомкнутом состоянии испытательное напряжение, которое индуцируется в ней при протекании по первичной обмотке номинального тока.

10.4.6.3 Аккумуляторы.

- **10.4.6.3.1** Аккумуляторные батареи независимо от напряжения должны испытываться напряжением 2000 В (действующее значение).
- **10.4.6.4** Электрические распределительные устройства, шинопроводы, аппараты, установочная и осветительная арматура.
- 10.4.6.4.1 Изоляция электрических аппаратов (коммутационных, защитных, управления), электрических щитов и пультов, шинопроводов, светильников, установочных изделий напряжением до 1000 В должна выдерживать без пробоя и перекрытия приложенное испытательное напряжение, действующие значения которого указаны:

Напряжение, В

Номинальное аппарат	ов	_						I	1cı	ТЫ	гат	ельное
по изоляции, $U_{\scriptscriptstyle \mathrm{H}}$					(д	ейс	тв	ую	щ	ee	зна	чение)
60												1000
60 - 250												2000
251 - 660.												2500
661 — 800												3000
801 - 1000.												3500
1001 - 3000												$3U_{\rm H}$

Примечания: 1. При испытании щитов, пультов, шинопроводов их комплектующие элементы, которые были подвергнуты самостоятельным испытаниям электрической прочности изоляции, могут быть отключены.

Допускается вместо отключения таких элементов снижать испытательное напряжение на 20 % по сравнению с указанным выше.

- 2. Испытательное напряжение на аппаратуру свыше 3 кВ указано в отдельной таблице настоящей главы.
- 3. Изоляция обмоток электромагнитных расцепляющих механизмов испытывается действующим значением 2000 В.
- **10.4.6.4.2** Испытательное напряжение для предохранителей на напряжение до 500 В должно быть 3000 В.
- 10.4.6.4.3 Конденсаторы должны выдерживать испытательное напряжение, приложенное между соединенными обкладками и корпусом, действующие значения которого указаны ниже, а между обкладками в соответствии с 10.4.6.9:

Напряжение, В

Номинальное	•									I	1cı	ТЫ΄	га	гельное
онденсатора	U	Н					(де	ейс	ТВ	ую	щ	ee :	3Н	ачение)
220														3000
380														3000
500														3000
660														6000
1000														6000
3150														16000
6300														22000

- **10.4.6.5** Приборы контроля и управления судном, устройства внутренней электрической связи и сигнализации.
- 10.4.6.5.1 Электрическая прочность изоляции приборов контроля и управления судном, аппаратов и устройств внутренней электрической связи и сигнализации должна быть испытана напряжением, действующие значения которого указаны:

Напряжение, В

Номинальное	пр	иб	op	a,	$U_{\rm H}$							I	1cı	ПЫ	тат	ельное
									(де	ейс	тв	ую	Щ	ee	зна	ачение)
До 60														5(00	$+2U_{H}$
61 - 250.																1500
251 - 380																2000

10.4.6.5.2 Указанные в 10.4.6.5.1 испытательные напряжения не относятся к тахометрам, для которых должны применяться напряжения, указанные в 10.4.6.1.1 (для датчиков тахометров) и 10.4.6.4.1 (для вторичных приборов измерителей).

10.4.6.6 Кабельные изделия.

10.4.6.6.1 Каждая изолированная жила готового кабеля должна выдерживать в течение 5 мин без пробоя приложение однофазного синусоидального переменного напряжения с частотой 50 (60) Гц или напряжение постоянного тока, указанное в табл. 10.4.6.6.1. Эти испытательные напряжения для готового кабеля применяются как после выдержки изделий в воде, так и без такой выдержки, как при испытании с погружением в воду, так и без погружения.

Таблица 10.4.6.6.1

Кабели	Испытательное н	апряжение, В
	Переменный ток 50(60) Гц	Постоянный ток
Силовые на номинальное напряжение, В: 250 750 1000 3000 Сигнализации и связи на номинальное напряжение 250 В	1500 2500 3000 7000 1500	3000 5000 — — 3000

 Π р и м е ч а н и я : 1. Таблица относится к кабелям с резиновой, поливинилхлоридной и полиэтиленовой изоляцией в резиновой или поливинилхлоридной оболочке.

- 2. Испытательное напряжение для кабелей, номинальное напряжение которых не указано в таблице, устанавливается технической документацией и является в каждом случае предметом специального рассмотрения Регистром.
- 3. Для кабелей с экранированными жилами, если они составляют более 50 % всех жил, испытательное напряжение может быть снижено на 25 % по сравнению с указанным в таблице.

10.4.6.6.2 Все изолированные жилы кабеля до повива, а также установочные одножильные провода без оболочки должны дополнительно выдерживать без пробоя приложение испытательного синусоидального напряжения с частотой 50 Гц и с эффективным значением, указанным в табл. 10.4.6.6.2.

Продолжительность нахождения каждой точки изоляции под испытательным напряжением при таком испытании — не менее 0,1 с.

Таблица 10.4.6.6.2

Кабели	Площадь поверхности номинального сечения жилы,	Испытательно (действующее кабелей и п номинальное н	значение) для роводов на
	mm ²	250	750
Силовые	0,75 — 16 16 — 25 более 25	6000 8000 10000	10000 10000 12000
Телефонные	_	4000	_

10.4.6.7 Электрические отопительные и нагревательные приборы.

10.4.6.7.1 Электрические отопительные и нагревательные приборы с трубчатыми электронагревателями (ТЭН), за исключением подогревателей топлива и масла, должны выдерживать испытательное напряжение, действующие значения которого указаны в табл. 10.4.6.7.1.

Таблица 10.4.6.7.1

Номи-	Испытательное напряжение (действующее значение), В						
напряжение нагрева-	в прак холодном	в нагретом до рабочей					
тельного прибора, В	с ТЭН диаметром до 10 мм	с ТЭН диаметром более 10 мм	температуры состоянии независимо от диаметра ТЭН				
12 — 60 110 — 127 220 380	800 1300 1500 1800	1000 1500 1700 2000	600 1200 1200 1200				

Примечание. При испытаниях отопительных и нагревательных приборов с ТЭН, уже испытанными на предприятии (изготовителе), указанные напряжения могут быть снижены на 20~%.

10.4.6.7.2 Подогреватели топлива и масла на номинальные напряжения 220 и 380 В должны испытываться напряжением 2000 В в холодном состоянии и 1500 В в нагретом до рабочей температуры состоянии.

10.4.6.8 Электрические измерительные приборы. 10.4.6.8.1 К средствам измерения электрических

величин, на которые распространяются требования табл. 10.4.6.8.2, относятся аналоговые и цифровые приборы измерения электрических величин, измерительные преобразователи, а также составные части приборов для измерения неэлектрических величин, если на вход этих частей подается электрическая величина.

10.4.6.8.2 Испытательное напряжение, которое должна выдерживать изоляция измерительных приборов, рассчитанных на различные рабочие напряжения, действующие значения которого указаны:

Рабочее напряжение, В Испытательное напряжение (действующее значение), В

До 130													500
131 - 250 .													1500
251 - 660 .													2000
661 - 1000.													3000
Свыше 1001									П	o	СП	ıeı	циаль-
						н	ЭМ	y	со	ГЛ	iac	OE	ванию

с Регистром

Примечания: 1. Указанные напряжения приняты для испытания изоляции между токоведущими частями и корпусом прибора.
2. Допускается проведение испытания постоянным током. В этом случае указанные напряжения должны быть увеличены в 1,41 раза.

10.4.6.9 Конденсаторные установки повышения коэффициента мощности.

Конденсаторные установки повышения коэффициента мощности (соз ф) должны выдерживать испытательное напряжение синусоидального переменного тока — 50 Гц между обкладками, прикладываемое к их выводам в течение 10 с, равное 2,15 номинального, или напряжение постоянного тока, равное 4,3 номинального.

10.5 ИСПЫТАНИЯ ОБОРУДОВАНИЯ НА СООТВЕТСТВИЕ УСЛОВИЯМ РАБОТЫ НА СУДНЕ

10.5.1 Общие положения.

10.5.1.1 Перечень изделий электрического оборудования, которые подвергаются различным видам механических и климатических испытаний, приведен в табл. 10.5.1.1.

10.5.1.2 Для отдельных крупногабаритных или тяжелых изделий, которые невозможно испытывать на стандартных испытательных стендах и в стандартных испытательных камерах, объем и виды их испытаний в отношении механических и климатических воздействий являются в каждом случае предметом специального рассмотрения Регистром.

10.5.2 Определения и пояснения.

10.5.2.1 В и бропрочность оборудования противостоять воздействию вибраций без повреждения при сохранении всех параметров в заданных пределах после ее воздействия.

10.5.2.2 В иброустойчивость оборудования выполнять свои функции в условиях вибраций, сохраняя при этом параметры в заданных пределах.

Таблица 10.5.1.1

Испытания оборудования на соответствие условиям работы на судне																
Изделия		Механические испытания Климатические испытания														
	на обнаружение резонансных частот	на виброустой- чивость	на вибропрочность	на ударную устой- чивость	на ударную прочность	на устойчивость к качке	на устойчивость к дли- тельным наклонам	на теплоустойчивость	на холодоустойчивость	на воздействие смены температур	на влагоустойчивость	на устойчивость к инею и влаге после оттаивания	на стойкость к соляному туману	на стойкость к солнечной радиации	на грибоустойчивость	Испытания защитного исполнения оболочки
Электрические машины	+	+	(+)	+	(+)	(+)	+	+	+	(+)	+	(+)	(+)	(+)	(+)	+
Трансформаторы	+	+	(+)	+	(+)	(+)	(+)	+	+	—	+	-	(+)	-	(+)	(+)
Статические преобразователи	+	+	(+)	+	(+)	(+)	_	+	+	-	+	l —	(+)	_	(+)	
Аппараты коммутационные,	+	+	(+)	+	(+)	+	+	+	+	(+)	+	(+)	(+)	_	(+)	(+)
защитные, управления																
Электроизмерительные приборы	+	+	(+)	+	(+)	(+)	+	+	+	l .—.	+	l —	(+)	+	(+)	+
Электрические щиты и пульты	+	+	(+)	+	(+)	(+)	(+)	+	+	(+)	+	(+)	(+)	(+)	(+)	+
Электроприводы	+	+	(+)	+	(+)	(+)	+	+	+	(+)	+	(+)	(+)	(+)	(+)	+
Приборы контроля управления	+	+	(+)	+	(+)	(+)	+	+	+	(+)	+	(+)	(+)	(+)	(+)	+
судном																
Аппараты и устройства внут-	+	+	(+)	+	(+)	+	(+)	+	+	(+)	+	(+)	(+)	(+)	(+)	+
ренней связи и сигнализации																
Электрические нагревательные и отопительные приборы	+	+	(+)	+	(+)	(+)	(+)	+	+	-	+	_	(+)	_	(+)	
Аккумуляторы и аккумуля-	+	+	(+)	+	(+)	+	+	+	+	—	_	_	(+)	_	(+)	_
торные батареи	+		(1)		()	()	(1)	+	١,				(1)		(1)	()
Конденсаторы и конденсаторные	+	+	(+)	+	(+)	(+)	(+)		+	_	+	-	(+)	_	(+)	(+)
установки для повышения коэффициента мощности																
Светильники	+	+	(+)	+	(+)	_	(+)	(+)	(+)	(+)	+	(+)	(+)		(+)	(+)
Установочные изделия	+	+	(+)	+	(+)			(+)	+		+	(+)	(+)	(+)	(+)	(+)
Фильтры защиты от радиопомех	l +	+	(+)	+	(+)			+	+	_	+		(+)		(+)	(+)
(приставные)	'	'		'				l '	'		l '					(1)
Кабели и провода	l _	l _	(+)	l _	(+)	l _	l _	+	+	l _	+	l _	(+)	(+)	(+)	_
Шинопроводы	+	+	(+)	+	(+)	(+)	(+)	+	+	l _	+	l _	(+)		(+)	(+)
шинопроводы	I '		しし		レビノ	レビノ	マウ			ı —	'	ı —	しして		ヒワ	マフ

Условные обозначения:

^{+ —} изделия подлежат испытанию;

^{(+) —} испытание обязательно не для всех изделий данного вида или в отдельных случаях изделия могут быть от него освобождены (см. положения по проведению данного испытания и по испытаниям изделий данного вида);

^{— —} испытания изделий не требуется.

- 10.5.2.3 Влагоустойчивость способность оборудования сохранять свои параметры в заданных пределах при длительных воздействиях повышенной влажности.
- 10.5.2.4 Длительность ударного импульса время, в течение которого действует ускорение одного знака, определенное в отношении ударного импульса.
- 10.5.2.5 Защищенность оборудования степень защиты встроенного в оболочку оборудования от попадания твердых посторонних тел и степень защиты электрического оборудования, расположенного внутри оболочки, от проникновения воды.
- 10.5.2.6 Коррозионная стойкость способность металлических частей оборудования противостоять образованию коррозии в атмосфере, насыщенной водными растворами солей (идентично морской).
- 10.5.2.7 Нормальные климатические условия характеризуются следующими значениями климатических факторов:
 - .1 температура 25 + 10 °C;
 - **.2** относительная влажность $60 \pm 30 \%$;
 - .3 атмосферное давление 0.1 ± 0.004 МПа.
- 10.5.2.8 Плеснеустойчивость (грибоустойчивость) — способность оборудования противостоять развитию на нем грибковой плесени в среде, зараженной грибковыми спорами.
- 10.5.2.9 Практически установив шаяся температура изделия температура изделия или его части, изменение которой в течение 1 ч не превышает 1 °С при условии, что нагрузка изделия и температура среды остаются неизменными.
- 10.5.2.10 Практически холодное состояние изделия состояние изделия, при котором температура любой его части отличается от температуры охлаждающей среды не более чем на 3 $^{\circ}$ C.
- 10.5.2.11 Резонанс явление увеличения амплитуды колебаний изделия или его узлов и деталей в 2 раза и более по сравнению с амплитудой колебаний точек крепления, возникающее при совпадении частоты вынуждающей силы с резонансной частотой изделия.
- 10.5.2.12 Резонансная частота частота собственных колебаний изделия или его узлов, при которой у изделия в целом или его отдельных узлов и деталей возникает явление резонанса.
- 10.5.2.13 Стандартные климатические условия характеризуются следующими значениями климатических факторов:
 - .1 температура 20 ± 1 °C;
 - **.2** относительная влажность 65 + 2 %;
 - .3 атмосферное давление 0.1 ± 0.004 МПа.
- 10.5.2.14 Тепловое равновесие изделия — равновесие, которое считается достигнутым,

- когда температура всех его частей не более чем на 3 °C отличается от температуры внешней среды.
- 10.5.2.15 Теплоустой чивость оборудования дования способность оборудования выполнять свои функции при наиболее высокой температуре окружающего воздуха, которая может возникнуть в условиях эксплуатации без повреждения при сохранении параметров в заданных пределах.
- 10.5.2.16 Ударопрочность оборудования противостоять воздействию ударов без повреждения и при сохранении параметров в заданных пределах после их воздействия.
- 10.5.2.17 Удароустойчивость оборудования способность оборудования выполнять свои функции в условиях ударов, сохраняя параметры в заданных пределах.
- 10.5.2.18 Холодоустойчивость оборудования — способность оборудования выполнять свои функции при наиболее низкой температуре окружающего воздуха, которая может возникнуть в условиях эксплуатации без повреждения и коррозии при сохранении параметров в заданных пределах.
- 10.5.2.19 Цикл качания частоты изменение частоты в диапазоне от низшей до высшей.
 - 10.5.3 Механические испытания.
 - 10.5.3.1 Общие положения.
- 10.5.3.1.1 Изделия должны крепиться непосредственно к платформе испытательного стенда, а если это невозможно к специальному приспособлению, укрепленному на ней. Способ крепления изделий должен быть таким же, как это предусмотрено при их эксплуатации.
- 10.5.3.1.2 Изделия с амортизаторами при всех видах механических испытаний (за исключением испытаний на обнаружение резонансных частот) должны крепиться на амортизаторах, а при испытании их на обнаружение резонансных частот жестко.
- 10.5.3.1.3 При испытании вибрационными и ударными нагрузками изделия должны подвергаться их воздействию в каждом из трех взаимно перпендикулярных направлениях. Во всех случаях одно из направлений воздействия должно быть перпендикулярно нормальному эксплуатационному положению изделия.
- **10.5.3.1.4** Испытания изделий на вибропрочность и виброустойчивость проводятся в диапазоне частот $2_{-0}^{+3}-80$ Гц или $2_{-0}^{+3}-100$ Гц в зависимости от метода испытаний и типа оборудования.
- 10.5.3.1.5 Указанные в 10.5.3.1.4 нормы частот относятся к изделиям массой до 200 кг. Оборудование массой более 200 кг в том случае, если оно состоит из отдельных конструктивно разъемных

блоков, секций и т. п., может подвергаться испытаниям поблочно (посекционно).

На неразъемное оборудование должна быть представлена документация, подтверждающая соответствие оборудования рабочим условиям, указанным в части XI «Электрическое оборудование» Правил классификации и постройки морских судов.

10.5.3.2 Испытания на обнаружение резонансных частот.

10.5.3.2.1 Целью испытаний на обнаружение резонансных частот является выявление наличия резонансных частот у изделий, их узлов и деталей и определение этих частот.

10.5.3.2.2 Испытания проводятся при таких же параметрах вибраций (диапазон частот, амплитуда), как и при испытании на виброустойчивость (см. табл. 10.5.3.4.3) на всех поддиапазонах частот.

10.5.3.2.3 Поиск резонансных частот должен проводиться плавным изменением частоты в пределах каждого диапазона при постоянной амплитуде. Продолжительность плавного изменения частоты в пределах поддиапазона — не менее 2 мин.

Скорость изменения должна быть достаточной для проверки и регистрации необходимых параметров, но не более чем две октавы в минуту. Прохождение полного диапазона частот должно занимать не менее 30 мин.

Время поиска должно быть достаточным для выявления резонансных частот, амплитуда которых в два — пять раз превышает номинальную, превышение номинальной амплитуды более чем в пять раз не рекомендуется.

10.5.3.2.4 Методика обнаружения и определения резонансных частот должна быть приведена в одобренной программе испытаний конкретных изделий.

10.5.3.2.5 Обнаруженные резонансные частоты должны быть зафиксированы как для изделия в целом, так и для отдельных узлов или деталей для их учета при последующих испытаниях на виброустойчивость и вибропрочность.

10.5.3.3 Испытания на вибропрочность.

10.5.3.3.1 Изделие испытывается на вибропрочность в отключенном состоянии.

10.5.3.3.2 Поддиапазоны частот, амплитуды и время испытаний приведены в табл. 10.5.3.3.2.

Таблица 10.5.3.3.2

Поддиапазон частот, Гц	Длительные	е испытания	Кратковременные испытания				
	Амплитуда, мм	Время, ч	Амплитуда, мм	Время, ч			
2 — 8	1,4	450	2,5	9			
8 — 16	0,7	220	1,3	4,5			
16 — 31,5	0,35	110	0,7	2,2			
31,5 — 63	0,2	55	0,35	1,1			
63 — 80	0,12	25	0,2	0,5			

10.5.3.3.3 Амплитуда при испытаниях должна поддерживаться постоянной. Плавное изменение частоты в пределах поддиапазона должно производиться в течение не менее 1 мин.

Допускается проведение испытаний при ступенчатом изменении частоты между предельными значениями поддиапазонов. Количество ступеней частот устанавливается Регистром в каждом случае отлельно.

10.5.3.3.4 Испытание на вибропрочность должно проводиться в том диапазоне, в котором возникает явление резонанса, а при отсутствии резонанса — на любом из указанных в табл. 10.5.3.3.2 поддиапазонов (рекомендуется проверка на частоте 30 Гц).

10.5.3.3.5 Метод длительного или кратковременного испытания выбирается по согласованию с Регистром.

10.5.3.3.6 Время испытания должно распределяться равномерно между испытательными положениями изделия на стенде, то есть для каждого положения должно быть установлено приблизительно одинаковое количество циклов качания частоты.

10.5.3.3.7 Изделие допускается к испытаниям на виброустойчивость, если в процессе испытаний не произошло поломок частей изделия и не обнаружено других видимых повреждений.

10.5.3.3.8 Очередность испытаний, в том числе указанных в 10.5.3.2 - 10.5.3.6, должна соответствовать предусмотренной в табл. 10.5.1.1.

10.5.3.4 Испытания на виброустойчивость.

10.5.3.4.1 Испытания на виброустойчивость должны проводиться в рабочем состоянии под электрической нагрузкой.

Нагрузка указывается в одобренных программах и методиках испытания конкретных изделий.

10.5.3.4.2 Перед испытанием изделий с коммутирующими контактными устройствами необходимо убедиться в том, что нажатия контактов (по динамометру) соответствуют указанным в одобренной технической документации. Регуляторы уставок должны быть в положении, при котором удерживающее усилие наименьшее.

10.5.3.4.3 Поддиапазоны частот, амплитуды и ускорения при испытании на виброустойчивость в зависимости от метода испытаний и типа оборудования указаны в табл. 10.5.3.4.3-1 и табл. 10.5.3.4.3-2.

10.5.3.4.4 Испытание проводится путем плавного изменения частоты при постоянной амплитуде в пределах каждого поддиапазона. Продолжительность плавного изменения частоты в пределах каждого поддиапазона должна быть не менее 2 мин.

10.5.3.4.5 Изделие считается выдержавшим испытание, если во время испытания не изменились коммутационные положения контактов, не выявлена нестабильность работы и значения параметров не

Таблица 10.5.3.4.3-1

Метод 1

Поддиапазон частот, Гц	Амплитуда, мм	Время
$ \begin{array}{r} 2 - 8 \\ 8 - 16 \\ 16 - 31,5 \\ 31,5 - 63 \\ 63 - 80 \end{array} $	1,0 0,5 0,25 0,15 0,10	Необходимое для проверки в действии и возникновения резонанса всего изделия и его частей, но не менее 2 ч, на каждой резонансной частоте (если имеется) или на частоте, на которой нарушается устойчивость параметров

Примечания: 1. Регистр может допустить другие параметры испытаний, основанные на национальных стандартах, признанных и одобренных им.

2. Для электрооборудования, устанавливаемого на двигателях и других источниках повышенных вибраций, нормы испытаний могут быть повышены по особому требованию Регистра.

Таблица 10.5.3.4.3-2

Метод 2 – по IEC 60068-2-6, Test F_c

Диапазон частот, Гц	Амплитуда, мм	Частота перехода, Гц	Ускорение, g, м/c ²		
для	для оборудования обычного исполне				
$2_{-0}^{+3} - 100$	+ 1,0	13,2	+ 0,7		
для оборудования, подверженного повышенной вибрации					
$2^{+3}_{-0} - 100$	+ 1,6	25,0	+ 4,0		

Примечания: 1. В отношении оборудования, для которого возможны большие значения рабочих ускорений (например: оборудование, устанавливаемое непосредственно на коллекторах выпускных газов средне- и высокооборотных двигателей внутреннего сгорания и т. п.), программа испытаний является, в каждом случае, предметом специального рассмотрения Регистром.

- 2. При обнаружении резонансных частот испытания проводят на каждой резонансной частоте в течение не менее 90 мин. В случае близкого расположения нескольких резонансных частот допускается проведение испытаний плавным изменением частоты в обнаруженном диапазоне в течение 120 мин.
- 3. В случае отсутствия резонансных частот испытания проводятся в течение 90 мин в каждой плоскости на частоте 30 Гц.

выходили из допустимых пределов, не обнаружено поломок деталей, обрывов монтажных проводов, заклинивания подвижных частей, ослабления креплений, ухудшения состояния изоляции после испытаний.

10.5.3.5 Испытание на ударопрочность.

10.5.3.5.1 Испытание проводится на отключенных от сети изделиях. Изделие подвергается не менее чем 1000 ударов с ускорением на менее 7g и частотой 40 — 80 уд/мин. Общее число ударов должно равномерно распределяться между испытаниями при различных положениях изделия на стенде.

10.5.3.5.2 Длительность действия ударного ускорения должна соответствовать указанной в табл. 10.5.3.5.2.

Таблица 10.5.3.5.2

Значение низшей резонансной частоты изделия, Гц	Длительность действия ударного ускорения, мс
До 60 60 — 100 100 — 200 200 — 500	18 ± 5 11 ± 4 6 ± 2 3 ± 1

Примечание. Если технические характеристики оборудования не обеспечивают требуемой длительности действия ударного ускорения, то допускается проведение испытаний с длительностью действия ударного ускорения, определяемой по формуле

 $J = 3000/f_{\text{oh}}$

где J — длительность ударного ускорения, мс; $f_{\rm OH}$ — низшая резонансная частота изделия, Γ ц.

105353 Изданиа спитается видержари

10.5.3.5.3 Изделие считается выдержавшим испытание, если не произошло поломок частей изделия или не появились другие видимые дефекты.

10.5.3.6 Испытание на удароустойчивость.

10.5.3.6.1 Изделие в рабочем состоянии выдерживается в состоянии ударной тряски на стенде в трех взаимно перпендикулярных положениях с измерением параметров в каждом положении.

10.5.3.6.2 Общее число ударов с ускорением 5g и частотой 40-80 уд/мин должно быть не менее 20. Длительность импульсов ударов принимается согласно табл. 10.5.3.5.2.

10.5.3.6.3 Оценка результатов данного испытания аналогична 10.5.3.4.5.

10.5.3.7 Испытания на устойчивость к качке и к длительным наклонам.

10.5.3.7.1 Во время испытаний изделие должно находиться в рабочем состоянии при нормальных климатических условиях.

Изделия без подвижных частей от испытания освобождаются.

10.5.3.7.2 При испытании на устойчивость к качке оборудование выдерживается в состоянии качки на стенде последовательно в двух взаимно перпендикулярных положениях с измерением параметров в каждом положении. Предельный угол наклона в каждом положении 30° от вертикали в каждую сторону с периодом 7-9 с.

10.5.3.7.3 Продолжительность испытаний в каждом положении должна быть достаточной для контроля за изделием и замера параметров, но не менее 15 мин.

10.5.3.7.4 При испытании на устойчивость к длительным наклонам изделие выдерживается в наклонном положении последовательно в двух взаимно перпендикулярных плоскостях поочередно в каждую из четырех сторон на угол 22,5°, а аварийное оборудование — на угол 30° к горизонтали.

10.5.3.7.5 Продолжительность испытания изделий в наклонном положении в рабочем состоянии должна быть достаточной для контроля

их работы и измерения параметров в каждом положении, но не менее 5 мин в каждую сторону.

10.5.3.7.6 Изделия, в технической документации которых ограничено их расположение на судне по условиям длительных наклонов, испытываются с учетом таких ограничений, согласованных Регистром.

10.5.3.7.7 Изделие считается выдержавшим испытание, если в процессе испытания оно нормально функционировало, не изменяло заданных параметров, или не было заеданий, заклиниваний или перегревов подвижных частей.

10.5.4 Климатические испытания.

10.5.4.1 Испытания на теплоустойчивость.

10.5.4.1.1 От указанных в настоящей главе испытаний на теплоустойчивость освобождаются светильники, которые подвергаются тепловым испытаниям с большей степенью жесткости, а также изделия, подвергаемые испытаниям на нагревание, которые по своим размерам не могут быть испытаны в камере тепла.

10.5.4.1.2 Оборудование испытывается в рабочем состоянии при номинальной нагрузке в течение 16 ч. Параметры изделия должны быть измерены не менее трех раз (при достижении теплового равновесия, в конце режима испытаний и после испытаний в практически холодном состоянии).

10.5.4.1.3 Температура в камере во время испытаний должна соответствовать указанной в табл. 10.5.4.1.3.

10.5.4.1.4 Для изделий (коммутационных, защитных и других), предназначенных для установки в оборудовании автоматизации, и электрон-

Таблица 10.5.4.1.3

Место расположения оборудования	Температура в камере при испытаниях, °С				
ооорудования	для судов, предназначенных для неограниченного района плавания	для судов, предназначенных для плавания вне тропической зоны			
Машинные и специальные электрические помещения, камбузы	+ 55	+45			
Открытые палубы Другие помещения	+ 55 + 45	+ 50 + 40			

Примечания: 1. Изделие, не имеющее ограничений по климатическому исполнению или по месту расположения на судне, должно испытываться по высшим соответствующим значениям, указанным в таблице.

2. При испытании изделий, предназначенных для установки в машинных и специальных электрических помещениях, камбузах, у которых вентиляция конструктивно предусмотрена путем автономного подвода окружающего воздуха, температура в испытательной камере может быть снижена на 5 °С по сравнению с указанной в таблице.

3. Электронные элементы и устройства, предназначенные для вмонтирования в распределительные щиты, пульты и кожухи, должны надежно работать при температуре окружающей среды до 55 °C.

Температуры до 70 °C не должны вызывать повреждений элементов, устройств и систем.

ных элементов и устройств, испытания на теплоустойчивость должны проводиться по нормам и методам, указанным в разд. 12.

10.5.4.1.5 Проверка работы изделий при предельных отклонениях напряжения и частоты должна производиться после испытания на теплоустойчивость в конце режима выдержки.

10.5.4.1.6 Изделие считается выдержавшим испытание на теплоустойчивость, если в процессе испытаний параметры не выходили за пределы допустимых, при осмотре не обнаружено повреждений, могущих привести изделие в нерабочее состояние, и испытания электрической прочности изоляции и измерение сопротивления изоляции в конце испытаний на горячем изделии дали положительные результаты.

10.5.4.2 Испытания на холодоустойчивость.

10.5.4.2.1 Испытаниям на холодоустойчивость подвергаются все изделия. В камере с изделиями, отключенными от источников питания, постепенно устанавливается испытательная температура в соответствии с табл. 10.5.4.2.2. После достижения теплового равновесия изделие выдерживается при испытательной температуре в течение 6 ч, после чего включается в рабочее состояние на номинальную нагрузку и проверяется в действии.

10.5.4.2.2 Температура в камере при испытании должна соответствовать указанной в табл. 10.5.4.2.2.

Таблица 10.5.4.2.2

Место установки	Температура в камеро	Температура в камере при испытаниях, °С				
оборудования	для судов, предназначенных для неограниченного района плавания	для судов, предназначенных для плавания вне тропической зоны				
Помещения машин-	-10	-10				
ные, насосные, гру- зовые, специальной категории, посты уп- равления и неотап- ливаемые служебные и производственные Открытые палубы Помещения жилые, отапливаемые слу- жебные и произ- водственные	$-40 \\ 0$	$-40 \\ 0$				

Примечания: 1. Изделия, не имеющие ограничений по климатическому исполнению и/или по месту установки на судне, должны быть испытаны при низших значениях температуры, указанных в таблице.

- 2. Для изделий, устанавливаемых в отапливаемых помещениях, но охлаждаемых путем подачи наружного воздуха, испытательная температура должна быть такой же, как для изделий, устанавливаемых на открытой палубе.
- 3. Изделия, устанавливаемые на открытых палубах судов с дополнительным знаком «Winterization (DAT)» в символе класса, должны быть испытаны при температуре на $10~^{\circ}$ С ниже расчетной внешней температуры или при $-40~^{\circ}$ С, в зависимости от того, что ниже.

10.5.4.2.3 Проверка изделий на предельные отклонения напряжения и частоты осуществляется сразу после включения его в рабочее состояние после камеры холода.

10.5.4.2.4 Изделие считается выдержавшим испытание на холодоустойчивость, если после включения его в работу не произошло отказа в работе (в том числе при загустении смазки), поломок, недоступных отклонений параметров.

10.5.4.3 Испытание на воздействие смены температур.

10.5.4.3.1 Испытанию подлежат изделия, предназначенные для установки на открытых палубах.

10.5.4.3.2 Испытания проводятся в следующем порядке:

.1 изделие выдерживается в камере влажности в течение 5 сут в условиях испытания на влагоустойчивость (95 — 100 % при температуре 25 °C);

.2 после выдержки в течение 2 — 3 ч в камере при нормальных климатических условиях изделие подвергается подряд не менее чем двум циклам следующих испытаний:

постепенно охлаждается в камере до температуры, указанной в табл. $10.5.4.2.2 (-40 \, ^{\circ}\text{C});$

включается под номинальную нагрузку и температура в конце испытаний повышается до указанной в табл. $10.5.4.1.3~(+55~^{\circ}\text{C})$.

При достижении теплового равновесия цикл заканчивается;

.3 по окончании последнего цикла изделие помещается в камеру влажности, и испытание на влагоустойчивость проводится в полном объеме согласно 10.5.4.4.

10.5.4.3.3 Испытание на воздействие смены температур рекомендуется совмещать с испытаниями на тепло- и холодоустойчивость.

Изделие считается выдержавшим испытания, если оно выдержало испытание на влагоустойчивость, проведенное сразу по окончании последнего цикла испытаний, указанных в 10.5.4.3.2.

10.5.4.4 Испытание на влагоустойчивость.

10.5.4.4.1 Электрическое оборудование всех видов исполнения должно испытываться на влагоустойчивость в штатных оболочках, в полном сборе, за исключением оборудования в герметическом исполнении, крышки которого на время испытания в камере должны быть открытыми.

Испытания проводятся с периодическими включениями оборудования на работу.

10.5.4.4.2 Испытания на влагоустойчивость могут проводиться в циклическом или непрерывном режиме.

Режим выбирается в зависимости от назначения изделий, условий эксплуатации и конструктивных особенностей и указывается в одобренной Регистром программе испытаний на конкретные изделия.

10.5.4.4.3 Изделия с пропитанными обмотками (электрические машины, трансформаторы, контакторы, реле и др.) должны испытываться в циклическом режиме. Остальные изделия, в том числе герметизированные компаундом, рекомендуется испытывать в непрерывном режиме.

10.5.4.4.4 Условия испытаний в циклическом режиме даны в табл. 10.5.4.4.4.

Испытания при другой цикличности являются в каждом случае предметом специального рассмотрения Регистром.

Таблица 10.5.4.4.4

№	Назначение изделий	Место расположения	Цикличность 12 — 12 ч				
п/п	по климатическим условиям эксплуатации (район плавания)	изделия	Продолжи- тельность	Относительная влажность (OB), $\%$, и температура (t), $^{\circ}$ С в камере			
	(ранон шавания)		режима, сут	в первые 12 ч цикла	в последующие 12 ч цикла		
1	Для судов неограниченного района плавания	Открытые палубы, особо сырые помещения	10	В первые 3 ч	OB — 95 — 100 %		
		Прочие помещения	7	OB — 95 — 100 % t — низшая 25 ± 3 °C t — верхняя 40 ± 2 °C Последующие 9 ч: OB — 93 \pm 2 °C t — 40 ± 2 °C	t в течение 3 — 6 ч снижается до 25 \pm 2 $^{\circ}$ С и сохраняется в этих пределах до конца цикла		
2	Для судов, предназначенных для плавания вне тропической зоны	•	7 5	OB — 93 \pm 3 t — 40 \pm 2 °C			

 Π р и м е ч а н и е . Испытания на влагоустойчивость могут также проводиться в соответствии со стандартом МЭК 60068-2-30, тест D_b , при температуре $55\pm2~^{\circ}$ С и относительной влажности $95+5~^{\circ}$ %. Испытания должны включать в себя два цикла ($12+12~^{\circ}$ 4). Оборудование должно находиться во включенном состоянии в течение первого цикла и в выключенном, за исключением проверки функционирования, в течение второго цикла. Проверка на функционирование оборудования проводится в течение первых двух часов первого цикла, а также в течение двух последних часов второго цикла, при испытательной температуре. После извлечения оборудования из камеры и выдержки в нормальных климатических условиях в течение $1-3~^{\circ}$ 4 проводится измерение сопротивления изоляции.

10.5.4.4.5 Условия испытаний при непрерывном режиме даны в табл. 10.5.4.4.5.

10.5.4.4.6 Изделия испытываются, в основном, в длительном режиме.

Испытания в кратковременном (ускоренном) режиме допускается проводить в обоснованных случаях по специальному согласованию с Регистром.

Испытания проводятся при температуре 40 ± 2 °C и относительной влажности 93^{+2}_{-3} % без конденсации.

В конкретных случаях на основании одобренной технической документации допускается температура 25 ± 2 °C для изделий, предназначенных к установке на суда, плавающие только вне тропической зоны.

10.5.4.4.7 После окончания испытаний в камере проводится испытание электрической прочности изоляции; при этом для изделий, предназначенных для открытых палуб и особо сырых помещений, испытание электрической прочности изоляции проводится без извлечения их из камеры. В остальных случаях испытание повышенным напряжением допускается проводить в течение 3 мин после извлечения изделий из камеры влажности.

10.5.4.4.8 Измерение параметров и другие проверки, не связанные с доступом к изделию, следует проводить в конце первой части цикла при цикличном режиме и в конце последнего часа при непрерывном режиме.

10.5.4.4.9 Изделие считается выдержавшим испытание на влагоустойчивость, если:

- сопротивление изоляции не уменьшилось ниже норм;
- .2 при испытании электрической прочности изоляции не произошло пробоя или перекрытия по поверхности;
- .3 функционирование изделия происходило нормально при периодических выключениях во время испытаний;
 - .4 на металлических частях отсутствует коррозия;
- .5 отклонения параметров изделия не выходили за допустимые пределы.

10.5.4.5 Испытание на воздействие инея и росы.

10.5.4.5.1 Испытанию на воздействие инея и росы подлежат изделия, устанавливаемые на открытых палубах или в иных местах, где возможно выпадение инея на изделии.

Для изделий в герметическом исполнении и испытываемых в циклическом режиме на влагоустойчивость указанное испытание отдельно не проводится.

10.5.4.5.2 Испытания проводятся по следующей методике:

- .1 изделие устанавливается в камеру холода в выключенном состоянии и выдерживается в течение 2 ч при температуре -20 ± 5 °C;
- .2 изделие вынимается из камеры, и на его клеммы подается напряжение, определенное в программе испытаний (достаточным считается максимально допустимое значение рабочего напряжения). Под таким напряжением (без нагрузки) изделие выдерживается при нормальных климатических условиях до оттаивания инея и высыхания его, но не менее 2 ч;
- .3 за время оттаивания проводятся испытания приложением напряжения, указанного выше, как между выводами, так и между выводами и корпусом.
- **10.5.4.5.3** Изделие считается выдержавшим испытание, если не произошло пробоя или повреждения изоляции изделия.

10.5.4.6 Испытания на воздействие соляного (морского) тумана.

10.5.4.6.1 Испытанию подлежат все виды изделий независимо от района плавания, т. е. любого климатического исполнения.

10.5.4.6.2 Изделия испытываются в штатных оболочках с закрытыми крышками, дверцами, с заглушенными отверстиями для ввода кабелей. Все остальные отверстия (например, вентиляционные) должны быть открыты.

10.5.4.6.3 Испытания проводятся путем циклического распыления в камере водного раствора солей (морской туман) при температуре $+35\pm2$ °C:

Таблица 10.5.4.4.5

Назначение изделий по климатическим условиям	Место расположения изделия	Продолжительность режима, сут		Относительная влажность (OB), % и температура (t °C) в камере				
эксплуатации (район плавания)	подоли	при длительном режиме испытаний	при ускоренном режиме испытаний	при длительном режиме испытаний	при ускоренном режиме испытаний			
Для судов неограниченного района плавания	Открытые палубы, особо сырые помещения	21	14	OB — 95 ⁺² ₋₃ %	OB — 95 ⁺² ₋₃ %			
	Прочие судовые помещения	10	7	t — 40 ± 2 °C	t — 55 \pm 2 °C			
Для плавания вне тропической зоны	Открытые палубы, особо сырые помещения	7	5	OB $-93^{+2}_{-3}\%$ (95 $\pm 2\%$)	OB — 95^{+2}_{-3} %			
	Прочие судовые помещения	5	4	$t - 40 \pm 2 ^{\circ}\text{C}$ (25 ± 2 $^{\circ}\text{C}$)	t — 55 \pm 2 °C			

Примечание. Продолжительность испытания изделий, не имеющих ограничений по климатическому исполнению и/или по месту расположения на судне, должна быть наибольшей, соответствующей указанной в таблице.

- .1 циклическое распыление в течение 2 ч с последующей выдержкой 20 ч, длительность цикла 7 сут.;
- .2 состав раствора, г/л: хлористый натрий 27, хлористый магний 6, хлористый кальций 1, хлористый калий 1, вода дистиллированная 1 литр;
- .3 дисперсность тумана 1 10 мкм (до 90 95 капель);
- .4 водность раствора 2 3 г/м^2 (в конце распыления). 10.5.4.6.4 Методика и длительность испытаний указана в табл. 10.5.4.6.4.

10.5.4.7 Испытание на грибоустойчивость.

- 10.5.4.7.1 Испытанию на грибоустойчивость подвергаются все изделия, предназначенные для судов неограниченного района плавания, за исключением изделий в герметизированных оболочках, в которых применены плеснеустойчивые покрытия.
- **10.5.4.7.2** Виды плесневых грибков для приготовления водной суспензии из их спор приведены в табл. 10.5.4.7.2.
- **10.5.4.7.3** Изделия подвергаются испытаниям по следующей методике:

- .1 образцы для испытаний берутся из поставки без предварительной специальной очистки изделия;
- .2 перед началом испытаний оборудование выдерживается при температуре 55 ± 2 °C в течение 4 6 ч, затем помещается в стандартные климатические условия на 2 6 ч, в течение которых проверяются электрические параметры и функционирование изделия;
- .3 испытания проводятся в специальной камере грибообразования, в среде, зараженной грибковой плесенью, при отсутствии света и движения воздуха, при температуре $(27 30) \pm 1$ °C и относительной влажности 95 ± 3 %;
- .4 вместе с образцами изделий в камере должна находиться контрольная чашка Петри с питательной средой.
- В качестве питательной среды рекомендуется пивное сусло или синтетическая среда Чапек Докса следующего состава:

азотнокислый натрий $NaNo_3 - 2$ г; дигидрофосфат калия $KH_2PO_4 - 0,7$ г; гидрофосфат калия $K_2HPO_4 - 0,3$ г; сульфат магния $MgSO_47H_2O - 0,5$ г;

Таблица 10.5.4.6.4

№ п/п	Последовательность, условия и нормы испытаний	Числовое значение
1 2	Измерение сопротивления изоляции и проведение функциональных испытаний. Установка оборудования в камеру и выдержка при циклическом распылении раствора солей (морской туман) ¹ : температура в камере, °C состав синтетического раствора солей на 1 л дистиллированной воды для образования морского тумана, г/л: хлористый натрий хлористый магний хлористый кальций хлористый кальций хлористый калий дисперсность морского тумана (90 % капель), мк водность морского тумана, г/м продолжительность испытаний, количество циклов ² продолжительность распыления раствора (в начале каждого цикла), ч Извлечение оборудования из камеры, измерение сопротивления изоляции и проведение функциональных испытаний, ч	$ \begin{array}{c} - \\ 35 \pm 2 \\ 27 \\ 6 \\ 1 \\ 1 \\ - 5 \\ 2 - 3 \\ 4 \\ 2 \\ 4 - 6 \end{array} $

¹Во время испытания оборудование находится в выключенном состоянии.

Таблица 10.5.4.7.2

Спора	Штамм	Типичные культуры	Свойства
Aspergillus niger	v. Tieghem	ATCC. 6275	Обильно растет на многих материалах и стойка к солям меди
Aspergillus terreus	Thom	POMD. 82j	Воздействует на пластмассовые материалы
Aureobasidium pullulans	(De Barry) Arnaud	ATCC. 9348	Воздействует на краски и лаки
Penicellium funiculosum	Thom	JAM. 7013	Воздействует на многие материалы, осо-
			бенно на текстильные
Penicellium ochrochloron	Biourge	ATCC. 9112	Стойка к солям меди
Scopulariopsis brerioaulis	(Sacc.)	JAM. 5146	Воздействует на резину
	Buin Var.		
	Glabra		
	Thon		
Trichoderma viride	Pers. Ex Fr	JAM. 5061	Воздействует на целлюлозу, текстиль и
			пластмассы
Paecilomyces varioti	Bainier	JAM. 5001	Воздействует на пластмассу и кожу

¹ При применении глюкозы вместо сахарозы содержание соответственно уменьшается.

²Каждый цикл состоит из следующих этапов: распыление раствора солей, выдержка оборудования в камере в течение 7 сут, проведение функциональных испытаний на седьмые сутки цикла.

```
солянокислый калий KCl = 0.5 \ \Gamma; сернокислое железо FeSo_47H_2H = 0.01 \ \Gamma; сахароза = 30 \ \Gamma; дистиллированная вода = 1000 \ \text{cm}^3; агар-агар = 25 \ \Gamma;
```

.5 отключенное от источников питания изделие в камере вместе с чашкой Петри с питательной средой опрыскивается из стеклянного пульверизатора с диаметром выходного отверстия не менее 1 мм водной суспенсией спор плесневых грибков из расчета 50 мг суспензии на 1 л объема камеры.

Водная суспенсия должна состоять из смеси спор плесневых грибков, названия которых приведены в табл. 10.5.4.7.2;

- .6 оборудование выдерживается в течение 48 ч в указанных выше условиях в камере. Если в течение этого времени на контрольной чашке Петри не обнаружен рост плесневых грибков, производится вторичное опрыскивание, и отсчет времени начинается снова;
- .7 после обнаружения в контрольной чашке Петри роста грибков изделие выдерживается в камере 28 сут при указанных климатических условиях;
- **.8** по истечении срока оборудование помещается на 24 ч в нормальные климатические условия, затем производится его осмотр и измерение параметров.
- 10.5.4.7.4 Образцы изделий считаются выдержавшими испытание, если в результате осмотра невооруженным глазом не обнаружено заметного роста плесени, или если только видны единичные проросшие споры при осмотре через лупу 5-кратного увеличения.
- **10.5.4.7.5** Испытания на грибоустойчивость проводятся в микробиологической лаборатории компетентными лицами.

Инспектор может не вести наблюдение за испытаниями, однако результаты испытаний должны быть представлены в виде протокола и соответствовать вышеуказанной методике.

- **10.5.4.8** Испытание на воздействие солнечной радиации.
- 10.5.4.8.1 Испытаниям подвергаются изделия, которые предназначены для работы на открытой палубе и которые полностью или частично во время эксплуатации будут подвергаться непрерывному воздействию солнечной радиации.
- 10.5.4.8.2 Испытания проводятся в специальной камере при температуре воздуха в тени камеры 55 ± 2 °C. Изделие или его часть подвергается облучению от источников инфракрасного и ультрафиолетового излучения в течение 120 ч. Интенсивность излучения установки должна обеспечивать суммарную плотность теплового потока не ниже $1125~\mathrm{BT/m^2}$, в том числе плотность потока ультрафиолетовой части спектра с длиной волны $280-400~\mathrm{Hm}$ должна быть не менее $42~\mathrm{BT/m^2}$.
 - 10.5.4.8.3 Изделие считается выдержавшим испытание:
- .1 если не произошло деформации, растрескивания, расслоения, коробления, отклеивания деталей из пластика и других материалов;
- .2 если параметры и сопротивление изоляции остались в норме;
- .3 если не обнаружено ухудшения видимости и читаемости надписей и знаков на шкалах или на иных частях изделия.
 - 10.5.5 Испытание защитного исполнения оболочек.
 - 10.5.5.1 Защита от проникновения твердых тел.
- **10.5.5.1.1** Данные испытания распространяются на изделия на напряжение до 1000 В.

Методики испытаний степени защиты на напряжение выше 1000 В являются в каждом случае предметом специального рассмотрения Регистром.

- **10.5.5.1.2** При испытании проверяется степень защиты от попадания внутрь изделия посторонних твердых тел.
- **10.5.5.1.3** Обозначение степени защиты и ее определение указаны в приложении 9.

Таблица 10.5.5.1.3

Степень защиты (первая цифра IP)	Методика испытаний и критерии оценки
1	Приложение шара диаметром 52,5 мм к любым отверстиям в оболочке изделия с силой 30 Н для всех изделий и 50 Н для
	электрических машин.
2	Результаты считаются удовлетворительными, если шар не проходит и не соприкасается с токоведущими частями внутри изделия.
2	Приложение испытательного щупа (см. приложение 11), соединенного одним плюсом с источником безопасного напряжения (не ниже 40 В) в любом возможном положении с силой до 30 Н, а также приложение шара диаметром 12,5 мм
	к любым отверстиям с той же силой.
	Результаты считаются удовлетворительными, если контрольная лампа щупа не загорается и испытательный шар не проходит ни
	в одно из отверстий и не соприкасается с токоведущими или движущимися частями внутри оболочки изделия.
3	Приложение стальной проволоки диаметром 2,5 мм в любое из отверстий в оболочке.
	Результаты считаются удовлетворительными, если проволока не проходит ни в одно из отверстий в оболочке.
4	То же, диаметр проволоки 1 мм.
5	Внутри камеры создается вакуум, соответствующий перепаду давления 2×10^3 Па.
	Изделие обдувается тальком, просеянным через сетку с отверстием 0,071 мм в свету, из расчета 2 кг талька на 1 м ³ объема камеры.
	Испытание проводится за время, достаточное для перекачки вакуумным насосом объема воздуха в камере в 80 — 120 раз
	больше, чем объем воздуха в оболочке, но не менее 2 ч.
	Результаты считаются удовлетворительными, если количество талька, проникшее в оболочку изделия, не влияет на его
	удовлетворительную работу (проверяются параметры и работоспособность оборудования).
6	То же, но оценка считается удовлетворительной, если внутри оболочки не будет отложений пыли (полная защита от
	проникновения пыли).

Методика испытаний оболочек изделий на соответствие защитного исполнения для защиты от попадания внутрь изделия посторонних твердых тел и критерии их оценки даны в табл. 10.5.5.1.3.

10.5.5.2 Защита от воды.

10.5.5.2.1 Методика испытаний и положение об оценке испытаний защитного исполнения оболочек изделий от проникновения воды приведены в табл. 10.5.5.2.1.

10.6 ЭЛЕКТРИЧЕСКИЕ ИСПЫТАНИЯ

10.6.1 Испытание на нагревание.

10.6.1.1 Испытание электрических машин на нагревание должно проводиться в нормальных

климатических условиях при температуре воздуха $25\pm10~^{\circ}\mathrm{C}$ до установившейся температуры.

Испытание на нагревание может совмещаться с испытанием на теплоустойчивость.

10.6.1.2 При испытании изделие должно работать в номинальном режиме.

10.6.1.3 Изделия, предназначенные для работы в кратковременном режиме, должны испытываться с практически холодного состояния. Продолжительность испытания должна быть не менее продолжительности предписанного режима работы изделия.

Остальные изделия могут испытываться как с практически холодного, так и с нагретого состояния. Продолжительность испытания — до практически установившейся температуры.

10.6.1.4 Испытания изделий, рассчитанных на питание трехфазным током (например, коммута-Таблица 10.5.5.2.1

Степень защиты (вторая цифра IP)	Методика испытаний и критерии оценки
1	Защита от вертикально падающих капель воды. Изделие в нормальном рабочем положении подвергается воздействию капель, отвесно падающих из емкости с водой через отверстия в днище, расположенные на пересечении воображаемой сетки со стороной ячейки 22 мм, площадью большей, чем площадь испытываемого изделия. Интенсивность дождя — 3 мм/мин. Длительность испытаний — не менее 10 мин. Результаты испытаний считаются удовлетворительными, если капли воды, проникающие в изделие, не нарушают его нормальной работы, и вода не скапливается в отдельных местах и вблизи вводов кабелей.
3	Защита от капель воды. Испытания проводятся аналогично степени защиты 1, с отклонениями изделия от вертикального положения на 15° поочередно во все желаемые стороны. Оценка результатов испытаний аналогична указанной для степени защиты 1.
3	Защита от капель дождя. Изделие в нормальном рабочем положении обливается тонкими струями воды из отверстий в трубке, изогнутой в виде полуокружности. Трубка отклоняется от вертикального над изделием положения в течение 1 с на угол $\pm 60^\circ$. Давление воды в трубке около 1×10^5 Па. Продолжительность испытаний — не менее 10 мин. Через 5 мин испытаний изделие поворачивается на 90° вокруг своей
4	вертикальной оси в любую сторону. Оценка результатов аналогична указанной для степени защиты 1. То же, что при степени защиты 3, но с обрызгиванием изделия со всех сторон (т.е. трубка должна качаться, отклоняясь от вертикали до 180°). Оценка результатов аналогична указанной для степени защиты 1.
5	Защита от водяных струй. Изделие с расстояния 3 м обливается со всех сторон водой из ствола с внутренним диаметром насадки 13 мм под давлением в магистрали около 1×10^5 Па. Продолжительность испытания — 10 мин. Оценка результатов аналогична указанной для степени защиты 1.
6	Защита от условий, существующих на палубе судна. То же, что и 5, но с расстояния 1,5 м. Результаты считаются удовлетворительными, если при воздействии морской воды вода не проникает в корпус изделия.
7	Защита от погружения в воду. Изделие полностью погружается в воду так, чтобы слой воды над изделием был равен 1 м. электрические машины погружаются так, чтобы столб воды до верхней части был не менее 0,15 м. Продолжительность испытания — 30 мин.
8	Вода не должна проникать в корпус при определенных давлении и времени. Изделие помещается в емкость с водой, в которой создается гидростатическое давление, в 1,5 раза большее соответствующей предельной глубины погружения изделия, указанной в технической документации на него. Выдержка в этом положении 15 мин, после чего давление снижается до нормального. Затем давление повышается до значения, соответствующего предельной глубине погружения, и выдерживается в течение 24 ч. В течение испытания и после него изделие должно нормально функционировать и сохранять свои параметры и сопротивление изоляции в заданных пределах. Вода не должна проникать внутрь изделия.

Примечания: 1. Электрические машины со степенями защиты 1, 2, 3, 7 испытываются в нерабочем состоянии.

Испытания машин со степенью защиты 4, 5, 6 должны проводиться в рабочем и нерабочем состояниях. Длительность каждого испытания — не менее 10 мин.

2. После испытаний оболочек изделий против проникновения воды электрические машины сразу подвергаются испытаниям на электрическую прочность изоляции.

Если испытания проводятся на невращающихся машинах, они перед испытанием электрической прочности изоляции должны поработать в режиме холостого хода в течение 15 мин. Испытательное напряжение при этом должно составлять 50 % испытательного напряжения, но не менее 125 % номинального напряжения.

Электрическое оборудование, которое по своей конструкции и примененной изоляции предназначено для работы под водой, считается по защите равноценной степени защиты 8.

ционных аппаратов, полюса которых при этом соединяют последовательно), допускается проводить однофазным током при токах до 400 A.

10.6.1.5 Изделие должно испытываться в эксплуатационном положении.

10.6.1.6 Открывающиеся конструкции оболочек (двери, люки, съемные кожухи и т. п.), а также отверстия для ввода кабелей при испытании должны находиться в нормальном эксплуатационном состоянии.

10.6.1.7 Части, подлежащие контролю при нагревании, должны быть указаны в программе и методике испытаний изделия.

10.6.2 Испытание на перегрузку.

10.6.2.1 Генераторы после нагревания до установившейся температуры, соответствующей номинальной нагрузке, должны выдерживать перегрузки по току, указанные в табл. 10.6.2.1.

Таблица 10.6.2.1

Генератор	Перегрузки по току, $\%/I_{\text{HOM}}$	Продолжительность перегрузки, с
Переменного тока	50	120
Постоянного тока	50	15

10.6.2.2 Электродвигатели должны выдерживать перегрузки по вращающему моменту, указанные в табл. 10.6.2.2, без остановки или без внезапного изменения частоты вращения.

10.6.2.3 Испытание должно проводиться при наибольших значениях температуры частей изделия, достигнутых при испытании на нагревание, и при той же температуре охлаждающей среды.

10.6.2.4 Изделие считается выдержавшим испытание, если при осмотре после него не обнаружено деформаций, повреждений, заметного изменения цвета изоляции, а параметры изделий остались в заданных пределах.

10.6.3 Испытания по проверке уровня создаваемых радиопомех.

10.6.3.1 Проверка уровня напряжения и напряженности поля радиопомех, создаваемых оборудованием, осуществляется с помощью приборов с квазипиковым детектором по CISPR 16-1 и 16-2, ГОСТ Р 51319-99 в соответствии с методикой, изложенной в 3.4

приложения к разд. 12. Полоса пропускания измерителя радиопомех должна составлять 200 Γ ц в диапазоне частот 0,01 — 0,15 М Γ ц, 9 к Γ ц в диапазоне частот 0,15 — 30 М Γ ц и 120 к Γ ц в диапазоне 30 — 2000 М Γ ц за исключением диапазона 156 — 165 М Γ ц, где полоса пропускания должна составлять 9 к Γ ц.

10.6.3.2 Для оборудования, размещаемого на открытой палубе и ходовом мостике, устанавливаются следующие допустимые уровни создаваемых электромагнитных помех.

Электромагнитное поле на расстоянии 3 м в диапазонах частот:

$$30 - 2000 \, \text{МГц} - 54 \, \text{дБ мкВ/м},$$

за исключением диапазона 156 — 165 Мгц, где устанавливается 24 дБ мкВ/м.

Напряжение помех в цепях питания и вводавывода, измеренное с помощью эквивалента сети по CISPR 16 в диапазонах частот:

$$10 - 150$$
 кГц $- 96 - 50$ дБ мкВ/м;

$$150 - 350$$
 кГц $- 60 - 50$ дБ мкВ/м;

10.6.3.3 Для оборудования, размещаемого в машинных и других закрытых помещениях судна, устанавливаются следующие допускаемые уровни создаваемых электромагнитных помех:

электромагнитное поле на расстоянии 3 м в диапазонах частот:

150 к
$$\Gamma$$
ц — 30 М Γ ц — 80 — 50 д $Б$ мк B /м;

30 М
$$\Gamma$$
ц — 100 М Γ ц — 60 — 54 д $Б$ мк B /м;

за исключением диапазона 156 — 165 Мгц, где устанавливается 24 дБ мкB/м.

Напряжение помех в цепях питания и вводавывода, измеренное с помощью эквивалента сети по CISPR 16-2 в диапазонах частот:

$$10 - 150$$
 кГц $- 120 - 69$ дБ мкВ/м;

500 к
$$\Gamma$$
ц — 30 М Γ ц — 73 д B мк B /м.

10.6.4 Испытания на устойчивость к электромагнитным помехам (ЭМС).

10.6.4.1 Проверка устойчивости оборудования к электромагнитным помехам осуществляется в

Таблица 10.6.2.2

Электродвигатели	Превышение по вращающему моменту, %	Продолжи- тельность перегрузки, с	Примечания
Многофазные синхронные, а также короткозамкнутые с пусковым током меньше 4,5-кратного номинального тока	50	15	Частота, напряжение и возбуждение должны удерживаться на уровне номинальных значений
Многофазные асинхронные с короткозамкнутым и фазным ротором для непрерывной и повторнократ- ковременной работы	60	15	Частота и напряжение должны удерживаться на уровне номинальных значений
То же, но для кратковременной работы и для непрерывной работы с переменной нагрузкой	100	15	То же
Постоянного тока	50	15	Напряжение должно удерживаться на уровне номинального значения

соответствии с методикой, изложенной в 3.4 приложения к разд. 12.

10.7 ЭЛЕКТРИЧЕСКИЕ ИСПЫТАНИЯ ОТДЕЛЬНЫХ ВИДОВ ОБОРУДОВАНИЯ

10.7.1 Испытания электрических машин.

- **10.7.1.1** Объем испытаний и проверок электрических машин приведен в табл. 10.7.1.1.
- **10.7.1.2** При осмотре и проверках, кроме указанного в 10.4.1, должны быть проверены:
- .1 величина и симметрия воздушного зазора между статором и ротором (между полюсами и якорем);
- **.2** осевая симметрия статора и ротора (полюсов и якоря);
- .3 равномерность расстановки по окружности полюсов и шеток:
 - .4 усилие нажатия на щетки;
- .5 биение коллектора, контактных колец, конца вала, осевой разбег ротора (якоря) (биение коллектора целесообразно также проверять после испытания при повышенной частоте вращения);
- .6 результаты испытания водяного воздухоохладителя, а также систем непосредственного

водяного охлаждения машины на непроницаемость и прочность;

- .7 результаты измерения сопротивления изоляции стояка подшипника от фундамента;
- .8 результаты измерения омического сопротивления обмоток.
- 10.7.1.3 При невозможности проведения испытания на влагоустойчивость крупногабаритных машин в собранном виде такие машины допускается испытывать в разобранном виде (например, отдельно испытывать якоря, роторы, части разборных статоров). В таких случаях полученные при измерениях после испытания значения сопротивления изоляции должны быть приведены (пересчитаны) к полной машине.
- 10.7.1.4 При испытании генераторов переменного тока на кратковременную перегрузку по току рекомендуется одновременно проверить достаточность резерва их возбуждения. Проверка производится при коэффициенте мощности нагрузки 0,6 (соs ф).

Резерв возбуждения считается достаточным, если в течение 2 мин испытания током 150 % от номинального при указанном коэффициенте мощности напряжение генератора не снижается более чем на 10 %.

10.7.1.5 При испытании генераторов переменного тока вместе с их системами регулирования напряжения проверяется:

Таблица 10.7.1.1

Электрические машины	Технический осмотр и проверки	Измерение сопротивления изоляции	Испытания электрической прочности изоляции	Испытания на соответствие условиям эксплуатации	Испытание на нагревание	Испытание на кратковремен- ную перегрузку по току	Испытание на кратковременную перегрузку по вращающему моменту	Проверка коммутации коллекторной машины	Испытание на стоянку под током	Испытание при повышенной частоте вращения	Испытание на электрическую и термическую прочность при токе короткого замыкания	Испытание на допустимые уровни напряжений индустриальных радиопомех	Проверка работоспособности при сбросе и набросе нагрузки	Проверка работоспособности при изменении нагрузки от холостого хода до номинальной	Прочие испытания и проверки
Генераторы переменного тока синхронные	+	+	+	+	+	+	_		1	+	+	+	+	+	См. 10.7.1.10
Генераторы постоянного	+	+	+	+	+	+	_	+	_	+	+	+	_	_	10.7.11.10
тока ¹ Двигатели переменного тока	+	+	+	+	+	+	+		+2	+		+		_	
		'						_					_		
асинхронные		'			'	'						'			
асинхронные Двигатели постоянного тока	+	+	+	+	+	+	+	+	+2	+		+	_	_	
1 *	+ +						·	+ (+)			_ (+)			_	
Двигатели постоянного тока		+	+	+	+	+	·			+	_ (+) _	+		_ _ _	
Двигатели постоянного тока Преобразователи	+	+ +	+	+ +	++	+ +	·	(+)		++	_ (+) _	+ +			
Двигатели постоянного тока Преобразователи Электромашинные усили-	+	+ +	+	+ +	++	+ +	·	(+)		++	(+) (+)	+ +			

Условные обозначения:

^{+ —} испытание (проверка) проводится;

^{(+) —} необходимость проведения испытания (проверки) определяется в зависимости от конкретной машины;

^{— —} испытание (проверка) не проводится.

¹ Возбудители синхронных машин могут испытываться совместно с этими машинами.

² Испытанию на стоянку под током должны подвергаться только гребные двигатели, двигатели, предназначенные для непосредственного привода рулевого устройства, а также двигатели для привода якорных и швартовных механизмов.

- .1 изменение напряжения при изменении нагрузки от холостого хода до номинальной при номинальном коэффициенте мощности. При этом напряжение не должно изменяться более чем на 2,5 % от номинального для основных и на 3,5 % для аварийных генераторов;
- .2 изменение напряжения при внезапном изменении симметричной нагрузки генератора, работающего при номинальной частоте вращения и номинальном напряжении при имеющихся токе и коэффициенте мощности. При этом снижение напряжения должно быть не менее 85 %, а повышение более 120 % от номинального. После этого изменения нагрузки напряжение генератора должно в течение не более 1,5 с восстанавливаться в пределах +3 % от номинального напряжения. Для аварийных генераторов эти значения могут быть увеличены по времени до 5 с и по напряжению до +4 %.

При отсутствии точных данных о максимальной внезапной нагрузке, включаемой при имеющейся нагрузке генератора, можно применять нагрузку величиной 60 % номинального тока с индуктивным коэффициентом мощности 0,4 и менее, включаемой на холостом ходу и потом выключаемой;

- .3 способность выдерживать трехкратный номинальный ток генератора при коротком замыкании в течение времени до 2 с.
- 10.7.1.6 Испытание электродвигателей на кратковременную перегрузку по вращающему моменту должно проводиться в соответствии с 10.5.2 части XI «Электрическое оборудование» Правил классификации и постройки морских судов.

Для двигателей постоянного тока вращающий момент может быть выражен через ток перегрузки.

Испытания гребных электродвигателей пропульсивных установок на кратковременную перегрузку по вращающему моменту, указанному в спецификации на ГЭУ, могут быть заменены испытаниями на соответствующую перегрузку по току. В дополнение к указанным испытаниям должны быть представлены расчеты механической прочности компонентов гребного двигателя (выходного вала, узлов крепления полюсов и т. п.) при расчетной перегрузке по вращающему моменту.

- **10.7.1.7** При проверке коммутации коллекторных машин должно учитываться следующее:
- .1 проверка должна проводиться как на номинальном режиме, так и при кратковременной перегрузке по току;
- .2 проверка при номинальной нагрузке должна проводиться по истечении времени, необходимого для достижения машиной практически установившейся температуры;
- .3 проверку коммутации при номинальной нагрузке целесообразно совмещать с испытанием на нагревание; проверку при перегрузке с

испытанием на кратковременную перегрузку по току;

.4 степень искрения машины при номинальном режиме работы должна быть не выше 1,5, если в исключительных обоснованных случаях иное не указано в технической документации на машину.

Степень искрения при перегрузке во всех случаях должна быть указана в технической документации на машину;

- .5 степень искрения на коллекторах машин оценивается по наиболее искрящим щеткам. Таблица оценки степени искрения приведена в приложении 7.
- **10.7.1.8** Испытание на стоянку под током должно проводиться при выполнении следующих условий:
- .1 режим работы двигателя номинальный.
 Температура нагревания его наибольшая,
 достигаемая при работе в этом режиме;
- .2 испытываемый двигатель должен затормаживаться механическим путем, отсчет времени стоянки под током должен начинаться с момента остановки ротора (якоря);
- .3 длительность стоянки под током двигателей рулевых машин для рулей с непосредственным приводом 60 с, длительности и режимы стоянки под током двигателей якорных и швартовных механизмов должны соответствовать положениям 5.6.2 части XI «Электрическое оборудование» Правил классификации и постройки морских судов;
- .4 после испытания машины должны тщательно осматриваться на отсутствие повреждений, деформаций, заметного изменения цвета изоляции.
- 10.7.1.9 Испытание при повышенной частоте вращения должно проводиться после испытания на кратковременную перегрузку по току, а для машин, испытываемых на стоянку под током, после этого испытания при температуре частей машин, близкой к установившейся температуре, достигаемой в конце испытаний на нагревание при выполнении следующих условий:
- продолжительность испытания всех машин, за исключением стартеров, — 2 мин (стартеров — 20 с);
- .2 двигатели с последовательным возбуждением должны испытываться при частоте вращения, на 20 % превышающей наибольшую указанную на их паспортной табличке, но не менее чем на 50 % превышающей номинальную (стартеры во всех случаях при 120 % частоты вращения холостого хода);
- .3 машины с регулируемой частотой вращения, а также с несколькими номинальными частотами вращения должны испытываться при частоте вращения, на 20 % превышающей наибольшую указанную на их паспортной табличке; все остальные при частоте вращения, на 20 % превышающей номинальную;
- **.4** машины могут испытываться как в режиме генератора, так и в режиме двигателя, предпочтительно в режиме, соответствующем назначению;

- .5 отсчет времени испытания должен начинаться с момента достижения машиной испытательной частоты вращения;
- **.6** после испытания машина должна быть тщательно осмотрена на отсутствие повреждений и деформаций.
- **10.7.1.10** Испытание на стойкость к ударному току короткого замыкания должно проводиться при выполнении следующих условий:
- .1 режим короткого замыкания должен создаваться внезапным одновременным замыканием всех трех фаз (полюсов) при работе машины на холостом ходу при напряжении 105 % номинального и включенном устройстве автоматического регулирования напряжения;
- .2 мощность двигателя при испытании должна быть не меньше эксплуатационной;
- .3 длина проводников от машины до замыкающего устройства должна быть наименьшей, площадь сечения — наибольшей из предусмотренных технической документацией на генератор, материал проводников — медь;
- **.**4 параметры режима короткого замыкания должны осциллографироваться;
- .5 оценка результата испытания (оценка механической прочности машины) должна производиться путем тщательного ее осмотра, в особенности состояния и крепления лобовых частей обмотки статора, сварных швов и других механических соединений, а также по результатам испытания электрической прочности изоляции, проведенного после испытания на стойкость к току короткого замыкания.

Оценка результата испытания машин мощностью более 1000 кВА производится, кроме того, и по

- показаниям, полученным от тензометрирования напряжений в элементах крепления активной стали и изоляции лобовых частей, а также в результате измерения вибраций (вибродатчиками) тех же частей, а также корпуса машины и подшипников.
- **10.7.1.11** В число прочих испытаний и проверок, в зависимости от конкретной машины, могут входить:
- .1 проверка действия блокировок, защиты, сигнализации (например, защиты от превышения частоты вращения);
- **.2** проверка резерва возбуждения генераторов переменного тока (см. 10.7.1.4);
- .3 проверка пределов изменения уставки напряжения синхронных генераторов со статической системой возбуждения;
- .4 испытание действия электрического подогрева машины;
- .5 измерение электрического напряжения между концами вала, а также между изолированным от фундамента стояком подшипника и фундаментом (оба измерения производятся при работе машины с номинальным напряжением и частотой в одном и том же режиме вольтметром с малым внутренним сопротивлением). При измерении напряжения между стояком и фундаментом масляные пленки между шейками вала и обоими подшипниками должны быть шунтированы.

Перечисленные в настоящем пункте испытания (проверки) могут проводиться в любой последовательности на любом этапе испытаний.

10.7.2 Испытания трансформаторов.

10.7.2.1 Объем испытаний и проверок трансформаторов приведен в табл. 10.7.2.1.

Таблица 10.7.2.1

№ п/п	Трансформаторы	Осмотр и проверка	Измерение сопротивления изоляции	Испытание изоляции	Испытание электрической прочности воздушных промежутков (см. примечание 2)	Испытания на соответствие условиям эксплуатации	Проверка величины измерения вторичного напряжения	Испытание на нагревание	Испытание на перегрузку	Испытание на электродина- мическую и термическую прочность при токе корот- кого замыкания	Испытание бака на плотность и прочность при повышенном внутреннем давлении	Испытание пробы негорючего жидкого диэлектрика
1	Силовые: мощностью 6,3 кВА и	+	+	+	+	+	+	+	+	+	+	+
	более 3-фазные и 4 кВА и более однофазные											
	мощностью менее 6,3 кВА 3-фазные и	+	+	+	_	+	+	+	+	+	_	_
	4 кВА и менее одно- фазные											
2	Измерительные:											
	тока	+	+	+	+	+	_	+	—	+	_	_
	напряжения	+	+	+	+	+	_	+		_	_	_

Примечания: 1. Условные обозначения — см. табл. 10.7.1.1.

2. Испытание электрической прочности воздушных промежутков проводится для трансформаторов на напряжение 1 кВ и выше.

10.7.2.2 Для проверки изменения вторичного напряжения в процентах (ΔU , %) сравниваются замеры напряжений на выводах вторичной обмотки на холостом ходу U_0 и при активной номинальной нагрузке $U_{\rm H}$. Проверка совмещается с испытанием на нагревание. Проверяемая величина определяется по формуле

$$\Delta U = \frac{U_0 - U_{\rm H}}{U_{\rm H}} 100. \tag{10.7.2.2}$$

Для трансформаторов мощностью менее 6,3 кВА ΔU должно быть меньше или равно 5 %; для трансформаторов мощностью 6,3 кВА и более — меньше или равно 2,5 %.

- **10.7.2.3** При испытании на нагревание должно быть учтено следующее:
- .1 испытание следует проводить методом непосредственной нагрузки трансформатора при номинальных напряжениях на выводах и токах в обмотках:
- .2 при испытании трансформаторов с негорючим жидким диэлектриком определяется также и превышение температуры верхних слоев последнего над температурой охлаждающей среды.
- **10.7.2.4** Испытание на электродинамическую и термическую прочность при токе короткого замыкания проводится при внешнем коротком замыкании на соответствие максимальным значениям, установленным в технической документации на трансформатор.

Для трехфазных трансформаторов мощностью 6,3 кВА и более и однофазных мощностью более 4 кВА испытание должно проводиться при следующих условиях:

- .1 испытательная установка должна обеспечить требуемое значение ударного тока короткого замыкания через трансформатор с точностью $\pm 5~\%$ расчетного, при этом длительность режима короткого замыкания должна быть не менее $0.5~\mathrm{c}$;
- .2 испытательная установка должна обеспечить протекание установившегося тока короткого замыкания через трансформатор с точностью $\pm\,10\,\%$ расчетного значения и длительностью режима короткого замыкания, соответствующей времени термической прочности трансформатора (не менее 3 с);
- .3 напряжение (частоты 50 Гц) должно обеспечивать вышеуказанные режимы;
- .4 до начала данного испытания должен быть проведен тщательный осмотр трансформатора для сравнения его состояния до и после испытания. Кроме того, до начала этих испытаний должны быть проведены опыты холостого хода и короткого замыкания трансформатора. Данные измерения сопротивления изоляции и испытания электрической прочности изоляции, необходимые также для последующего сравнения, могут быть использованы от предыдущих испытаний;

- .5 испытание может проводиться как созданием короткого замыкания специальным аппаратом непосредственно у выводов (клемм) вторичной обмотки предварительно включенного в сеть трансформатора, так и включением в сеть трансформатора с предварительно замкнутой вторичной обмоткой;
- .6 испытание должно быть проведено для каждой вторичной обмотки, а если обмотки с ответвлениями, то как при полностью включенных витках, так и при их минимальном количестве.

Результаты наладочных коротких замыканий в счет испытательных не принимаются;

- .7 испытание должно проводиться на нагретом трансформаторе при температуре, близкой к максимальной, достигаемой при испытании на нагревание;
- .8 при испытаниях должны осциллографироваться на входе напряжение и ток, в короткозамкнутой обмотке ток.

Рекомендуется измерять усилия в опорных конструкциях;

- .9 после испытаний должны быть проведены контрольные опыты холостого хода и короткого замыкания, измерено сопротивление изоляции и произведен тщательный осмотр трансформатора. Если все проверки дадут положительные результаты, должны быть проведены испытания электрической прочности изоляции (напряжением, равным 0,8 полного испытательного) и междувитковой изоляции, после чего при необходимости должна быть произведена разборка трансформатора;
- .10 трансформатор считается выдержавшим испытание, если при осмотре не обнаружено деформаций, сползания витков, существенного изменения цвета изоляции, а сравнительные опыты и измерения дали удовлетворительные результаты. Незначительные остаточные смещения обмоток в осевом направлении и незначительные остаточные деформации балок ярма, если они не превышают допустимых в стандартах пределов, при оценке результатов испытаний могут не приниматься во внимание.

Испытание на электродинамическую и термическую прочность при токе короткого замыкания прочих трансформаторов должно проводиться в соответствии со стандартами или, при их отсутствии, в соответствии с другой одобренной технической документацией на трансформаторы.

10.7.2.5 Баки трансформаторов с негорючим жидким диэлектриком должны испытываться на плотность и прочность при избыточном давлении. Способ испытания, избыточное давление и критерии оценки результатов должны быть указаны в технической документации на такие трансформаторы. Кроме того, должны быть представлены протоколы испытаний жидкого диэлектрика, взятого из бака такого

трансформатора, по определению пробивного напряжения и тангенса угла диэлектрических потерь на соответствие технической документации.

10.7.3 Испытания статических преобразователей и источников бесперебойного питания (ИБП).

- 10.7.3.1 Объем испытаний и проверок статических преобразователей приведен в табл. 10.7.3.1.
- **10.7.3.2** При испытании изоляции должна быть проверена также электрическая прочность межвитковой изоляции трансформатора преобразователя (или проверен документ о том, что трансформатор выдержал такое испытание).
- 10.7.3.3 При испытании на перегрузку по окончании режима при максимальной температуре, достигнутой преобразователем при перегрузке, должна быть проверена работа защиты от перегрузки, если такая защита предусмотрена. Ток и время срабатывания защиты, а также другие необходимые параметры должны контролироваться на соответствие технической документации.
- **10.7.3.4** Испытание на электродинамическую и термическую прочность при токе короткого замыкания должно проводиться с выполнением следующих условий:
- **.1** опыт короткого замыкания должен быть проведен при наибольшем токе короткого замыкания, выдерживаемом преобразователем;
- .2 опыт при наибольшем допустимом токе короткого замыкания должен проводиться в практически холодном состоянии преобразователя при нормальных климатических условиях испытаний и при максимальном длительно допустимом значении напряжения на входе преобразователя, включенного на номинальную нагрузку, путем создания короткого замыкания вблизи клемм выхода;
- 3 может быть проведен опыт при наименьшем токе короткого замыкания и наибольшей допустимой длительности его протекания. Этот опыт должен

проводиться в нагретом состоянии преобразователя. Температура преобразователя и внешней среды к началу опыта должны быть такими же, как при испытании на теплоустойчивость (нагревание), то есть этот опыт следует проводить сразу по окончании испытания в камере тепла;

.4 процессы короткого замыкания должны осциллографироваться.

10.7.3.5 Проверка работы преобразователя при набросах и сбросах нагрузки осуществляется при номинальных параметрах на входе преобразователя путем внезапного включения и отключения нагрузки по схеме: 0 — 50 % — 0, 0 — 100 % — 0, 0 — допустимая нагрузка — 0. Процессы должны осциллографироваться.

10.7.3.6 Испытания на стойкость к коммутационным перенапряжениям проводятся включением и отключением от источника питания ненагруженного, а затем заранее нагруженного наибольшей допустимой нагрузкой преобразователя. Осциллограмма должна доказать, что пиковое напряжение на вентилях при этом не превышает их номинального обратного напряжения.

10.7.3.7 К прочим относятся проверки действия аппаратуры управления, работы сигнализации, вентиляции, работы фильтра, емкости батарей а также другие, указанные в одобренной технической документации в зависимости от вида преобразователя. Этапы и последовательность их проведения не регламентируются.

10.7.4 Испытания аккумуляторов и аккумуляторных батарей.

10.7.4.1 Испытаниям должны подвергаться аккумуляторные батареи каждого типа.

Аккумуляторы подвергаются испытаниям, если они предназначены для самостоятельной поставки (не в батареях).

10.7.4.2 В объем испытаний и проверок аккумуляторов и батарей должны входить:

Таблица 10.7.3.1

Статические преобразователи	Осмотр и проверки	Измерение сопротивления изоляции	Испытание изоляции	Испытания на соответствие условиям эксплуатации	Испытание на нагревание	Испытание на перегрузку	Испытание на электро- динамическую и термическую прочность при токе короткого замыкания	Проверка работы при набросах и сбросах нагрузки	Испытание на стойкость к коммутационным перенапряжениям	Прочие проверки	Испытание на допустимые уровни напряжения радиопомех	Испытания на устойчивость к электромагнитным помехам
Выпрямители	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	+	(+) (+)	+ +	+ +
Инверторы Преобразователи	+	+	+	+	+	+	+	+	+	(+)	+	+
частоты ИБП	+	+	+	+	+	+	+	+	+	(+)	+	+

Примечания: 1. Условные обозначения — см. табл. 10.7.1.1.

^{2.} Объем испытаний других видов статических преобразователей определяется в каждом конкретном случае.

- .1 осмотр и проверки, в том числе уровня и плотности электролита;
- .2 измерение сопротивления изоляции (у батарей);
- .3 испытание электрической прочности изоляции (у батарей);
- .4 испытания на соответствие условиям эксплуатании:
- .5 испытание на термостойкость мастики кислотных аккумуляторов;
- .6 проверка герметичности моноблоков кислотных аккумуляторов;
 - .7 проверка на саморазряд.
- 10.7.4.3 К началу испытаний батареи (аккумуляторы) должны пройти необходимое число циклов заряда-разряда, чтобы их емкость достигала гарантируемых технической документацией значений, и представлены результаты проверки их номинальной емкости.
- 10.7.4.4 Испытания вибрационными и ударными нагрузками должны проводиться следующим образом:
- .1 подготовленные в соответствии с 10.7.4.3 полностью заряженные батареи (аккумуляторы) должны подвергаться вибрационным и ударным воздействиям в трех взаимно перпендикулярных направлениях; при этом могут быть применены любые пробки, не допускающие вытекания электролита;
- .2 при испытаниях на вибрационную и ударную устойчивость батареи должны подключаться к контрольной цепи. Ток и напряжение при этом должны быть стабильными.
- 10.7.4.5 По окончании всех испытаний вибрационными и ударными воздействиями батареи должны быть поставлены на разряд для проверки номинальной емкости, которая должна быть не менее указанной в технической документации (за вычетом израсходованной энергии в контрольной цепи).
- 10.7.4.6 При испытании на теплоустойчивость батарея должна быть заряжена и разряжена при температуре, указанной в табл. 10.5.4.1.3. Режимы заряда и разряда могут быть нормальными или ускоренными, что решается в каждом конкретном случае, однако полученные значения напряжения, тока, емкости, должны соответствовать указанным в технической документации на батарею.

Аналогично проводится испытание на холодоустойчивость.

Стартерные батареи должны разряжаться в стартерном режиме.

10.7.4.7 Испытаниям на устойчивость к качке и длительным наклонам батареи должны подвергаться только с целью проверки невытекания электролита. Проверять при этом функционирование батарей не требуется.

Батареи с максимально допустимым уровнем электролита должны подвергаться воздействию качки, как указано в 10.5.3.7, и затем наклону на 40° от вертикали поочередно в две стороны, лежащие в двух взаимно перпендикулярных плоскостях, по 10 мин в каждую. При качке и наклонах на поверхности аккумуляторов не должно появляться следов электролита (пробки могут быть закрыты, но без герметизирующих деталей).

- 10.7.4.8 Испытание на термостойкость мастики кислотных батарей может проводиться на образцах, не подвергаемых другим видам испытаний. Батареи испытываются без электролита сначала в течение 6 ч при температуре +60 °C с наклоном на 45° от нормального положения и затем после охлаждения до нормальной температуры испытаний в течение 6 ч при температуре -40 °C в нормальном положении. После нагревания мастика не должна иметь потеков, после охлаждения — разрывов, трещин, отставания от крышек моноблока.
- 10.7.4.9 Проверка герметичности моноблока кислотной батареи должна проводиться по окончании всех механических и температурных воздействий на батарею при выполнении следующих условий:
- .1 если испытанию термостойкости мастики подвергались не те батареи, которые прошли механические испытания, то проверка герметичности должна проводиться как на батареях, прошедших механические и климатические испытания, так и на батареях, испытывавшихся только на термостойкость;
- .2 герметичность батареи проверяется путем создания в ней повышенного или пониженного давления по сравнению с атмосферным на 133 ± 9 H/м² в течение 4 — 5 с.

Батарея считается выдержавшей проверку, если показание манометра или вакуумметра не меняется.

Положительный результат проверки подтверждает стойкость мастики к механическим и термическим воздействиям;

- .3 герметичность батареи без доливных горловин проверяется путем создания в ней избыточного давления до срабатывания предохранительных клапанов.
- 10.7.4.10 Проверка на саморазряд заключается в проверке остаточной емкости после 28 сут нахождения без нагрузки при температуре 25 ± 5 °C предварительно полностью заряженной батареи, прошедшей испытания на соответствие условиям эксплуатации. Потеря емкости вследствие саморазряда не должна превышать 30 % от номинальной емкости для кислотных и 25 % от номинальной емкости для щелочных аккумуляторов.

10.7.5 Испытания распределительных устройств. 10.7.5.1 Объем испытаний и проверок распре-

делительных устройств приведен в табл. 10.7.5.1.

Таблица 10.7.5.1

Щиты и пульты	Осмотр и проверки	Измерение сопротив- ления изоляции	Испытание электрической прочности изо-	Испытания на соответ- ствие условиям работы оборудования на судне	Испытание на нагревание	Испытание на электро- динамическую и терми- ческую прочность при токе короткого замы- кания	Прочие испытания и проверки	Испытания на допустимые уровни напряжений индустриальных радиопомех	Испытания на устой- чивость к электромаг- нитным помехам
Щиты и пульты управления, контроля и сигнализации гребных электроустановок	+	+	+	+	+	(+)	см. 10.7.5.6	(+)	+
То же, главных механизмов	+	+	+	+	+	_		(+)	+
То же, электрической установки	+	+	+	+	+	_		(')	·
То же, вспомогательных и	+	+	+	+	+	_		(+)	+
палубных механизмов								, ,	
То же, сигнально-отличи-	+	+	+	+	+	см. 10.7.5.6.5		+	+
тельных фонарей									
Главные и аварийные распре-	+	+	+	+	+	+		(+)	+
делительные щиты								())	
Прочие распределительные	+	+	+	+	+	+		(+)	+
щиты и устройства (в том числе коробки и ящики с									
предохранителями)									
Зарядные щиты	+	+	+	+	+	_		(+)	+
Щиты питания от внешнего	+	+	+	+	+	(+)			+
источника						` ′			

Условные обозначения:

- + испытания (проверки) проводятся;
- (+) необходимость проведения испытаний (проверок) определяется в зависимости от конкретного вида изделия;
- — испытания (проверки) не проводятся.
- **10.7.5.2** При осмотре и проверках в дополнение к указанному в 10.4.1 проверяются:
- .1 размещение органов управления и указателей коммутационного состояния аппаратов (включеновыключено);
- .2 размещение измерительных приборов и сигнальных ламп;
 - .3 цвет сигнальных ламп и кнопок управления;
- **.4** надписи и знаки на табличках и их размещение, однолинейные схемы силовых цепей, мнемосхемы;
- **.5** состав, размещение, установка, параметры и характеристики аппаратов, приборов и арматуры;
 - .6 расположение, крепление и окраска шин;
 - .7 прокладка и крепление проводов;
- **.8** состояние обработки поверхностей токоведущих и изоляционных деталей и узлов;
 - .9 изоляционные расстояния;
- .10 наличие и качество заземления неподвижных, выдвижных и установленных на открывающихся конструкциях элементов на корпус щита пульта, а также наличие и качество узлов для заземления каждой секции щита пульта на корпус судна;
- .11 выполнение мероприятий по защите токоведущих частей от попадания жидкости, если

- имеются приборы и аппараты гидравлики или жидкостного охлаждения;
- .12 фиксация открывающихся и выдвижных дверей, щитков, панелей и т. п. в открытом положении.
- **10.7.5.3** В дополнение к положениям 10.6.1 испытание на нагревание должно проводиться при выполнении следующих условий:
- .1 к изделиям с нижним вводом кабели должны подводиться так, как при установке изделия на судне, для учета дополнительного нагрева от кабелей;
- .2 число кабелей должно соответствовать числу силовых цепей изделия, которые в условиях эксплуатации могут работать одновременно;
- .3 площадь сечения кабелей должна соответствовать площади сечения, указанной в схемах подключения;
- .4 ожидаемые при эксплуатации тепловыделения от кабелей допускается имитировать любым другим равноценным способом;
- .5 при испытании должна измеряться температура нагрева токоведущих и изолирующих частей, воздуха внутри оболочки, оболочки изделия и наружного воздуха.
- 10.7.5.4 Испытание распределительных устройств на электродинамическую и термическую

прочность при токе короткого замыкания должно проводиться при выполнении следующих условий:

- .1 щиты трехфазного тока допускается испытывать однофазным током короткого замыкания при условии поочередного пропускания его по каждым двум смежным фазам силовой цепи. В таких случаях максимальное значение ударного тока короткого замыкания уменьшают на 7 % по сравнению с амплитудным значением предельного тока короткого замыкания, указанного в технической документации на щит;
- .2 испытаниям должны подвергаться силовые цепи распределительных устройств. Схема испытаний должна быть одобрена Регистром в составе программы и методики испытаний;
- .3 до начала испытаний на электродинамическую прочность должны быть измерены расстояния между токоведущими частями в ряде сечений, где наиболее вероятны деформации. После каждого включения ударного тока эти расстояния должны проверяться;
- .4 если электродинамическая прочность аппаратов ниже расчетной прочности шин щита, такие аппараты допускается шунтировать или заменять перемычками, места установки которых должны быть указаны на схеме испытаний;
- .5 испытания аппаратов должны проводиться согласно требованиям 10.7.6.3 10.7.6.5.
- 10.7.5.5 Щит считается выдержавшим испытание на стойкость к токам короткого замыкания, если:
- **.1** не произошло деформации или поломки токоведущих частей и их креплений;
- **.2** не произошло выбрасывания ножей разъединителей, разъединения или приваривания контактов;
- .3 температура токоведущих частей не превысила допустимой;
- .4 отсутствуют другие повреждения, препятствующие нормальной работе щита;
- .5 испытанием электрической прочности изоляции, проведенным по окончании испытания на стойкость к токам короткого замыкания, не отмечено ухудшение изоляции щита.
- **10.7.5.6** В число прочих испытаний и проверок в зависимости от конкретного распределительного устройства могут входить:
- .1 опробование аппаратов и их приводов. Опробованию подвергаются аппараты и приводы, сочленяемые при сборке щита, аппараты, состоящие из отдельных частей (например, аппараты рубящего типа), генераторные и секционные выключатели, а также другие аппараты (например, контакторы и реле), если они не попадают в проверку на функционирование;
- .2 проверка действия блокировок. Надежность работы блокировок должна проверяться многократно в процессе проведения испытаний на вибро-, ударо-, тепло- и холодоустойчивость и по окончании их. Электрические блокировки должны проверяться при

предельных допустимых отклонениях напряжения и частоты от номинальных значений;

- .3 испытание конструкции щита на механическую прочность при многократных коммутационных операциях. Такому испытанию подвергаются щиты с аппаратами, включение и отключение которых связано с приложением значительных усилий. Испытание производится многократными коммутационными операциями (не менее 100 циклов) каждым таким аппаратом. После испытания конструкции щита в районах крепления аппаратов и их приводов должны тщательно осматриваться;
- .4 проверка функционирования. Такой проверке подвергаются цепи управления, контроля и сигнализации всех щитов и пультов, где они имеются, при испытаниях на устойчивость к механическим и климатическим воздействиям. Это особенно важно для цепей с релейно-контакторными элементами.

Проверка функционирования распределительных щитов сигнально-отличительных фонарей, кроме того, должна осуществляться при максимально допустимых длительных и кратковременных отклонениях напряжения и частоты от номинальных значений (при испытаниях на вибро-, ударо-, тепло-и холодоустойчивость);

.5 испытание на воздействие тока короткого замыкания щитов сигнально-отличительных фонарей заключается в проверке срабатывания защиты при коротком замыкании в линии, идущей к сигнально-отличительному фонарю, и проверке работоспособности при этом щита. Испытание должно быть проведено поочередно для двух линий. В каждой линии должно быть проведено по два коротких замыкания.

Результаты испытаний на воздействие токов короткого замыкания считаются удовлетворительными, в следующих случаях:

защитой отключена аварийная линия;

сработала сигнализация об отключении этой линии:

остальные линии фонарей остались в работе, что подтверждается работой сигнализации испытывавшейся цепи;

элементы щита остались в рабочем состоянии без замены каких-либо из них, за исключением плавких вставок предохранителей;

испытание электрической прочности изоляции подтвердило ее удовлетворительное состояние;

результат осмотра положителен;

.6 проверка падения напряжения на элементах сигнализации щита сигнально-отличительных фонарей, включенных в цепи этих фонарей, подтверждает, что оно находится в допустимых пределах.

10.7.6 Испытания электрических аппаратов (коммутационных, защиты, управления).

10.7.6.1 Объем испытаний и проверок электрических аппаратов приведен в табл. 10.7.6.1.

Таблипа 10761

											1 4 0	лица I	0.7.0.
Аппараты	Осмотр и проверки	Измерение сопротив- ления изоляции	Испытание электри- ческой прочности	Испытания на соответ- ствие условиям работы оборудования на судне	Испытание на нагре- вание	Проверка величин срабатывания (и возврата)	Испытание на предельную коммутационную способность	Испытание на электро динамическую и терми- ческую прочность при токе короткого замыкания	Проверка работы руч- ного и двигательного привода и указателя коммутационного положения	Проверка схемы на функционирование	Испытания на допустимые уровни индустриальных радиопомех	Испытания на устойчи- вость к электромагнит- ным помехам	Прочие испытания (и проверки)
Автоматические вык-	+	+	+	+	+	+ 1	+	+2	+	+	_	+	_
лючатели													
Выключатели, пере-	+	+	+	+	+	_	+	+2	+	_	_		-
ключатели, разъеди-													
нители						١,	2						_
Предохранители	+	+	+	+	+	+ 1	+ 3		_	_	-		+4
Контакторы, реле	+	+	+	+	+	+	+	+ ⁵ + ⁵	_	_	+8	+	+6
Пускатели и конт-	+	+	+	+	+	+7	+	+ "	+	+	+ "	+	+6
роллеры (в том чис-													
ле командоаппараты), пусковые и пус-													
корегулировочные													
реостаты													
Реостаты возбуж-	+	+	+	+	+	l _	_	_	+9	_	l		_
дения, резисторы в									·				
ящиках													
Электромагнитные	+	+	+	+	+	_	_	_	_	_	l —	+	+ 11
муфты 10													
Электромагнитные	+	+	+	+	+	+	_	_	_	_	-	+	+ 12
тормоза электродви-													
гателей, тормозные													
электромагниты, элек-													
трогидравлические													
толкатели	+	+	+	+	+		+						
Кнопочные и путе-		_				-	_	_	_	_	_		-
лючатели													
Магнитные уси-	+	+	+	+	+	l _	_	(+)	_	+ 13	l	+	(+)
лители, реакторы,					,			(')					(')
дроссели													
Аппараты, блоки,	+	+	+	+	+	_	_	_	_	_	(+)	+	(+)
модули с бескон-													
тактными элемен-													
тами													
Устройства защиты	+	+	+	+	+	+	+	(+)	_	+	(+)	+	(+)
генераторов													

Условные обозначения:

^{+ —} испытание (проверка) проводится;

^{(+) —} необходимость проведения испытания (проверки) определяется в зависимости от конкретного изделия (т. е. от его конструкции, принципа действия, назначения, расположения на судне и др.);

^{— —} испытание (проверка) не проводится.

¹Для автоматических выключателей проверяется работа разъединителей (максимальных, минимальных, обратного тока, независимых и при коротком замыкании в одном полюсе). Проверяются время-токовые характеристики.

²Испытываются электродинамическая и термическая устойчивость к токам короткого замыкания.

Для автоматических выключателей испытание совмещается с испытанием на предельную коммутационную способность.

Универсальные переключатели и другие выключатели, переключатели, предназначенные для работы в цепях управления, сигнализации и измерительных цепях, а также в схемах ДВС со стартерным пуском, испытанию не подлежат.

³Для предохранителей — испытание на отключающую способность (в том числе для контактов вспомогательной цепи).

⁴Испытание максимальным током неплавления и минимальным током плавления предохранителей с плавкими вставками общего назначения, проверка работы указателей срабатывания и бойка, воздействующего на контакты вспомогательной цепи предохранителя или расцепляющее устройство другого аппарата.

⁵Испытываются электродинамическая и термическая устойчивость к токам короткого замыкания цепи контактора и цепи катушки реле тока, т.е. включаемых последовательно в силовые цепи.

Электротепловые реле испытываются только на термическую устойчивость.

Проверка работы механической блокировки реверсивных контакторов, пускателей, контроллеров.

Относится к встраиваемым аппаратам (контакторам, реле).

⁸Относится к контроллерам и пускорегулировочным реостатам, а также к пускателям и пусковым реостатам, если они не отвечают требованиям 2.2 части XI «Электрическое оборудование» Правил классификации и постройки морских судов.

⁹Относится к реостатам.

Продолжение табл. 10.7.6.1

¹⁰Испытания электромагнитных муфт проводятся аналогично испытаниям электрических машин (и в той же последовательности).

¹¹ Проверка балансировки, проверка отношения максимального момента к номинальному, проверка на отсутствие осевых усилий, испытание при повышенной частоте вращения.

¹²Проверка действия устройства ручного растормаживания. Для электромагнитных тормозов со смешанным возбуждением — проверка способности удержания тормоза в расторможенном состоянии при отключенной последовательной обмотке.

¹³Относится к магнитным усилителям.

- **10.7.6.2** Кроме указанного в 10.4.1, осмотр и проверки должны проводиться при выполнении следующих условий:
- .1 для аппаратов, предназначенных для встраивания в электрические распределительные щиты и другие изделия, проверяются крепежные детали, удобство монтажа и демонтажа в условиях эксплуатации;
- .2 у изделий, имеющих в своем составе другие аппараты (у контроллеров, реостатов и др.), проверяется настройка этих аппаратов по заданным параметрам;
- .3 проверяется правильность заземления и усилие нажатия контактов, растворы и провалы контактов.
- **10.7.6.3** Проверка величин срабатывания и возврата аппаратов должна проводиться при выполнении следующих условий:
- .1 необходимо удостовериться, что срабатывание и возврат аппарата при предельных допустимых отклонениях от номинальных значений напряжения, тока, частоты происходят (не происходят, если не должны происходить);
- .2 при проверках электромагнитных аппаратов источник электроэнергии (схема питания) должен обеспечить возможность получения стабильных параметров электроэнергии.

Перемещение якоря электромагнита не должно существенно влиять на установленные напряжение и ток;

- .3 проверки должны проводиться в горячем и холодном состоянии аппарата при достижении его частями теплового равновесия во время испытаний на тепло- и холодоустойчивость. У аппарата с катушками напряжения в горячем состоянии, кроме того, проверяется достаточность усилия, развиваемого электромагнитом, для срабатывания аппарата при минимальных допустимых значениях напряжения и частоты; в холодном механическая прочность аппарата, срабатывающего при максимальном допустимом напряжении на катушке электромагнита;
- .4 должно быть не менее трех измерений параметров при срабатывании; для катушек постоянного тока не менее шести (по три каждой полярности);
- **.**5 оценка измерений должна проводиться по наихудшему результату;
- .6 для аппаратов с катушками напряжения постоянного тока определение напряжения срабатывания $U_{\rm cp}$ может выполняться косвенно посредством измерения тока срабатывания $I_{\rm cp}$ с пересчетом результата по формуле

$$U_{\rm cp} = I_{\rm cp} R_t, \tag{10.7.6.3.6}$$

где R_t — активное сопротивление катушки при температуре испытания, Ом;

- .7 защитные характеристики, если от температуры аппарата зависит выдержка времени, определяются при нагреве током постоянной величины, начиная с холодного состояния аппарата.
- 10.7.6.4 Цель испытания на предельную коммутационную способность удостовериться, что эта способность соответствует указанной в технической документации. Испытание должно проводиться при выполнении следующих условий:
- .1 в зависимости от вида аппарата и требований технической документации на аппарат проверяются все или часть из перечисленных параметров:

наибольшая отключающая способность; наибольшая включающая способность;

способность аппарата выдерживать один или несколько циклов, состоящих из следующих друг за другом операций включения и автоматического отключения максимального тока, определяющего его наибольшую коммутационную способность;

способность аппарата отключать токи меньшие, чем определяющие его наибольшую отключающую способность; проверяется также способность аппарата отключать критические для него токи, если в технической документации на аппарат указана зона таких токов;

- .2 возможности испытательной установки должны соответствовать требованиям технической документации, одобренной Регистром;
- .3 испытываемый аппарат должен устанавливаться и испытываться в нормальном рабочем положении;
- .4 все части аппарата, подлежащие при эксплуатации заземлению, а также все его токоведущие части, не имеющие электрической связи с испытываемой цепью, для выяснения, не происходит ли переброса дуги на них при испытании на отключающую способность (в том числе при отключении критических токов), должны быть электрически соединены между собой и подключены к нейтрали источника энергии или к искусственной нейтральной точке;
- .5 если ионизированная зона, создаваемая дугой, не ограничивается оболочкой аппарата, должны быть проверены границы ионизированной зоны выхлопа аппарата на соответствие границам, указанным в технической документации. Для этого по границам зоны должны быть расположены

стальные решетки или пластины с отверстиями, которые должны быть электрически соединены между собой и подключены, как указано в 10.7.6.4.4 (рекомендуются: толщина пластин — 3 мм, диаметр отверстий — 7 мм, расстояния между центрами отверстий — 10 мм);

- .6 должны быть проверены границы выброса пламени при отключении максимального тока (для этой цели по границам зоны выброса пламени, указанным в технической документации на аппарат, рекомендуется расположить легковоспламеняющийся материал);
- .7 испытания должны проводиться при предельном значении постоянной времени (коэффициента мощности) цепи, а также при значениях, при которых ожидаются более тяжелые условия коммутации (что должно быть оговорено в программе и методике испытаний). В каждой трехфазной цепи коэффициент мощности не должен отличаться от среднего арифметического коэффициента мощности трех фаз более чем на $\pm 15~\%$;
- .8 во избежание облегчения условий испытания аппаратов, у которых собственное время срабатывания существенно зависит от величины уставок расцепителей, такие аппараты следует испытывать отрегулированными на максимальные и минимальные значения собственного времени срабатывания;
- .9 во избежание облегчения условий испытания однополюсных аппаратов, предназначенных для работы в трехфазных цепях (например, предохранителей), такие аппараты должны быть испытаны при одновременном включении во все фазы в соответствии с условиями их применения (так как при испытании в однофазной цепи отключение может происходить при благоприятной фазе тока);
- .10 в процессе испытания должны осциллографироваться токи в полюсах аппарата и напряжение на клеммах ввода;
- .11 испытание наибольшей отключающей способности предохранителей должно проводиться на предохранителях с плавкими вставками на номинальный ток;
- .12 испытание коммутационной способности контроллеров, пусковых и пускорегулировочных реостатов должно проводиться на контроллерах (реостатах), включенных в схему электропривода.

Мощность двигателя, используемого при испытании, и режимы испытаний (пуски, реверсы, перегрузки, коммутация тока заторможенного двигателя и т. д.) являются в каждом случае предметом специального рассмотрения Регистром.

Аппарат считается выдержавшим испытание на коммутационную способность, если за время испытания:

не произошло повреждения, препятствующего нормальной работе аппарата (допускается необхо-

димость мелкого ремонта, например, зачистка или смена контактов);

не произошло разрушения оболочки, порчи изоляции или других дефектов, препятствующих дальнейшей работе аппарата, однако влекущих за собой опасность для обслуживающего персонала;

не наблюдалось переброса дуги между полюсами, на металлическую оболочку и другие заземляемые и токоведущие части;

время горения дуги не превышало установленного технической документацией на аппарат;

не произошло сваривания контактов.

10.7.6.5 Испытание на электродинамическую и/или термическую прочность.

Целью испытания является проверка способности аппарата противостоять механическому и/или тепловому действию предельных токов короткого замыкания, указанных в технической документации на аппарат.

Испытание должно проводиться при выполнении следующих условий:

- .1 напряжение испытательной цепи должно быть достаточным для предотвращения обрыва тока в цепи при отбросе контактов электродинамическими силами;
- .2 если в конструкции аппарата предусмотрена возможность регулирования силы нажатия контактов, то испытания должны проводиться при номинальных рабочих значениях нажатия, установленных в технической документации на аппарат;
- .3 испытание можно начинать при холодном состоянии аппарата. Ударный ток должен включаться не менее трех раз (включения при настройке не засчитываются). Интервалы между подачей ударных токов должны быть такими, чтобы токоведущие части аппарата охлаждались до температуры, соответствующей их длительной работе при полной нагрузке.

Испытание на термическую прочность рекомендуется совмещать с последним включением ударного тока. В противном случае, оно должно быть начато при упомянутой выше рабочей температуре аппарата включением ударного тока;

- .4 средства измерения температуры при испытании на термическую прочность должны обеспечивать получение показаний за время не более 2 с;
- .5 включение и отключение испытательной цепи должно производиться аппаратом испытательной установки. Параметры процесса короткого замыкания должны осциллографироваться.

Аппарат считается выдержавшим испытание, если не произошло:

сваривания контактов;

самопроизвольного отключения;

чрезмерного нагрева частей (сверх указанного в технической документации на аппарат);

переброса дуги между полюсами на соседние электрически независимые токоведущие части, оболочку и другие металлические заземленные части;

появления внешних эффектов, опасных для обслуживающего персонала;

повреждения, препятствующего его дальнейшей нормальной работе.

- **10.7.6.6** Проверка работы двигательного привода автоматического выключателя должна проводиться, как указано в 10.7.6.3. Кроме того, должны быть проверены:
- .1 надежность отключения выключателя любым из расцепителей при возбужденном включающем устройстве;
- .2 невозможность включения выключателя, если операция включения начинается во время действия отключающего устройства;
- .3 отсутствие опасности для персонала и повреждений выключателя при неправильных действиях (приведение в действие включающего устройства при включенном выключателе и отключающего устройства при отключенном выключателе);
- **.4** переход на управление ручным приводом и обратно;
- .5 безопасность для персонала и отсутствие возможности повреждения аппарата при действии ручным приводом и одновременном дистанционном включении (отключении) цепи двигательного привода;
- **.6** действие блокировки от повторных включений выключателя на короткое замыкание (рекомендуется совмещать с испытанием на предельную коммутационную способность аппарата).
- **10.7.6.7** Испытанию максимальным током неплавления и минимальным током плавления должны подвергаться предохранители с плавкими вставками с учетом следующего:
- .1 испытание на максимальный ток неплавления должно проводиться на предохранителях с плавкими вставками, имеющими максимальное электрическое сопротивление, испытание на минимальный ток плавления с вставками, имеющими минимальное сопротивление;
- **.2** температура при испытаниях должна соответствовать указанной в технической документации.

Если в течение времени, указанного в технической документации, предохранитель не отключит цепь при испытании на максимальный ток неплавления и в течение времени, не превышающего указанного в технической документации, отключит при испытании на минимальный ток плавления, то предохранитель испытание выдержал.

10.7.6.8 Время-токовые, ампер-секундные характеристики предохранителей должны проверяться по осциллограммам, полученным при испытании на отключающую способность.

- 10.7.7 Испытания конденсаторов, конденсаторных установок для повышения коэффициента мощности.
- **10.7.7.1** В объем испытаний и проверок конденсаторов и конденсаторных установок входят:
 - .1 осмотр и проверки;
 - .2 измерение сопротивления изоляции;
- .3 испытание электрической прочности изолящии:
- **.4** испытания на соответствие условиям работы оборудования на судне;
 - .5 проверка на герметичность;
 - .6 измерение тангенса угла потерь;
 - .7 испытание на термическую стабильность;
 - .8 испытание на разряд;
- .9 проверка продолжительности работы конденсаторов;
 - .10 проверка действия защиты;
- проверка действия автоматики установки (если имеется).
- 10.7.7.2 При испытаниях конденсаторных установок на соответствие условиям работы на судне вместо испытания на теплоустойчивость проводится испытание на так называемую термическую стабильность при температуре в термокамере, на 5 °С превышающей указанную в табл. 10.5.4.1.3, и напряжении на выводах не менее 120 % номинального с частотой 50 Гц. После прогрева до теплового равновесия конденсаторы выдерживают в течение 48 ч. Результаты испытаний положительны, если в течение последних 10 ч тангенс угла потерь и изменение температуры корпуса находятся в пределах, установленных технической документацией.

Если наблюдаются большие изменения, испытание продолжают до стабилизации или пробоя.

- **10.7.7.3** Испытание защитного исполнения оболочки проводится только на комплектных конденсаторных установках (т. е. испытывается оболочка шкафа, где размещены конденсаторы).
- **10.7.7.4** Проверка на герметичность осуществляется с целью убедиться в отсутствии течи пропитывающего диэлектрика. Конденсаторы выдерживают в термокамере при температуре $105-110\,^{\circ}\mathrm{C}$ до полного подогрева по всему объему в течение $8-16\,^{\circ}\mathrm{U}$ (в зависимости от габаритов), затем охлаждают при температуре $+5-35\,^{\circ}\mathrm{C}$ в течение такого же времени, вновь нагревают и охлаждают таким же образом.
- 10.7.7.5 Испытание на разряд проводят пятью разрядами накоротко после заряда двойным номинальным напряжением постоянного тока. Не позднее чем через 5 мин после этого должно быть проверено испытание электрической прочности изоляции между обкладками.

Конденсаторы считаются выдержавшими испытание, если изменение их емкости, измеренной до

испытания на разряд и после испытания электрической прочности изоляции, не превышает 2 %.

10.7.7.6 Проверка действия защиты конденсаторов должна показать, что при пробое конденсаторного элемента срабатывает его предохранитель и не происходит разрушения конденсатора, подтвердить правильность выбора защиты и устойчивость установки к действиям тока короткого замыкания.

По окончании проверки установка должна быть тщательно осмотрена с проверкой параметров изоляции.

10.7.8 Испытания шинопроводов.

- **10.7.8.1** В объем испытаний и проверок шинопроводов должны входить:
 - .1 осмотр и проверки;
 - .2 измерение сопротивления изоляции;
- .3 испытание электрической прочности изоляции;
- **.4** испытания на соответствия условиям работы на судне;
 - .5 испытание на нагревание;
- **.6** испытание на перегрузку, если перегрузка предусмотрена технической документацией;
- .7 испытание на электродинамическую и термическую прочность при токе короткого замыкания (при больших мощностях может быть заменена расчетом).
- 10.7.8.2 Механическим испытаниям должны подвергаться все элементы шинопровода, отличающиеся от других по конструкции (прямые, угловые, тройниковые и другие секции, ответвительные коробки), собранные в различных сочетаниях в нескольких пролетах.

При значительных расстояниях между опорами допускается испытывать несколько отдельных пролетов шинопровода, установленных и закрепленных к стенду на двух опорах каждый.

- 10.7.8.3 Испытание на нагревание должно проводиться не менее чем в трех соединенных между собой и закрытых с торцов различных элементах шинопровода, наиболее характерных для такого испытания. Испытание на перегрузку должно проводиться на тех же элементах шинопровода.
- 10.7.8.4 Испытание на электродинамическую и термическую прочность при токе короткого замыкания должно проводиться на наиболее характерных для данного исполнения секциях шинопровода и типах ответвительных коробок. В остальном при этом испытании следует руководствоваться положениями 10.7.5.4 10.7.5.5.

10.7.9 Испытания электроизмерительных приборов.

10.7.9.1 Испытания электроизмерительных приборов (вольтметров, амперметров, ваттметров, частотомеров, мегомметров, синхроноскопов, фазоуказателей, фазометров) и их частей, расположенных вне корпуса самого прибора, должны проводиться в следующем объеме:

- .1 осмотр и проверки;
- .2 измерение сопротивления изоляции;
- .3 испытание прочности изоляции;
- **.4** испытания на соответствие условиям работы на судне;
 - .5 испытание на нагревание;
 - .6 испытание на перегрузку;
- .7 проверка основной погрешности (в том числе вариации);
 - .8 проверка дополнительной погрешности;
- **.9** проверка уровня напряжения и напряженности электромагнитного поля радиопомех;
- **.10** испытания на устойчивость к электромагнитным помехам (ЭМС).
- **10.7.9.2** Испытание на соответствие условиям работы на судне проводится с учетом следующего:
- .1 при испытаниях на вибрационную и ударную устойчивость электрическая нагрузка прибора должна быть равна приблизительно 65 70 % номинальной, а половина размаха колебаний указателя и изменение показаний не должны превышать допустимой основной погрешности прибора;
- .2 при испытаниях на устойчивость к качке и длительным наклонам изменение показаний прибора в рабочей части шкалы не должно превышать значения основной погрешности;
- .3 при испытаниях на тепло- и холодоустойчивость должны проверяться изменения показаний прибора вследствие изменения температуры окружающего воздуха в испытательной камере в пределах наиболее высокой и наиболее низкой рабочих температур. Полученные значения не должны превышать допустимых, установленных технической документацией.
- 10.7.9.3 Испытания на нагревание и на устойчивость к перегрузкам (длительным и импульсным), проверки основной погрешности, вариации и дополнительной погрешности (т. е. проверка влияния внешних факторов, определяющих дополнительную погрешность, таких как: изменение наклона прибора, изменение температуры, напряжения, частоты, формы кривой напряжения или тока, внешнего магнитного и электрического поля, влияние расположенного рядом прибора и влияние ферромагнитного щита, на котором устанавливается прибор) производятся по технической документации, согласованной в установленном порядке.

10.7.10 Испытания электроприводов и электрооборудования механизмов и устройств (в комплексе).

10.7.10.1 Комплектующие изделия, предусмотренные Номенклатурой РС и входящие в состав электропривода или электрооборудования механизма (устройства), к началу испытаний в составе таких схем должны пройти испытания после изготовления в соответствующих для них объемах, указанных в настоящем разделе.

10.7.10.2 Объем испытаний и проверок электрооборудования, соединенного по схемам электроприводов, приведен в табл. 10.7.10.2. В табл. 10.7.10.2 не включены электроприводы гребных установок, объем испытаний которых является в каждом случае предметом специального рассмотрения Регистром.

10.7.10.3 Объем испытаний по табл. 10.7.10.2 обязателен как для изготовителей (поставщиков) электроприводов, так и для изготовителей (поставщиков) механизмов, если они комплектуют механизмы электроприводами.

10.7.10.4 Если в стендовых условиях отсутствует возможность проведения отдельных видов испытаний образцов электроприводов, Регистр может допустить проведение этих видов испытаний (проверок) на судне в периоды швартовных и ходовых испытаний (например, испытания электроприводов гребных установок), что должно особо оговариваться разработчиком (изготовителем) электропривода в технической документации на его поставку для учета в программах и методиках швартовных и ходовых испытаний судна.

10.7.10.5 В комплекты электрооборудования лифтов, кроме электроприводов, входят также цепи (с элементами) сигнализации и освещения, в комплекты электрооборудования водонепроницаемых дверей — цепи сигнализации, в комплекты электрооборудования холодильных установок, кроме

электроприводов, могут входить измерительные цепи и цепи сигнализации. Поэтому при комплексных испытаниях такого электрооборудования должно быть проверено действие всех остальных цепей и элементов во всех возможных и требуемых правилами вариантах их работы.

10.7.10.6 Осмотр и проверки электроприводов проводятся, главным образом, для установления соответствия электрооборудования и схем его подключения технической документации.

10.7.10.7 Сопротивление изоляции цепей должно измеряться в практически холодном и нагретом (после испытания на нагрузках) состояниях.

10.7.10.8 Проверка действия контура гашения энергии поля проводится в схемах электроприводов постоянного тока (с двигателями параллельного и смешенного возбуждения) как с коммутируемым разрядным контуром параллельной обмотки, так и с постоянно замкнутым. В первом случае проверяется своевременность замыкания контура и эффект гашения — напряжение при этом на выводах обмотки, во втором — только эффект гашения.

10.7.10.9 Если в условиях стенда конструктивно невозможно расположить путевые выключатели так, как при эксплуатации, то, по крайней мере, они должны быть подключены к соответствующим цепям для проверки работы схемы.

10.7.10.10 Проверка работы привода на функционирование без нагрузки состоит из неоднократных

Таблица 10.7.10.2

№ п\п	Аппараты	Осмотр и проверки	Измерение сопротивления изоляции	Проверка действия блокировки с ручным приводом	Проверка действия контура гашения энергии поля	Проверка действия электромагнитного тормоза	Проверка действия защиты от минимального напряжения	Проверка автозапуска после восстановления напряжения	Проверка действия путевых выключателей	Прочие проверки работы схемы	Проверка работы при- вода без нагрузки	Испытание работы привода под нагрузкой	Испытание на стоянку под током	Проверка действия защиты от перегрузки	Испытания на допустимый уровень напряжения и напряженности поля радиопомех	Испытания на устойчи- вость к электромагнит- ным помехам
1	Вспомогательных меха-	+	+	-	(+)	_	+	_	—	(+)	+	+	-	+	+	+
	низмов (насосов, компрессоров, вентиляторов,															
	воздуходувок, сепара-															
	торов и др.)															
2	Палубных механизмов:															
	.1 рулевых	+	+	(+)	(+)	_	—	+	+	(+)	+	+	(+)	+	+	+
	.2 якорных	+	+	(+)	(+)	+	+	—	—	(+)	+	+	+	+	+	+
	.3 швартовных	+	+	(+)	(+)	+	+	—	—	(+)	+	+	+	+	+	+
	.4 буксирных	+	+	(+)	(+)	+	+	—	—	(+)	+	+	<u> </u>	+	+	+
	.5 крановых, грузо-	+	+	(+)	(+)	+	+	—	+	(+)	+	+	—	+	+	+
	подъемных стрел,															
	подъемников .6 шлюпочных лебедок	+	+	+	(+)	+	+	l _	+	(+)	+	+	l	+	+	+
3	Лифтов	+	+	+	(+)		+	l _	+	(+)	+	+		+	+	+
4	Водонепроницаемых дверей	+	+	+	(+)		l _	+	l	(+)	+	+	_	+	+	+
5	Трубопроводной арматуры	+	+	+	(+)	_	(+)	(+)	+	(+)	+	+	l —	+	+	+
6	Холодильных установок	+	+	_		_	+		_	(+)	+	+	_	+	+	+
	Условные обозначен	ия –	- см.	табл. 10).7.5.1.	-	•	•					•			

пусков, остановок, реверсирования и работы привода на каждой скорости за время, в течение которого можно убедиться в нормальной работе привода и провести измерения необходимых параметров.

10.7.10.11 Испытание работы привода под нагрузкой в составе механизма должно проводиться по одобренной Регистром программе и методике испытаний механизма во всех режимах его работы с нагрузкой и перегрузкой.

10.7.10.12 Испытание на стоянку под током должно проводиться с целью проверки своевременности срабатывания защиты привода. Кроме электроприводов якорных и швартовных механизмов, этому испытанию должны подвергаться только те электроприводы рулевых устройств, которые жестко соединяются с баллером руля (например, посредством зубчатых, винтовых, штуртросовых передач).

10.7.10.13 Действие защиты от перегрузки должно проверяться при длительных и кратковременных перегрузках приводного механизма.

Проверку электроприводов, допускается производить от специальных электрических нагрузочных устройств на предприятии (изготовителе).

10.7.11 Испытания электрооборудования ДВС со стартерным пуском.

10.7.11.1 Комплектующие изделия, предусмотренные Номенклатурой РС, входящие в состав электрооборудования ДВС со стартерным пуском, к началу испытаний в составе схем электрооборудования ДВС должны пройти испытания после изготовления в соответствующих для них объемах, указанных в настоящем разделе.

10.7.11.2 Испытания комплекса электрооборудования ДВС должны проводиться при установке его на штатных местах двигателя, для которого оно предназначено.

При испытании электрооборудования на предприятии (изготовителе) допускается применять имитирующие установки (при отсутствии ДВС) отдельно для привода зарядного генератора, нагрузки стартера и тягового реле привода-стартера и др.

Испытания на стендах с имитирующими установками должны быть полностью эквивалентны испытаниям на ДВС.

- **10.7.11.3** Испытания и проверки должны проводиться в следующем объеме:
- .1 осмотр и проверки (на соответствие изделий и их схем подключения технической документации);
- .2 измерение сопротивления изоляции в практически холодном состоянии;
 - .3 испытание в действии схемы стартерного пуска;
- .4 испытание в действии схемы заряда аккумуляторной батареи;
- .5 проверка в действии других цепей и элементов (если имеются);
- **.6** измерение сопротивления изоляции в нагретом состоянии изделий;

- .7 испытание на допустимый уровень напряжений индустриальных радиопомех;
- **.8** испытания на устойчивость к электромагнитным помехам (ЭМС).
 - .9 проверка нагревания электрооборудования от ДВС;
- **.10** проверка состояния электрооборудования после испытаний (при необходимости с разборкой).
- 10.7.11.4 Испытание действия схемы стартерного пуска следует проводить не менее чем тремя сериями включений стартера, начиная с практически холодного состояния стартера и ДВС. Каждая серия должна состоять из десяти включений длительностью 5 6 с при максимальной нагрузке стартера. Интервалы между рабочими периодами должны быть в пределах 6 10 с, интервалы между сериями минимально необходимые для охлаждения стартера.

10.7.11.5 Испытание схемы заряда аккумуляторной батареи должно проводиться при всех возможных режимах работы ДВС до полного заряда разряженной батареи. Должна фиксироваться частота вращения ДВС, при достижении которой батарея включается на заряд, частота вращения (при снижении частоты), при которой батарея отключается от зарядной цепи, наличие и величина обратного тока.

Релерегуляторы (регуляторы напряжения) с контактными и бесконтактными элементами должны проверяться со штатными генераторами и соответствующей аккумуляторной батареей.

10.7.11.6 Испытание на допустимый уровень напряжений индустриальных радиопомех должно проводиться поочередно для каждой схемы (заряда батареи, стартерного пуска и др.). Все электрооборудование должно быть соединено между собой кабелями (проводами) марок и площадей сечений, предусмотренных схемами, с соблюдением непрерывности экранировки для цепей с экранированными кабелями.

10.7.12 Испытания светильников и пускорегулирующих аппаратов газоразрядных ламп.

- **10.7.12.1** Объем испытаний и проверок светильников и пускорегулирующих аппаратов газоразрядных ламп приведен в табл. 10.7.12.1.
- 10.7.12.2 Пускорегулирующие аппараты для светильников с газоразрядными лампами, если они предназначены для отдельной от светильника установки, должны испытываться совместно со светильниками, за исключением случаев, указанных в 10.7.12.3, 10.7.12.4.
- **10.7.12.3** Испытанию на теплоустойчивость подвергаются только пускорегулирующие аппараты, предназначенные для отдельной от светильника установки.
- **10.7.12.4** Испытание на нагревание должно проводиться с учетом следующего:
- .1 напряжение при испытании должно быть равно 1,1 номинального, мощность лампы наибольшая, на которую рассчитан светильник;

Таблица 10.7.12.1

Светильники	Осмотр и проверки	Измерение сопротивле- ния изоляции	Испытание электричес- кой прочности изоляции	Испытания на соответ- ствие условиям работы на судне	Испытание на нагревание	Испытание на определение постоянства характеристик материалов	Испытание на термо- стойкость	Проверка времени раз- ряда конденсаторов	Проверка времени ра- боты светильника	Испытание на допустимый уровень напряжения индустриальных радиопомех	Испьтания на устойчи- вость к электромагнит- ным помехам
С лампами накаливания	+	+	+	+	+	+	+	_	_	_	+
С газоразрядными лам-	+	+	+	+	+	+	+	+	_	+	+
пами			. .								
С аккумуляторами и	+	+	+	+	+	+	+	_	+	_	+
зарядными устройствами											
Аккумуляторные взры-	+	_	-	+	_	_	+	_	+	_	+
возащищенные пере-											
носные											

До начала испытаний взрывозащищенных светильников (фонарей) должны быть проверены документы компетентной организации, подтверждающие взрывозащищенность изделия.

.2 подволочные и переборочные светильники при испытании должны быть закреплены на деревянных щитах толщиной не менее 15 мм, окрашенных черной матовой краской.

Светильники, предназначенные для встраивания в подволоки, должны устанавливаться на макете.

- **10.7.12.5** Испытание на определение постоянства характеристик материалов должно проводиться в камере тепла при выполнении следующих условий:
- .1 температура в камере в соответствии с табл. 10.5.4.1.3;
- .2 светильники с лампами накаливания должны испытываться при мощности, на 15 % превышающей номинальную мощность наибольшей лампы, на которую рассчитан светильник;
- .3 светильники с газоразрядными лампами должны испытываться при напряжении, на 10~% превышающем номинальное;
- .4 пускорегулирующие аппараты, предназначенные для отдельной от светильника установки, не испытываются на постоянство характеристик материалов;
 - .5 испытание должно продолжаться не менее 300 ч;
- .6 светильники считаются выдержавшими испытание на определение постоянства характеристик материалов, если не произошло:

высыхания и растрескивания изоляции проводов; потери пружинных свойств центральных контактов патронов;

выкрашивания, растрескивания, оплавления, обгорания или изменения геометрической формы деталей;

недопустимого уменьшения сопротивления

- **10.7.12.6** Испытание на термостойкость должно проводиться с учетом следующего:
- **.1** испытанию должны подвергаться светильники со степенями защиты 1 и выше (пускорегулирующие

аппараты, предназначенные для отдельной от светильников установки, испытанию не подлежат);

- .2 светильники с лампами наибольшей мощности, на которую они рассчитаны, должны быть выдержаны во включенном состоянии до достижения теплового равновесия, после чего сразу горячие светильники (без отключения их от сети) должны быть подвергнуты воздействию водой согласно табл. 2 приложения 9 (в зависимости от защитного исполнения светильников);
- .3 температура воды при испытании светильников со степенями защиты IPX1 IPX4 должна быть не выше 20 °C, со степенями защиты IPX5 IPX6 не выше 15 °C;
- .4 продолжительность воздействия водой должна быть: 15 мин при испытании светильников со степенью защиты IPX1, 10 мин при IPX2, 5 мин при IPX3 IPX6;
- .5 для светильников защитного исполнения IPX5 и IPX6 весь цикл испытания должен проводиться 3 раза, т.е. после прогрева и высыхания светильников они вновь в горячем состоянии должны подвергаться воздействию струей воды;
- .6 испытание на термостойкость рекомендуется совмещать с испытанием защитного исполнения оболочек.
- **10.7.12.7** Время разряда конденсаторов (после отключения) до значения, не превышающего 50 В, должно быть не более 1 мин.

10.7.13 Испытания электроустановочных изделий.

- **10.7.13.1** Объем испытаний и проверок электроустановочных изделий приведен в табл. 10.7.13.1.
- **10.7.13.2** При испытаниях вибрационными и ударными воздействиями все штепсельные вилки должны быть заряжены кабелем длиной 1,4 1,5 м. Эти кабели не должны к чему-либо крепиться

Таблица 10.7.13.1

Изделия	Осмотр и проверки	Измерение сопротивления изоляции	ние элекри- ческой	Испытания на соответствие условиям работы на судне	ние на	Испытание на перегрузку	Испытание на действие защиты при коротком замыкании
Выключатели и переключатели для установок освещения (на токи не более 25 A)	+	+	+	+	+	+	_
Штепсельные соединения	+	+	+	+	+	+	_
То же, совмещенные с выключателями	+	+	+	+	+	+	_
Штепсели-трансформаторы	+	+	+	+	+	+	См. 10.7.13.4
Соединительные (ответвительные) коробки	+	+	+	+	+	+	_

Примечание. В таблицу не включены относящиеся к электроустановочным изделиям предохранители для установок освещения (на токи до 25 A). Испытание их, а также соединительных коробок со встроенными предохранителями проводится в соответствии с 10.7.6.

или на чем-либо лежать. Они должны свободно свисать от штепсельных вилок, вставленных в розетки. До начала и по окончании этих испытаний должны быть измерены усилия, прикладываемые к вилкам при их извлечении из розеток. Усилия после испытаний практически не должны изменяться. Кроме того, после этих испытаний должно проверяться состояние узла крепления и оболочки кабеля в вилке. Одновременно должно быть испытано несколько розеток без вилок.

10.7.13.3 При испытании на перегрузку (при напряжении, токе и коэффициенте мощности, указанных в технической документации) штепсельные соединения должны выдерживать не менее 60 отключений с частотой 30 раз/мин без обгорания контактов и изоляционного материала, а штепсель-

ные соединения, совмещенные с выключателями, — 20 отключений (не включений).

10.7.13.4 Штепсели-трансформаторы со встроенными предохранителями должны быть проверены на стойкость к токам короткого замыкания путем двукратного закорачивания цепи вторичной обмотки (с последующей заменой вставок предохранителей).

Изделия считаются выдержавшими испытание при положительных результатах осмотра и испытания электрической изоляции.

10.7.14 Испытания аппаратов и устройств внутренней связи и сигнализации и приборов контроля управления судном.

10.7.14.1 Объем испытаний и проверок приведен в табл. 10.7.14.1.

Таблица 10.7.14.1

Аппараты и устройства	Осмотр и проверки	Измерение сопротив- ления изоляции	Испытание электри- ческой прочности изоляции	Испытания на соот- ветствие условиям работы на судне	Испытание на нагре- вание	Проверка функциони- рования	Прочие специальные проверки	Проверка на допустимые уровни напряжений индустриальных радиопомех	Испытания на устой- чивость к электро- магнитным помехам
Телеграфы электрические машинные	+	+	+	+	+	+	+	+	+
Датчики и указатели положения пера	+	+	+	+	+	+	+	_	+
руля и лопастей ВРШ									
Тахометры гребных валов 1					+2	+	+	+ +	+
Авральная сигнализация – приборы и	+	+	+	+	+-	+	+	+	+
замыкатели световых и звуковых									
сигналов Коммутаторы и телефонные аппараты	+	+	+	+		+	+	+	+
связи	Т-				_			Т.	
Устройства сигнализации обнаружения	+	+	+	+	+3	+		+3	+
пожара и предупреждения о пуске			'	,	'	,		,	· ·
средств объемного пожаротушения									
Устройства системы предупреждения о	+	+	+	+	$+^{4}$	+	_	+4	+
пуске системы локального пожаро-									
тушения									
Устройства системы сигнализации	+	+	+	+	+	+	+	+	+
высокого уровня льяльных вод									
Устройства системы аварийного вы-	+	+	+	+	+	+	+	+	+
зова механиков и контроля дееспо-									
собности машинного персонала									

Продолжение табл. 10.7.14.1

Аппараты и устройства	Осмотр и проверки	Измерение сопротив- ления изоляции	Испытание электри- ческой прочности изоляции	Испытания на соответствие условиям работы на судне	Испытание на нагре- вание	Проверка функциони- рования	Прочие специальные проверки	Проверка на допустимые уровни напряжений индустриальных радиопомех	Испытания на устой- чивость к электро- магнитным помехам
Устройства системы сигнализации	+	+	+	+	+	+	+	+	+
наличия людей внутри охлаждаемых помещений									
Устройства системы контроля сос-	+	+	+	+	+	+	+	+	+
тояния лацпортов, противопожарных									
и водонепроницаемых дверей Устройства системы внешнего/	+	+	_	_	+	+	+	_	_
внутреннего видеонаблюдения	'	'	'	'	'	'	'	'	'
Устройства системы сигнализации о	+	+	+	+	+	+	+	+	+
повышении концентрации взрыво-									
опасных газов				+5		+6	+7		
Устройства системы сигнализации поступления воды в грузовые трюмы	+	+	+	+-	+	+-	+,	+	+
навалочных судов и сухогрузов									
Устройства системы сигнализации о	+	+	+	+	+	+	_	+	+
верхнем и предельном уровне груза									

Условные обозначения — см. табл. 10.7.5.1.

- 10.7.14.2 Испытание на нагревание должно проводиться при наибольшем длительно допустимом напряжении на вводах питания изделий. Лампы освещения шкал должны быть полностью включены. Испытание на нагревание тахогенераторов должно проводиться при наибольшей рабочей частоте вращения и наибольшем (допустимом) числе подключенных вторичных приборов.
- 10.7.14.3 Проверка функционирования всех изделий, за исключением извещателей ручного действия и замыкателей, должна проводиться во время испытаний на вибро-, ударо-, тепло- и холодоустойчивость при одновременных предельных отклонениях напряжений и частоты от номинальных значений; при этом:
- .1 у машинных телеграфов проверяется точность передачи команды и ответов, действие сигнализации; у приборов контроля управления судном — точность
- .2 у автоматических извещателей сигнализации обнаружения пожара не должно быть зафиксировано ложных срабатываний или мгновенных разрывов подключенной к ним контрольной цепи. При

- имитации воздействия, от которого предусмотрено срабатывание извещателей, срабатывания должны происходить в установленных пределах по параметрам воздействующих величин и времени;
- .3 у станций сигнализации обнаружения пожара должны нормально функционировать все цепи контроля и сигнализации. Не должно быть ложных срабатываний. Должно быть четкое срабатывание при поступлении сигнала.
- 10.7.14.4 В прочие и специальные проверки входят:
 - .1 проверка различимости надписей и знаков;
 - .2 проверка громкости звуковых сигналов;
- .3 электроакустические испытания, измерения и проверки телефонной аппаратуры должны проводиться в соответствии с одобренной технической документацией на эти изделия по окончании механических и климатических испытаний;
- .4 проверка по окончании механических и климатических испытаний функционирования станций обнаружения пожара, т. е. проверка действия всех видов сигнализации, контроля, блокировок во всех возможных вариантах.

 $^{^{1}}$ Тахометры должны испытываться в объеме и в соответствии с 10.7.1, измерители – в объеме и в соответствии с 10.7.9. Указанные в таблице проверки должны проводиться на собранной схеме тахометра.

²Замыкатели испытанию не подвергаются.

³Датчики сигнализации обнаружения пожара автоматические и ручного действия испытаниям не подвергаются. ⁴Датчики испытаниям не подвергаются.

⁵В отношении испытания защитного исполнения оболочек см. приложение 16 «Требования к испытанию системы сигнализации поступления воды в грузовые трюмы навалочных судов и однотрюмных грузовых судов, не являющихся навалочными».

⁶Функциональные испытания должны быть проведены в соответствии с резолюцией ИМО MSC.188 (79) «Эксплуатационные требования к сигнализаторам наличия воды на навалочных судах и однотрюмных грузовых судах, не являющихся навалочными».

⁷См. приложение 16 «Требования к испытанию системы сигнализации поступления воды в грузовые трюмы навалочных судов и однотрюмных грузовых судов, не являющихся навалочными».

Таблица 10.7.15.1

Кабельные изделия	Осмотр и проверки	Измерение сопротивления изоляции	Испытание электрической прочности изоляции	Испытания на соответствие условиям работы на судне	Испытание на устойчивость к морской воде	Испытания на устойчивость к нефтепродуктам ^{1, 2}	Испытание на стойкость к многократному перегибу через системы роликов	Испытание на стойкость к изгибу	Испытание на стойкость к осевому кручению	Испытание на стойкость к изгибу с осевым кручением	Испытание на стойкость к растяжению	Испытание на стойкость к раздавливанию	Испытание на пламеустойчивость (нераспространение горения)
Кабели для подключения стационарного электро-оборудования	+	+	+	+	+	+		+	_	_	+	_	+
Кабели для подключения подвижного электро- оборудования (в том числе переносного)	+	+	+	+	+	+	+	+	+	+	+	+	+
Провода установочные Провода мотажные	++	+ +	+ +	+ +	+ +	+ + 4	_ _	+	_ _	+ ³ + ³	-	-	+ +

¹ Испытанию подлежат изделия, специально предназначенные для эксплуатации на открытых палубах судов. Испытание проводится как на образцах изоляции и оболочки (см. 10.7.15.1), так и на образцах кабелей.

10.7.14.5 Проверка допустимого уровня напряжений индустриальных радиопомех от приборов контроля управления судном должна проводиться на выводах указателей, измерителей при работе их от штатных датчиков, тахогенераторов, с которыми они должны быть соединены кабелями длиной не более 15 м, указанными в технической документации на эти приборы.

10.7.15 Испытания кабельных изделий.

10.7.15.1 Объем испытаний и проверок кабельных изделий приведен в табл. 10.7.15.1.

До начала испытаний и проверок инспектору должны быть представлены материалы с результатами испытаний физико-механических и других свойств изоляции и оболочки, образцы которых были испытаны методами, указанными в одобренной технической документации. В число таких испытаний для всех изделий входит определение прочности при разрыве и удлинении изоляции и оболочки, тепло- и холодоустойчивости, теплового старения и электрических характеристик.

Для изделий, предназначенных для эксплуатации на открытых палубах судов, дополнительно входит определение устойчивости оболочки морской воде и солнечной радиации.

Для изделий, предназначенных для эксплуатации в машинных помещениях и на палубах наливных судов, дополнительно входит определение устойчивости оболочки к нефтепродуктам.

10.7.15.2 Для испытаний кабелей или проводов определенной марки должны быть отобраны образцы каждой конструкции и каждого числа жил с

минимальной и максимальной площадью сечения, а, при необходимости, и с промежуточными значениями. Число образцов с одинаковым числом жил, отличающихся сечением, устанавливается для каждого испытания отдельно.

10.7.15.3 Осмотр и проверки кабельных изделий проводятся на соответствие одобренной Регистром технической документации.

10.7.15.4 До начала испытания изоляции и измерения ее сопротивления следует убедиться в отсутствии обрывов жил и в электрической исправности металлических оплеток, оболочек, брони путем подключения их к контрольной цепи.

Независимо от испытаний электрической прочности изоляции, проводящихся на образцах, подвергаемых другим видам испытаний, электрическая прочность изоляции должна быть испытана, кроме того, на отдельных образцах после выдержки их в воде не менее 6 ч для изделий и отдельных жил с поливинилхлоридной и полиэтиленовой изоляцией.

10.7.15.5 Общие виды испытаний на соответствие условиям работы на судне, такие как испытания на вибропрочность и ударную прочность кабелей и проводов, должны проводиться при выполнении следующих условий:

.1 для испытаний должно быть подготовлено не менее шести образцов наибольшей, шести наименьшей и по шесть нескольких промежуточных площадей сечения каждой конструкции кабеля (провода) данной марки. Все образцы должны быть разделены на три равные по количеству и по конструкции образцов группы;

² Испытанию подлежат изделия как специально предназначенные для эксплуатации в машинных помещениях, так и не имеющие такого ограничения. Испытание проводится только на образцах изоляции и оболочки (см.10.7.15.12).

³ Относится к особо гибким проводам.

⁴ Для некоторых марок проводов (например, применяемых в электрооборудовании ДВС).

.2 каждый образец из первой группы должен быть изогнут в виде синусоиды с наименьшим допустимым технической документацией радиусом изгиба и закреплен на опорах, расстояния между которыми определяются по табл. 16.8.5.2 части XI «Электрическое оборудование» Правил классификации и постройки морских судов. В закрепленном положении должна отсутствовать возможность смещения образцов. Кроме мест креплений, образцы по всей длине не должны с чем-либо соприкасаться.

Каждый образец из второй группы должен быть закреплен без изгибов на четырех опорах, приваренных к общему вертикальному основанию. Расстояния между опорами должны быть на 25 % больше расстояний, определенных по табл. 16.8.5.2 части XI «Электрическое оборудование» Правил классификации и постройки морских судов;

.3 испытание на вибропрочность первых групп образцов достаточно проводить при воздействии вибрации перпендикулярно к их осям. Вторые группы образцов должны быть испытаны воздействиями вдоль осей и перпендикулярно.

При испытании на ударную прочность образцы первых и вторых групп должны подвергаться механическим воздействиям, направленным сначала перпендикулярно к их осям, а затем вдоль осей; для изогнутых образцов — вдоль осей синусоид;

- .4 образцы третьих групп должны быть закреплены за один конец каждый и свободно подвешены к стойке, закрепленной на стенде. Длина свободно подвешенной части образца должна быть указана в технической документации для кабеля (провода) данной марки, числа и площади сечения жил. Закрепленный конец и свободно подвешенная часть образца должны находиться на одной прямой оси. Раскачивания образцов при механических воздействиях должны быть ограничены по всей длине в пределах их нескольких диаметров. Если допустимая длина свободно подвешиваемой части чрезмерно велика для испытаний, то по согласованию с Регистром допускается укорачивать образцы, компенсируя массу недостающей части грузом той же массы, прикрепленным к нижнему концу подвешенного образца;
- .5 испытание свободно подвешенных образцов на вибропрочность должно проводиться при одновременном воздействии вибрации в двух взаимно перпендикулярных направлениях, одно из которых должно быть вдоль их осей. Испытание на ударную прочность воздействием ударных нагрузок должно проводиться только вдоль осей образцов;
- .6 во время испытаний на вибро- и ударную прочность все образцы должны находиться под электрическим напряжением (за исключением одножильных), на 20 % превышающим наибольшее рабочее напряжение кабеля (провода);

- .7 образцы считаются выдержавшими испытания, если не произошло электрического пробоя изоляции жил, при осмотре без применения увеличительных приборов на защитных покровах, оболочках и изоляции жил не обнаружено трещин и других повреждений образцов.
- 10.7.15.6 Положения 10.7.15.5 полностью распространяются на испытания кабелей для подключения подвижного и переносного электрооборудования. Сначала такие кабели должны быть испытаны в бухтах, а после этого из них должны быть нарезаны образцы для испытаний согласно 10.7.15.5.1.
- 10.7.15.7 При испытании на теплоустойчивость образцы должны находиться в камере тепла при максимальной длительно допустимой для кабеля провода данной марки температуре окружающего воздуха и под наибольшей длительно допустимой нагрузкой.
- 10.7.15.8 Перед испытанием на влагоустойчивость концы образцов должны быть выведены наружу из камеры влажности, разделаны и подготовлены для измерения сопротивления изоляции и испытания электрической прочности изоляции. Изоляция жил и оболочки концов должны быть герметизированы.
- 10.7.15.9 Кабели и провода, специально предназначенные для внутреннего монтажа, на холодоустойчивость могут не испытываться. В остальных случаях испытание на холодоустойчивость должно проводиться следующим образом:
- .1 образцы должны быть навиты в один слой на металлические полые цилиндры, диаметры которых соответствуют наименьшим допустимым радиусам изгиба образцов, и должны быть выдержаны в камере холода при температуре $-50~^{\circ}\mathrm{C}$ в течение времени, указанного ниже:

Наружный ді	ш	ет	рі	kat	бел	я,	MM	1				B	pei	RN	ВЫ	дер	жки
											В	Ка	ıMe	epe	X	ОЛОД	ца, ч
До 15																	1
15 - 30.																	2
30 - 50.																	3
Свыше 50																	5;

- .2 после выдержки всех образцов в помещении при температуре нормальных климатических условий испытаний они должны быть без разгибания удалены с цилиндров и закреплены в навитом состоянии (для проведения на них в таком состоянии испытаний на устойчивость к воздействию солнечной радиации и морской воды);
- .3 результаты данного испытания считаются удовлетворительными, если на оболочках отсутствуют трещины, разрывы и т. п.
- **10.7.15.10** Испытанию на воздействие соляного тумана должны подвергаться кабели с наружными металлическими оплетками, оболочками, броней.

10.7.15.11 Образцы, подготовленные по 10.7.15.9.2, должны быть испытаны на устойчивость к воздействию солнечной радиации и морской воды с целью испытания на одних и тех же образцах большинства воздействий, которым кабельные изделия могут подвергаться в эксплуатации.

10.7.15.12 Испытания на воздействие солнечной радиации проводятся по 10.5.4.8. Затем эти не разогнутые образцы должны быть испытаны на устойчивость к морской воде следующим образом:

- **.1** предпочтительный состав раствора для испытания указан в 10.5.4.6.3;
- .2 температура воды (раствора) не ниже $+\ 20\ ^{\circ}\mathrm{C};$
- .3 каждые 2 3 мин образцы должны погружаться в раствор на 10 15 с (концы образцов должны быть выведены наружу и надежно герметизированы);
 - .4 продолжительность испытаний 5 сут;
- .5 по окончании испытания должно быть измерено сопротивление изоляции и проведено испытание электрической прочности изоляции образцов. Если эти измерения и испытания дадут удовлетворительные результаты, образцы выдержали испытания.
- 10.7.15.13 Испытания на стойкость к многократному перегибу через систему роликов, к изгибу, осевому кручению, изгибу с осевым кручением, растяжению и раздавливанию кабелей, предназначенных для подключения подвижного и переносного электрооборудования, должны проводиться на стандартных испытательных установках методами, указанными в одобренной технической документации. Эти испытания должны проводиться при нормальных климатических условиях. Количество

манипуляций с образцами и конкретный их характер должны быть указаны в программе и методике испытаний.

Все перечисленные виды испытаний образцов, за исключением испытаний стойкости к растяжению и раздавливанию, должны проводиться под электрическим напряжением, равным наибольшему рабочему напряжению, на которые они рассчитаны, а при испытаниях в условиях нормальной температуры — под нагрузкой.

Результаты испытаний считаются положительными, если:

- .1 отсутствуют видимые без применения увеличительных приборов трещины и разрывы изоляции жил и оболочек;
 - .2 отсутствуют обрывы проволок жил;
- .3 отсутствуют электрические пробои изоляции и поддерживается стабильность тока нагрузки при испытаниях:
- .4 результаты испытания электрической прочности изоляции по окончании всех механических воздействий являются удовлетворительными.
- **10.7.15.14** Испытание на пламеустойчивость (нераспространение горения) должно проводиться на стандартной испытательной установке по одобренной программе и методике.

10.7.16 Испытания электрических нагревательных и отопительных приборов.

10.7.16.1 Объем испытаний и проверок приведен в табл. 10.7.16.1.

10.7.16.2 Если корпуса электронагревательных приборов работают под давлением водяного пара или паров топлива или масла (или могут оказаться под давлением этих паров в результате неисправности или ошибочных действий персонала), и если при

Таблица 10.7.16.1

Стационарные нагревательные и отопительные приборы	Осмотр и проверки	Измерение сопротивления изоляции	Измерение электрической прочности изоляции	Испытания на соответствие условиям работы на судне	Испытание на нагревание	Испыта- ние облива- нием водой	Испытание защить от ненормальных режимов ¹
Подогреватели топлива и масла (в том числе проточные)	+	+	+	+	+	_	+
Грелки и подобные приборы для обогрева помещений	+	+	+	+	+		+
Подогреватели воздуха проточные	+	+	+	+	+	_	+
Кипятильники и подогреватели воды (в том числе проточные)	+	+	+	+	+	+2	+
Камбузные плиты, пищеварочные котлы и агрегаты Сушильные шкафы	+ +	+ +	+++	+ +	++	+3	_

¹ Имеются в виду такие виды защиты, как защита от опасного повышения температуры, снижения уровня жидкости и т. п. (действие защит проверяется на соответствие значениям параметров, установленных в одобренной Регистром технической документации).

² Испытанию должны подвергаться изделия, в которых в результате качки, крена или кипения воды может переливаться через край или отверстия, а конструкция изделия не исключает полностью попадания воды на электроизоляционные или токоведущие части.
³ Для камбузных плит испытание обязательно. Для пищеварочных электрофицированных котлов и агрегатов — см. сноску 2.

этом они подпадают под действие 1.3.2.1 части X «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов, то кроме указанного в табл. 10.7.16.1 они и их предохранительные (аварийные) клапаны должны пройти испытания в соответствии с 9.7.3.

10.7.17 Испытания фильтров защиты от радиопомех.

- **10.7.17.1** В объем испытаний и проверок должны входить:
 - .1 осмотр и проверки;
 - .2 измерение сопротивления изоляции;
 - .3 испытание электрической прочности изоляции;
- **.4** испытания на соответствие условиям работы на судне;
 - .5 испытание на нагревание;
- .6 испытание на устойчивость к току короткого замыкания;
- .7 проверка эффективности подавления радиопомех.
- **10.7.17.2** Испытанию на нагрев, а также на устойчивость к току короткого замыкания должны подвергаться фильтры с катушками индуктивности, включаемыми последовательно в силовую цепь. Испытание проводится аналогично 10.7.6.5.
- 10.7.17.3 Проверка эффективности подавления радиопомех должна проводиться компетентным лицом при помощи специальной аппаратуры методом, установленным одобренной технической документацией на частотах, для которых предназначен фильтр.
- **10.7.17.4** Эффективность подавления помех определяется соответствием изделия с установленным фильтром требованиям 6.3.
- 10.7.17.5 Средства защиты от импульсных помех, сетевые фильтры, защитные трансформаторы, блоки бесперебойного питания подлежат дополнительным испытаниям по проверке устойчивости к помехам и измерению вносимого затухания или ограничения импульсных помех. Соответствующие характеристики должны быть включены в техническую документацию.

10.8 ОСВИДЕТЕЛЬСТВОВАНИЕ ИЗДЕЛИЙ ПРИ УСТАНОВИВШЕМСЯ ПРОИЗВОДСТВЕ НА ПРЕДПРИЯТИИ (ИЗГОТОВИТЕЛЕ)

- 10.8.1 Техническое наблюдение за изготовлением изделий электрического оборудования на предприятии (изготовителе) при установившемся производстве осуществляется путем освидетельствования готовых изделий, прошедших все проверки и испытания, проводимые органами технического контроля предприятия (изготовителя).
- **10.8.2** Освидетельствование изделия должно предусматривать:
- .1 проверку документации на комплектующие изделия и материалы, подпадающие под техническое наблюдение Регистра в соответствии с Номенклатурой РС, и документов органов технического контроля на готовое изделие;
 - .2 проверку технической документации на изделие;
- .3 проверку комплектности изделия и запасных частей;
 - .4 проведение наружного и внутреннего осмотров;
 - .5 проверку на функционирование;
 - .6 испытания изделия, указанные в 10.8.3 и 10.8.4.
- 10.8.3 Для всех изделий, подлежащих освидетельствованию, проводятся следующие виды испытаний:
- .1 осмотр и проверка на соответствие технической документации, проверка качества сборки, монтажа, выполнение узлов для заземления, а для комплектных изделий также качества заземления комплектующих элементов;
- .2 измерение сопротивления изоляции (в практически холодном состоянии);
- .3 испытание электрической прочности изоляции между токоведущими элементами, цепями, а также между ними и корпусом (в практически холодном состоянии).
- **10.8.4** Для отдельных видов оборудования объемы и условия испытаний изделий при установившемся производстве указаны в табл. 10.8.4-1 10.8.4-5.
- **10.8.5** При положительных результатах испытаний и проверок инспектор Регистра выдает на изделие сертификат и, если это указано в Номенклатуре РС, производит клеймение изделия.

Таблица 10.8.4-1

Изделия	Испытания и проверки в соответствии с 10.8.2 и 10.8.3	при повы- шенной частоте вращения ¹	Измерение биения коллектора (контактных колец), проверка осевого разбега ротора (якоря)	межвитковой изоляции	номинальных параметрах и	блокировок,	Прочие специфические проверки и испытания
Электрические машины ² Электромагнитные муфты Трансформаторы Статические преобразова- тели	+ 3,4 + 3,4 + +	+ ⁵ + -	+6 +6 —	+ + + + 10	+ ⁷ + + ⁷ +	+ - - + ¹¹	+8 - +9 +12

¹ Проводится до испытаний изоляции.

От испытаний освобождаются асинхронные двигатели с короткозамкнутым ротором.

11 Проверка действия защиты от перегрузки и короткого замыкания.

Таблица 10.8.4-2

Изделия	Испытания и проверки в соответствии с 10.8.2 и 10.8.3	работы	Проверка действия блокировок	Проверка настройки и действия элементов (расцепителей, встроенных реле и др.)	Проверка величины электрического сопротивления	Проверка функциони- рования	Прочие специфи- ческие проверки
Выключатели автоматические	+	+	+	+			_
Выключатели, переклю-	+	_	_	_	_	+	_
чатели, разъединители, кнопочные и путевые выключатели							
Предохранители	+	_	_	_	$+^1$	_	+2
Контакторы, контактные	+	_	_	_	_	_	+3
реле							
Пускатели, контроллеры	+	_	+	+	_	+	_
Реостаты	+	+	_	+	+	_	_
Резисторы в ящиках	+	_	_	_	+	_	_

² Генераторы синхронные и постоянного тока, двигатели асинхронные и постоянного тока, преобразователи, электромашинные усилители.

При необходимости (как правило, для крупных изделий) с измерением воздушных зазоров, проверкой документов по балансировке, по испытаниям систем водяного охлаждения на плотность и прочность.

⁴ При массовом производстве машин мощностью до 5 кВт (кВА) испытание электрической прочности изоляции допускается проводить в течение 1 с напряжением, равным 1,2 полного нормированного испытательного напряжения.

⁶ Относятся, как правило, к крупным изделиям. У двигателей и муфт гребных установок должны также измеряться биения концов

вала. 7 Для машин переменного тока и трансформаторов проверка может быть заменена опытами холостого хода и короткого замыкания.

Проверка коммутации коллекторных машин при номинальной нагрузке и кратковременной перегрузке по току, проверка пределов изменения уставки напряжения генераторов со статической системой возбуждения, опробование электрического подогрева машины, измерение электрического напряжения между изолированным стояком подшипника и фундаментом, а также между концами

вала таких машин.

9 У трансформаторов с негорючим жидким диэлектриком — испытание бака на плотность и испытание пробы диэлектрика из бака.

Относится к трансформаторам преобразования, не проходившим такого испытания.

¹² Проверка работы при набросах и сбросах нагрузки, проверка работы аппаратуры управления, фильтра.

Продолжение табл. 10.8.4-2

						<u> </u>	e maon. 10.0.4-2
Изделия	Испытания и проверки в соответствии с 10.8.2 и 10.8.3	Проверка работы приводов и указателей коммутационного положения	Проверка действия блокировок	Проверка настройки и действия элементов (расцепителей, встроенных реле и др.)	Проверка величины электричес- кого сопро- тивления	Проверка функциони- рования	Прочие специфи- ческие проверки
Тормоза электромагнитные, пристраиваемые к электродвигателям, тормозные электромагниты, электро-	+	1	-		ı	+	+4
гидравлические толкатели Магнитные усилители, аппараты, блоки и модули с бесконтактными элемен-	+	_	_	_	_	+	-
Тами	+				+5		
Реакторы, дроссели Устройства защиты гене-	+	_	_	+			_
раторов		_			_		_
Электроизмерительные приборы (щитовые)	+	_	_	_	_	+6	+7
Электрические щиты и пульты	+	+	_	_	_	+8	_
Аппараты и устройства внутренней связи и сигна- лизации	+	_	_	_	_	+	_
Приборы контроля управ- ления судном ⁹	+	_	_	_	_	+	+10
Электронагревательные и отопительные приборы	+	_	_	_	_	_	+11
Светильники	+	_	_	_	_	l –	_
Электроустановочные изде-	+	_	_	_	_	+12	_
лия Фильтры защиты от радио-	+	_	_	_	_	+13	_
помех (приставные) Шинопроводы	+	+	_	_	_	_	_
шинопроводы	'	'		_	_	I —	_

- 1 Относится к плавким вставкам, проводится периодически выборочно.
- ² Испытание на максимальный ток неплавления и минимальный ток плавления. Проводится периодически выборочно.
- ³ Проверка растворов, провалов и нажатий контактов. Проверка параметров срабатывания.
- 4 Проверка величины создаваемого усилия, проверка действия устройства ручного растормаживания (тормозов).
- 5 Измеряется индуктивное сопротивление.
- ⁶ Проводится при наклонах приборов. Периодически должен осуществляться выборочный контроль работы при температурах окружающего воздуха выше 25 °С; при механических воздействиях (в сокращенном объеме по сравнению с испытаниями головных образцов): при предельных допустимых отклонениях напряжения и частоты от номинальных значений.
 - ⁷ Определение основной погрешности и вариации.
 - ⁸ Относится к цепям управления, контроля, сигнализации.
- 9 Датчики (тахогенераторы) и указатели тахометров гребных валов должны дополнительно испытываться как электрические машины и электроизмерительные приборы соответственно.
 - ¹⁰ Проверка точности показаний указателей.
- 11 Испытание на плотность и прочность (или проверка документов, если такие испытания проводятся в процессе производства) подогревателей топлива и масла, а также изделий, работающих или могущих оказаться под давлением водяного пара, если подогреватели (изделия) подпадают под требования 1.3.2.1 части X «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов. Проверка действия защит от ненормальных режимов работы (превышения температуры, снижения уровня жидкости и т.п.).
 - 12 Не относится к соединительным коробкам.
 - ¹³ Проверка может быть заменена измерением параметров элементов.

Таблица 10.8.4-3

Комплексы изделий ¹	Осмотр и проверка на соответствие технической документации	Измерение сопротивления изоляции в практически холодном состоянии	Пуски, остановки, реверсы, работа на каждой скорости на холостом ходу	Проверка действия электро- магнитного тормоза	Проверка действия блоки- ровок, защит, сигнализации	Проверка действия коммути- руемого контура гашения энергии поля	Проверка автозапуска после восстановления напряжения ³	Испытание совместно с при- водным механизмом ⁴	Проверка функционирования всех систем совместно с ДВС	Измерение сопротивления изоляции в нагретом состоянии
Электроприводы гребных установок						верок я				
Прочие электроприводы на предприятиях, их изготавливающих	_	I —	+	+ 5	+	+	+	l —	I —	_
То же, на предприятиях, изготавливающих механизмы, комплек-	+	+	+	+	+	+	+	+	_	+
туемые электроприводами										
Электрооборудование ДВС со стартерным пуском на предприятиях,	—	_	—	—	—	_	—	—	+6	-
его изготавливающих										
То же, на предприятиях, изготавливающих ДВС	+	+	_	-	—	_	—	—	+	+

¹ Имеется в виду, что все отдельные изделия, входящие в комплекс (электрические машины, аппараты и др.), прошли требуемые для них приемосдаточные испытания по соответствующим программам.

- Относятся к схемам с двигателями постоянного тока параллельного и смешанного возбуждения.
- ³ Относятся к схемам рулевых приводов и приводов водонепроницаемых дверей.

 ⁴ Проводится по одобренной Регистром программе и методике испытаний механизма (устройства).
- 5 Проверка действия тормозного электромагнита (если нет тормоза).
- ⁶ При отсутствии ДВС проверка осуществляется на специально оборудованных стендах.

Таблица 10.8.4-4

Изделия	Испытания и проверки в соответствии с 10.8.2 и 10.8.3	Проверка на герме- тичность ¹	Проверка номинальной емкости	Измерение тангенса угла потерь	Проверка действия автоматики
Аккумуляторные батареи (аккумуляторы ²)	+3	+4	+5	_	_
Конденсаторы для повышения коэффициента мощности	+	+	+	+	_
Конденсаторные установки для повышения коэффициента мощности	+	6 -	+	6	+

- Проводится любым эффективным методом.
- Если они предназначены для самостоятельной поставки.
- Ограничиваются осмотром и проверкой на соответствие технической документации.
- Относится к моноблокам кислотных батарей.
- С проверкой начального и конечного напряжений, тока, времени разряда, температуры электролита и т. п. эту проверку допускается проводить периодически выборочно. Периодичность и объем выборки — по согласованию с Регистром. ⁶ Если конденсаторы не прошли такой проверки, то проверка должна проводиться.

Таблица 10.8.4-5

Испытания (проверки) кабелей и проводов	Осмотр и проверка на соответствие технической документации	Проверка целостности (непрерывности) жил, экранов, оплеток и других металлических оболочек	Испытание электрической прочности изоляции жил до наложения оболочки и готовых изделий после выдержки в воде	Измерение сопротив- ления изоляции	Испытания механических, термопластических и электрических свойств материалов изоляции жил и оболочек ²
На каждой строительной	+	+	+ 1	+	_
длине Периодически выборочно ³	_	4	_4	_	+

Регистр может допустить испытание изоляции жил на аппарате сухого испытания на проход.

- ² Если предусмотрен пооперационный контроль.
- Периодичность и объем выборки по согласованию с Регистром.
 Испытание проводится, если использовано допущение согласно сноске 4.

Наряду с методиками испытаний и проверок электрического оборудования, а также значениями испытательных величин, приведенными в 10.4 —10.8,

взамен или в дополнение допускается использование рекомендаций и положений настоящих приложе-

ПРИЛОЖЕНИЕ 1

ДОПУСТИМЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ЭЛЕКТРИЧЕСКОГО ОБОРУДОВАНИЯ

1. Сопротивление изоляции относительно корпуса, а также между фазами (полюсами) электрического оборудования должно быть не менее указанного в таблице.

Указанное в таблице сопротивление изоляции для электрического оборудования на напряжение выше 500 В, а также для электрических машин мощностью свыше 1000 кВт (кВА) является в каждом случае предметом специального рассмотрения Регистром.

2. Рекомендуется, чтобы при измерениях на предприятие (изготовителе) сопротивление изоляции жил электрических кабелей R_i , MOм/км, между каждой из жил и остальными жилами, соединенными со свинцовой оболочкой, металлической оплеткой, броней или водой, было не менее определенного по формуле

$$R_i = k_i \log D/d$$
,

где k_i — постоянная сопротивления изоляции, указанная в табл. 1 приложения 10;

d — расчетный диаметр жилы, мм;

D — расчетный диаметр изоляции, равный d+2t(т — толщина изоляции); для многожильных кабелей с общей изоляцией t — сумма толщин изоляции жилы и общей изоляции), мм.

Таблица

Электрическое оборудование	Минимальное сопротивление среды 20±5 °C и норма	1 11
	в холодном состоянии	в горячем состоянии
Электрические машины мощностью до 100 кВт (кВА), 1000 об/мин	5	2
Электрические машины мощностью от 100 до 1000 кВт (кВА),	3	1
1000 об/мин ¹		
Трансформаторы	5	2
Распределительные щиты	1	_
Коммутационная, защитная и пускорегулирующая аппаратура	5	_
Приборы контроля управления судном, связи, сигнализации	20	_
Нагревательные и отопительные приборы ²	1	0,5
Статические преобразователи	10	5

Для электрических машин мощностью свыше 1000 кВт (кВА) сопротивление изоляции R_i, МОм, в нагретом состоянии рассчитывается по формуле

$$R_i = \frac{P + 1000}{3U},$$

где U — напряжение номинальное обмотки (фазы), B; P — номинальная мощность, кВт (кВА).

² Для напряжений свыше 5000 В сопротивление изоляции принимается из расчета 2 кОм на 1 В номинального напряжения.

ДОПУСТИМЫЕ ТЕМПЕРАТУРЫ

1. Допустимые температуры нагревания изоляционных материалов различных классов для длительной работы следующие:

Класс изс	ЛЯ	ци	И	Допустимая температур									ература, °С			
A																105
Ε.																120
В.																130
F.																155
Н																180
C.															6	более 180

Если изоляция состоит из разных материалов, то температура, до которой может нагреваться каждый из этих материалов, должна быть не выше допустимой для данного материала.

Если изоляция состоит из нескольких слоев разных материалов и невозможно измерить температуру, до которой нагреваются отдельные слои, то допустимой температурой нагрева такой изоляции считается допустимая температура для примененного материала самого низкого класса.

Материал, служащий только для механической защиты и для разделительных прокладок, может быть более низкого класса изоляции.

2. Допустимые превышения температуры для электрических машин приведены в табл. 1. Они определены для температуры охлаждающего воздуха 45 °C.

Если температура охлаждающей среды ниже указанных значений, то превышения температуры могут быть соответственно увеличены, однако не более чем на $10\ ^{\circ}\mathrm{C}.$

Если температура охлаждающей среды выше указанных значений, то превышение температуры должно быть соответственно снижено.

- **3.** Превышение температуры трансформаторов, работающих при номинальных нагрузках при температуре окружающей среды +45 °C, должно быть не больше указанной в табл. 2.
- **4.** Допустимые превышения температуры разных частей выключателей по отношению к температуре окружающей среды $+45\,^{\circ}\mathrm{C}$ должны быть не больше указанных в табл. 3.

Допустимые превышения температур для электрических машин при температуре охлаждающего воздуха 45° С

No	Части электрических машин				k	Сла	сс изо	ляц	ион	ного	мат	ери	ала			
п/п			Α	1		Е	;		В	3		F	,		Н	l l
							Me	тод	ыи	змере	ния					
		Термометром	Методом сопротивления	Термодетекторами при укладке их между катушками в пазу	Термометром	Методом сопротивления	Термодетекторами при укладке их между катушками в пазу	Термометром	Методом сопротивления	Термодетекторами при укладке их между катушками в пазу	Термометром	Методом сопротивления	Термодетекторами при укладке их между катушками в пазу	Термометром	Методом сопротивления	Термодетекторами при укладке их между катушками в пазу
1	Обмотки переменного тока синхронных машин	_	55	55	_	65	65		75	75	_	95	95	\vdash	120	120
2	мощностью 5000 кВА и более или с длиной сердечника 1 м и более Обмотки машин переменного тока мощностью менее 5000 кВА и с длиной сердечника менее 1 м	45	55	_	60	70	_	65	75	_	80	95	_	100	120	_
3	Обмотки возбуждения машин постоянного и переменного тока с воз- буждением постоянным током, кроме указанных в пп. 5—8 таблицы	45	55	_	60	70	_	65	75	_	80	95	_	100	120	-
4 5	Якорные обмотки, соединенные с коллектором Обмотки возбуждения неявнополюсных машин с возбуждением	_ _	_ _	_	<u> </u>	_	_		85 85	_	_ _	105 105	_ _	_	_ _	<u>-</u>
6 7 8	постоянным током Однорядные обмотки возбуждения с оголенными поверхностями Стержневые обмотки роторов асинхронных машин Обмотки возбуждения малого сопротивления, имеющие несколько	60	60 60 55		75 75 70	75	_	85 85 75		_ _ _		105 105 95	_ _ _	130	130 130 120	
9	слоев и компенсационные обмотки Изолированные обмотки, непрерывно замкнутые на себя	55			70	_	_	75	_	_	95	_	_		120	
10 11	Неизолированные обмотки, непрерывно замкнутые на себя Стальные сердечники и другие части, не соприкасающиеся с обмотками]	Пре: зна	вышен ачений изол	і, ко	тор	перату ые соз ых ил	здав	али	бы оі	тасн	юст	ь повр	еж,	дені	ать Ія
12	Сердечники и другие стальные части, соприкасающиеся с обмотками	55		70	_		_	75	_	_	95		_	120	120	_
13	Коллекторы и контактные кольца, незащищенные и защищенные	55	_	60	_	_	_	75	_	_	85	_	_	95	95	-

Продолжение табл. 1

 Π р и м е ч а н и я : 1. Для обмоток машин переменного тока на номинальное напряжение выше 11000 В предельные допустимые превышения температуры должны быть снижены на 1,5 °C на каждые полные и неполные 1000 В сверх 11000 В при измерении термометром или на 1 °C при измерении температурным детектором.

- 2. Предельные допустимые превышения температуры обмоток, указанны в пп. 2 и 4 приложения, измеренные методом сопротивления для закрытых машин на напряжение не более 1500 В, допускается повышать на 5 °С.
- 3. Указанный класс изоляционного материала по п. 13 таблицы относится к изоляции коллектора или контактных колец, или же к изоляции присоединенных к ним обмоток, если класс изоляции последних ниже класса изоляции коллектора или контактных колец.
- 4. Основным методом измерения превышения температуры обмоток является метод сопротивления. Метод термометра допускается только в тех случаях, когда метод сопротивления по каким-либо причинам не может быть применен; предельные допустимые превышения температур для этих случаев указаны в таблице.
- 5. Если в дополнение к значениям, полученным по методу сопротивления, желательно иметь отсчет по термометру, то превышение температуры, измеренное в наиболее нагретой доступной точке, не должно превышать 60 °C для изоляции класса A, 75 °C для изоляции класса E, 85 °C для изоляции класса B, 105 °C для изоляции класса F и 130 °C для изоляции класса H.

 6. Допустимые превышения температуры коллекторов и контактных колец могут быть более значений, указанных в п. 13
- 6. Допустимые превышения температуры коллекторов и контактных колец могут быть более значений, указанных в п. 13 таблицы, при соблюдении следующих условий:
- если превышение температуры изоляционных материалов коллектора и контактных колец и связанных с ними обмоток не более значений, указанных в пп. 4 и 7 таблицы для материалов соответствующих классов;

если температура не достигает значений, опасных для паек соединений.

Таблипа 2

Части трансформатора	Метод измерения	Допустимы	е превышени	я температур,	°С, для класо	са изоляции
		A	Е	В	F	Н
Обмотки	Сопротивления	55	65	75	95	120
Сердечники и другие части термометра	Температуры	Превышени		ы должно бы для смежных	гь не больше к материалов	температур,

Таблица 3

№ п/п		Части выключа	геля	Допустимые превышения температуры, °С			
1	Пружинные массивные	Медные	При непрерывном режиме	35			
	контакты		При 8-часовом продолжительном, повторно-кратковременном и кратковременном режимах	55			
		Серебряные или со	См. сноску 1				
		В зависимости от рода металла или металлокерамического агломерата ¹					
2		25					
3	Шинные соединения	Не защище	нные в месте контакта от окисления	45			
		Защищенные в месте контакта	Слоем полуды или кадмия	55			
		в месте контакта от окисления Слоем серебра					
		Паяные или сварные		75			
4	Магн	иты, сердечники и п	одобные части	Как для изоляции, соприкасающейся с этими частями			
5	Ручные органы упр	авления	Из металла	10			
			Из изоляционного материала	20			
6	Кожухи, экраны ил	и части, не защищенные	от случайного прикосновения	35			
7	Кожухи реостатов, огражденны	косновения	200				
8	Реостаты, охлаждаемые воздухом	при замерах на рассто	янии 25 мм	175			
	I 1 п			<u> </u>			

Допускается превышение температуры до такого значения, чтобы нагретая часть не вызывала увеличения температуры смежных частей более допустимых для них температур.

СТЕПЕНЬ НЕРАВНОМЕРНОСТИ ХОДА ЭЛЕКТРИЧЕСКИХ АГРЕГАТОВ

1. Степень неравномерности хода электрических агрегатов при применении приводных поршневых двигателей на один оборот не должна превышать значений, приведенных в таблице (см. также 2.4 части IX «Механизмы» Правил классификации и постройки морских судов).

2. Степень неравномерности хода на один оборот для всех нагрузок, включительно, с номинальной нагрузкой при нормальной частоте вращения определяется по формуле

$$S = (\omega_{\text{max}} - \omega_{\text{min}})/\omega_{\text{cp.}}$$

 ω_{max} — наибольшая; ω_{min} — наименьшая;

 ω_{cp} — средняя частота вращения, соответственно.

Таблипа

Число импульсов двигателя в секунду	Степень неравномерности хода	двигателя с числом цилиндров
	до 2	более 2
Менее 10 10 — 20 Более 20	1/75 1/75 1/75	1/150 Число импульсов в секунду/1500 1/75

ПРИЛОЖЕНИЕ 4

РЕКОМЕНДАЦИИ ПО ПРОВЕРКЕ МЕХАНИЧЕСКОЙ ПРОЧНОСТИ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ЭЛЕКТРОМАГНИТНЫХ ТОРМОЗОВ

- 1. Распределительные выключатели рекомендуется изготавливать таким образом, чтобы они, не находясь под электрической нагрузкой, выдерживали испытание на включение и отключение на число циклов, указанное в табл. 1.
- 2. Маневровые выключатели рекомендуется изготавливать таким образом, чтобы их механическая прочность отвечала повторно-кратковременному режиму работы, и они выдерживали испытания на включение и отключение согласно табл. 2.
- 3. Механическая прочность предохранительных гнезд с ножевыми контактами должна быть такой, чтобы они выдерживали испытание на включение и выключение не менее 500 циклов (за один цикл принимается одно введение и одно извлечение из гнезда патрона предохранителя). После 500-кратного введения и извлечения патрона предохранителя не должно наблюдаться заедания патрона, а падение напряжения на переходных контактах не должно превышать допустимого.

Таблица 1

Предусмотренные конструкци	Регулировка и обслуживание, не предусмотренные	
без регулировки и обслуживания		конструкцией
1000 500 500 По согласован	20000 10000 5000 иго с Регистром	8000 4000 —
	без регулировки и обслуживания 1000 500 500	и обслуживания и обслуживанием¹ 1000 20000 500 10000

¹ Изготовитель должен определить, для каких элементов требуется обслуживание и регулировка после осуществления числа циклов не менее указанного в графе 2, которые обеспечат механическую прочность, соответствующую числу циклов по графе 3.

Таблица 2

Класс работы	Число циклов в час	Механическая прочность, выраженная через полное число циклов, 10^6
0	До 6	0,05
I	30	0,25
II	150	1,20
III	600	5,0
IV	1200	10,0

- **4.** Рекомендуется, чтобы механическая прочность тормоза была такой, чтобы он выдерживал испытания не менее чем на 10^6 включений. В результате испытаний не должны появляться механические и электрические повреждения, а также механический износ частей, делающие невозможной надежную работу тормоза.
- **5.** Рекомендуется, чтобы рабочая устойчивость электромагнитного тормоза при сопряжении его с приводом, соответствующим данной величине тормоза, была менее 10^5 включений.

РЕКОМЕНДАЦИИ ПО ПРОВЕРКЕ КОММУТАЦИОННОЙ ПРОЧНОСТИ, НОРМАЛЬНОЙ И КРАТКОВРЕМЕННОЙ КОММУТАЦИОННОЙ СПОСОБНОСТИ АППАРАТОВ

- 1. Рекомендуется, чтобы коммутационная прочность (под нагрузкой) контактов распределительных и маневровых выключателей, определенная для тока и напряжения, отвечающих нормальной коммутационной способности, была, по крайней мере, не менее механической прочности изделия с несменными коммутационными элементами, указанной соответственно в табл. 1 и 2 приложения 4 или не менее 1/20 этой механической прочности для изделий со сменными коммутационными элементами. Испытания при этом должны проводиться для категорий работы AC₃, DC₃ и DC₄, указанных в табл. 1 настоящего приложения.
- **2.** Рекомендуется, чтобы коммутационная прочность вспомогательных контактов контакторов была не менее механической прочности их главных

нение направления вращения

- контактов. Коммутационная прочность вспомогательных контактов должна быть, по крайней мере, не менее 1/20 механической прочности главных контактов, если вспомогательные легко заменяемы.
- **3.** Рекомендуется, чтобы коммутационная способность маневровых выключателей была не менее указанной в табл. 1.
- **4.** Рекомендуется, чтобы при испытаниях относительное время работы электрических контакторов и полное время для одного коммутационного цикла было не менее указанного в табл. 2.
- **5.** Рекомендуется, чтобы при испытаниях кратковременной коммутационной способности маневровых выключателей число циклов было не менее указанного в табл. 3.

Таблица 1

		Род нагрузки			Норм	альная			Кратковременная						
			В	ключен	ие	Bı	ыключен	ие	В	ключені	ие	Вн	ыключен	ие	
ľ		Переменный ток	$I/I_{\scriptscriptstyle m H}$	$U/U_{\scriptscriptstyle m H}$	$\cos \phi^1$	$I/I_{\scriptscriptstyle \mathrm{H}}$	$U/U_{\scriptscriptstyle m H}$	$\cos \phi^1$	$I/I_{\scriptscriptstyle m H}$	$U/U_{\scriptscriptstyle m H}$	$\cos \phi^1$	$I/I_{\scriptscriptstyle m H}$	$U/U_{\scriptscriptstyle m H}$	$\cos \phi^1$	
Ī	AC ₁	Активная или малоиндуктивная нагрузка	1	1	0,95	1	1	0,95	_	_	_	_	_	_	
	AC ₂	Пуск электродвигателей с фазным ротором, торможе-	2,5	1	0,65	2,5	1	0,65	4	1,1	0,65	4	1,1	0,65	
	AC ₃	ние противовключением Пуск короткозамкнутых дви- гателей, отключение двига-	6	1 ²	0,35	1	0,17	0,35	$\frac{10^3}{8^4}$	1,1	0,35	8 ³ 6 ⁴	1,1	0,35	
	AC ₄	теля на ходу Пуск короткозамкнутых двига- телей, импульсный ход, изме-	6	1	0,35	6	1	0,35	12 ³ 10 ⁴	1,1	0,35	10 ³ 8 ⁴	1,1	0,35	

Рекомендуемая коммутационная способность маневровых выключателей

	Род нагрузки			Норм	альная			I	Кратковр	еменная	I		
		Включение Выключение					В	Включение Выключение					
	Постоянный ток	$I/I_{\scriptscriptstyle \mathrm{H}}$	$U/U_{\scriptscriptstyle m H}$	a/R^5	$I/I_{\scriptscriptstyle \mathrm{H}}$	$U/U_{\scriptscriptstyle m H}$	a/R ⁵	$I/I_{\scriptscriptstyle \mathrm{H}}$	$U/U_{\scriptscriptstyle m H}$	a/R^5	$I/I_{\scriptscriptstyle \mathrm{H}}$	$U/U_{\scriptscriptstyle m H}$	a/R^5
DC ₁	Активная или малоиндук- тивная нагрузка	1	1	1	1	1	1	_	_	_	_	_	_
DC ₂	Пуск электродвигателей параллельного возбуждения и их отключение на ходу	2,5	1	2	1	0,1	7,5	4	1,1	2,5	4	1,1	2,5
DC ₃	Пуск электродвигателей па- раллельного возбуждения, импульсный ход, изменение направления вращения	2,5	1	2	2,5	1	2	4	1,1	2,5	4	1,1	2,5
DC ₄	Пуск электродвигателей последовательного возбуждения и их отключение на ходу	2,5	1	7,5	1	0,3	10	4	1,1	15	4	1,1	15
DC ₅	Пуск электродвигателей последовательного возбуждения, импульсный ход, изменение направления вращения	2,5	1	7,5	2,5	1	7,5	4	1,1	15	4	1,1	15

 $I_{\rm H}$ — номинальный рабочий ток; $U_{\rm H}$ — номинальное рабочее напряжение; I — включающий или выключающий ток; U — напряжение сети.

Таблица 2

Класс	Относительное время работы ПВ, %	Продолжительность подводного цикла, с	Продолжительность нагрузки, с
I	60	120	72
II	60	24	14,4
III	40	6	2,4
IV	40	3	1,2

Таблица 3

Выключатели	Категория работы	Управляющее напряжение	Число циклов			
			Включение	Выключение		
Ручные маневровые	AC ₁ , AC ₂ , DC ₁ , DC ₂ , DC ₃ , DC ₄ , DC ₅	_	20			
	AC ₃ , AC ₄	_	100	20		
Электромагнитные контакторы	AC ₁ , AC ₂ , DC ₁ , DC ₂ , DC ₃ , DC ₄ , DC ₅	$U_{\scriptscriptstyle \mathrm{H}}$	20	20		
	AC ₃ , AC ₄	$0.85U_{\scriptscriptstyle m H}$	50	_		
		1,1 U _н	51	0		
		$U_{\scriptscriptstyle \mathrm{H}}$	_	20		

 $^{^{1}}$ Допуск $\cos \phi \pm 0.05$. 2 Допускается $U < U_{\mathrm{H}}$. 3 Для $I_{\mathrm{H}} \! \leqslant \! 100$ А. 4 Для $I_{\mathrm{H}} \! > \! 100$ А. 5 Допуск $a/R \! \pm \! 15$ %.

РЕКОМЕНДАЦИИ ПО ПРОВЕРКЕ РАЗРЫВНОЙ СПОСОБНОСТИ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ

- 1. Рекомендуется, чтобы при испытаниях разрывная способность автоматических выключателей проверялась токами не менее указанных в табл. 1.
- **2.** Автоматический выключатель должен быть испытан на правильное выключение номинального разрывного тока при 110 % номинального коммутационного напряжения.
- 3. Если разрывная способность при подключении к клеммам подвижных и неподвижных контактов разная, в документации должна быть указана разрывная способность для обоих случаев.
- **4.** У автоматических выключателей постоянного тока номинальная включающая способность должна быть равна номинальной разрывной способности тока короткого замыкания.
- 5. При испытаниях должно быть установлено, что номинальная включающая способность автоматического выключателя переменного тока, по крайней мере, равна произведению номинального разрывного тока, указанного в табл. 1, на соответствующий коэффицент k, указанный в табл. 2.

- **7.** При испытаниях автоматических выключателей в коммутационном цикле, указанном в п. 6, должны быть получены следующие результаты:
- .1 на контактах не должна образовываться устойчивая дуга и не должно быть переброса дуги между полюсами и заземленными частями автоматического выключателя или на части, находящиеся под другим напряжением;
- **.2** выброс дуги должен оставаться в пределах, предусмотренных защитой зоны, и не создавать угрозы обслуживающему персоналу;
- .3 автоматический выключатель не должен получать повреждений и после замены вспомогательных контактов должен быть пригоден к работе в нормальных рабочих условиях;
- .4 не должно быть оплавления токоведущих элементов и сваривания контактов, а автоматический выключатель должен отключаться при приложении номинального включающего усилия;
- .5 температура, достигаемая контактами автоматического выключателя во время испытания на нагрев, проводимого после испытания на коммутационную способность, не должна вызывать повреждений смежной изоляции и нарушений упругости металлических элементов, действующих в качестве пружин;
- .6 не должно быть повреждений расцепителя и реле, а временные характеристики тепловых расцепителей (реле), проверенные после испытания на ток короткого замыкания, должны оставаться в пределах допуска.

Таблица 1

Номинальный непрерывный ток, А	Номинальная разрывная способность, кА								
	Перемені	ный ток	Постоян	ный ток					
	500 В, 50 Гц	cos φ	220 B	φ/R, м/с					
63	5	0,5	4	10					
100	8	0,5	6	10					
160	10	0,4	8	10					
250	15	0,3	15	15					
400	25	0,25	25	15					
630	30	0,25	30	15					
1000	40	0,25	_	15					
1600	50	0,25	_	15					
2500	60	0,2	_	15					
4000	80	0,2	_	15					

Таблица 2

Разрывной ток, кА	cos φ	k
До 10	0,5	1,7
До 10 10 — 20 20 — 50 Более 50	0,3 0,25	2,0 2,1
Более 50	0,2	2,2

ОЦЕНКА СТЕПЕНИ ИСКРЕНИЯ КОЛЛЕКТОРОВ ЭЛЕКТРИЧЕСКИХ МАШИН

Степень искрения	Характеристика степени искрения	Состояние коллектора и щеток				
1	Искрения нет (темная коммутация)	Отсутствуют почернение на коллекторе и следы нагара на щетках				
1,25	Слабое искрение под небольшой частью края щетки	То же				
1,5	Слабое искрение под большой частью края щетки	Появление следов почернения на коллекторе, легко устраняемых протиранием его поверхности				
2	Искрение под всем краем щетки. Допускается только при кратковременных толчках нагрузки и перегрузки	бензином, а также следов нагара на щетках Появление следов почернения на коллекторе, не устраняемых протиранием его поверхности бензином, а также следов нагара на щетках				
3	Значительное искрение под всем краем щетки с наличием крупных и вылетающих искр. Допускается только для моментов прямого (без реостатных ступеней) включения или реверсирования машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальнейшей работы	Значительное почернение на коллекторе, не устраняемое протиранием его поверхности бензином, а также подгар и разрущение щеток				
Примечание. Основным показателем оценки коммутации является состояние коллектора и щеток.						

ПРИЛОЖЕНИЕ 8

ИЗОЛЯЦИОННЫЕ РАССТОЯНИЯ

Расстояния между частями, находящимися под напряжением с разными потенциалами, или между частями, находящимися под напряжением и заземленными металлическими частями или корпусом оборудования, как по воздуху, так и по поверхности изоляционного материала должны соответствовать рабочим напряжениям и условиям работы эксплуатируемого оборудования с учетом свойств примененных изоляционных материалов. Эти расстояния должны отвечать требованиям стандартов на судовое электрическое оборудование, одобренных Регистром.

При отсутствии в технической документации указаний об изоляционных расстояниях рекомендуется руководствоваться таблицей. Значения в таблице даны для электрического оборудования до 1000 В.

Изоляционные расстояния, отличающиеся от одобренных стандартов или от указанных в таблице, а также изоляционные расстояния для оборудования напряжением выше 1000 В в каждом случае являются предметом специального рассмотрения Регистром.

Таблица

Электрическое	Изоляционные	Изоляционные расстояния, мм, для напряжения, В																			
оборудование	расстояния	до	60	61 –	- 250	251 -	— 500	501 -	- 750	751 —	1000	1001 -	- 1500	1501 -	- 2000	2001 —	- 3000	3001 -	- 5500	5501 -	- 7500
		a	б	a	б	a	б	a	б	a	б	a	б	a	б	a	б	a	б	a	б
Распределительные устройства, электрические машины, трансформаторы	Между неизолирован- ными шинами и зазем- ленными металли- ческими частями или между неизолиро- ваными шинами, отно- сящимися к разным полюсам или фазам	6	8	8	14	14	20	30		30		40	_	50		60	_	90	_	105	
	Между частями под напряжением, иными чем шинное соединение (не относится к коммутаторам)	3	5	5	7	8	10	10	14	14	20	20	28	28	36	36	50	55	80	75	105
Электрические аппараты: установочная арматура внутренней связи и сигнализации, приборы контроля и управления судном	Между неизолированными шинами и заземленными металлическими частями или между неизолированными шинами, относящимися к разным полюсам или фазам	6	8	8	14	14	20	30		30		40	_	50	1	60		90	90		105
	Между частями под напряжением (иными, чем шинные сое- динения)	1	_		-		1	10	14	14	20	20	28	28	36	36	50	50	75	75	105
Электронагревательные приборы, светильники, установочная арматура	Между частями под напряжением и заземленными металлическими частями	3	4	5	7	8	10	_		_	_	_			_	_		_		_	_

Примечание. а — расстояние по воздуху; б — расстояние по поверхности изоляционного материала. Расстояния в графе «б» относятся к материалам, устойчивым к токам утечки по поверхности.

ПРИЛОЖЕНИЕ 9

СТЕПЕНИ ЗАЩИТЫ ЭЛЕКТРИЧЕСКОГО ОБОРУДОВАНИЯ

Степень защиты электрического оборудования обозначается буквами IP и двумя цифрами: первая обозначает степень защиты оборудования от попадания внутрь твердых посторонних тел

(см. табл. 1), вторая означает степень защиты оборудования от проникновения воды (см. табл. 2).

Защитное исполнение электрооборудования напряжением до 1000 В указано в табл. 3.

Таблица 1

Первая цифра обозначения степени защиты	Характеристика защиты электрического оборудования от попадания твердых посторонних тел
0	Защита оборудования от попадания внутрь твердых посторонних тел отсутствует
1	Защита оборудования от попадания твердых посторонних тел диаметром 52,5 мм и более
2	Защита оборудования от попадания внутрь твердых посторонних тел диаметром 12,5 мм и более
3	Защита оборудования от попадания твердых посторонних тел диаметром 2,5 мм и более
4	Защита оборудования от попадания твердых посторонних тел диаметром 1 мм и более
5	Защита оборудования от вредного проникновения пыли.
	Проникновение пыли не предотвращается полностью, но она не может проникнуть в корпус в количестве,
	достаточном для повреждения оборудования или нарушения его удовлетворительной работы
6	Полная защита оборудования от проникновения пыли

Таблица 2

Таблица 3

Вторая цифра обозначения степени защиты	Характеристика защиты электрического оборудования от попадания воды и других жидкостей
0	Защита отсутствует
1	Защита от вертикально падающих капель конденсата воды.
	Капли воды, падающие вертикально на корпус, не должны оказывать вредного воздействия на оборудование
2	Защита от капель воды.
	Падающие капли воды не должны оказывать вредного воздействия на оборудование, когда корпус наклонен под любым
	углом до 15° к вертикали ¹
3	Защита от дождя.
	Вода в виде дождя, падающая под углом, равным или меньшим 60° к вертикали, не должна оказывать вредного воздействия на оборудование
4	Защита от брызг.
	Вода, разбрызгиваемая из любого направления, не должна оказывать вредного воздействия на оборудование
5	Защита от струй воды.
	Струя воды, выпускаемая с помощью наконечника из любого направления при определенных условиях, не должна
	оказывать вредного воздействия на оборудование
6	Защита от условий, существующих на палубе судна (включая палубное водонепроницаемое оборудование).
	При воздействии морской волны вода не должна проникать в корпус при определенных условиях
7	Защита от погружения в воду.
	Вода не должна проникать в корпус при оговоренных давлении и времени
8	Защита при неограниченно долгом погружении в воду под определенным обусловленным давлением ²

Допускается дополнить обозначение данной степени защиты индексом «С» (например, IP22C), устанавливающим более жесткие требования к углу падения дождя. Степень защиты, отвечающая дополнительному индексу, устанавливающим более жесткие требования к углу падения дождя. Степень защиты, отвечающая дополнительному индексу, устанавливается в национальных стандартах или действующих в стране технических условиях.

Защитное исполнение электрооборудования напряжением до 1000 В

		uninoc nene	annenne su	ck i poooop,	довиния н	шприжение	.н до 1000					
Исполнение	Степень	, ,										
по защите от попадания	защиты (первая	незащи- щенное	каплезаш	ищенное	брызгозаг	цищенное	водозащ	ищенное	погру	жное		
внутрь твердых посторонних тел	цифра)		Степень защиты (вторая цифра)									
		0	1	2	3	4	5	6	7	8		
Незащищенное	0	IP00	IP01	_	_	_	_	_	_	_		
Защищенное от попа-	1	IP10	IP11	IP12	IP13			_	-			
дания посторонних	2	IP20	IP21	IP22	IP23			_	ı	_		
тел	3	IP30	IP31	IP32	IP33	IP34		_	_	_		
	4	IP40	IP41	IP42	IP43	IP44		_	_	_		
	5	IP50	IP51	_	_	IP54	IP55	IP56	_			
	6	IP60	_	_	_	_	IP65	IP66	IP67	IP68		

Примечания: 1. Электрооборудование исполнения ІР00 называется открытым.

- 2. Электрооборудование исполнения ІР60, ІР65, ІР66, ІР67 и ІР68 называется герметичным.
- В таблице указаны предпочтительные степени защиты, устанавливаемые стандартами.
 Если степень одного из видов защиты не играет роли, то вместо одной из цифр в обозначении ставится знак X.

Электрическое оборудование исполнения, которое по конструкции и изоляции пригодно для работы под водой, считается по защите равноценным степени защиты 8.

РЕКОМЕНДАЦИИ ПО ПРОВЕРКЕ КОНСТРУКЦИИ И ФИЗИЧЕСКИХ СВОЙСТВ КАБЕЛЕЙ

1. Жилы.

Все жилы кабелей и проводов должны изготавливаться из отожженной электролитической меди, причем электрическое сопротивление каждой отдельной жилы кабеля, измеренное постоянным током и приведенное к температуре 20 °С (Ом/км), должно быть не более рассчитанного по формуле

$$R = 17,24k_1k_2k_3/N \cdot 0,7854d^2 \tag{1-1}$$

для жил круглого сечения, состоящих из цилиндрических проволок одинакового сечения; или

$$R = 17,24k_1k_3/A \tag{1-2}$$

для секторных жил,

где N — число проволок в жиле;

d — диаметр проволоки, мм;

- A эффективная поперечная площадь сечения жилы, соответствующая площади сечения одножильного провода с однопроволочной жилой той же длины, изготовленного из материала с такой же проводимостью и обладающего таким же сопротивлением, мм 2 ;
- k_1 коэффицент (см. табл. 1);
- $k_2 = 1$ для однопроволочной жилы;
- $k_2 = 1,02$ для многопроволочных жил с диаметром проволок более 0,6 мм;
- $k_2 \! = \! 1,\! 04$ для многопроволочных жил с диаметром проволок не более 0,6 мм;
- $k_3 = 1,0$ для одно-, двух- и трехжильных кабелей;
- $k_3 = 1,05$ для гибких кабелей и шнуров с двумя жилами и более;
- $k_3 = 1,03$ для многопарных телефонных кабелей;
- $k_3 = 1,02$ для остальных кабелей.

Таблица 1

	Номинальный диаметр проволок жилы, мм					
k_1	0,10	0,30	0,90			
	— 0,30	— 0,90	— 3,60			
Для облуженных проволок жилы: однопроволочной многопроволочной Для нелуженых проволок		1,05	1,04			
	1,07	1,04	1,03			
жилы: однопроволочной многопроволочной	 1,04	1,03 1,02	1,03 1,02			

2. Изоляция жил.

2.1 Типы материалов изоляции токоведущих жил кабелей и проводов приведен в табл. 2. Применение других материалов изоляции является в каждом случае предметом специального рассмотрения Регистром.

Таблица 2

Обозначе- ние изоляции	Типы изоляционных материалов	Допустимая рабочая тем- пература, °С1
PVC/A PVC/D EPR XLPE S95	Поливинилхлорид — обычный Поливинилхлорид — теплостойкий Этиленпропиленовая резина Полиэтилен сетчатой структуры Кремнийорганическая резина	60 75 85 85 95

¹ Температура проводника для расчета допустимой длительной нагрузки кабеля.

2.2 Рекомендуемые свойства отдельных изоляционных материалов приведены в табл. 3. Свойства силиконовой резины и минеральной изоляции являются в каждом случае предметом специального рассмотрения Регистром.

Таблица 3 Механические свойства изоляционных материалов

	теханические своиства изоляционн	IDIA WI	атери	43100	
No	Свойства	EPR	XLPE	S95	PVC
Π/Π	изоляционных материалов				
1	Механические свойства до старения				
1.1	Прочность на разрыв, минимум,	4,2	12,5	5,0	12,5
	H/MM^2				
1.2	Удлинение при разрыве, минимум, %	200	200	150	150
2	Механические свойства после ста-				
	рения в воздушной печи:				
	температура, °С (точность ± 2 °С)	135	135	200	80
	длительность, ч	168	168	240	168
2.1	Прочность на разрыв:				
	.1 минимальная величина, H/мм ²	—	_	4,0	12,5
	.2 максимальные изменения в зави-	± 30	± 25	—	± 20
	симости от величины до старения, %				
2.2	Удлинение при разрыве:				
	.1 минимальная величина, %	- .		120	150
	.2 максимальные изменения в зави-	± 30	±25	_	± 20
	симости от величины до старения,%				
3	Механические свойства после				
	старения в сжатом воздухе при				
	давлении 0,55±0,02 МПа:	127			
	температура, °С (точность ± 1 °С)	40	_	_	-
3.1	продолжительность, ч	40	_	_	-
3.1	Прочность на разрыв: максимальные изменения в зависи-	+20			
	мости от величины до старения, %	± 20			_
3.2	Удлинение на разрыв:				
3.2	максимальные изменения в зави-	+30	_	_	l
	симости от величины до старения,	1 50			
	% об величины до старения,				
	, · ·				
L					

2.3 Номинальная радиальная толщина резиновой изоляции должна быть не менее указанной в табл. 4.

Допустимые отклонения от номинальной радиальной толщины изоляции, указанной в табл. 4, в сторону уменьшения должны быть не более 10 %.

Таблица 4

Номинальная площадь сечения жилы, мм ²	Номинальная радиальная толщина изоляции, мм
1; 1,5 2,5; 4; 6 10; 16 25; 35; 50; 70 95; 120 150 185 240 300 400 500 625	1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0 3,2

2.4 Наименьшие средние толщины изоляции кабелей и проводов из поливинилхлорида для напряжения 250 и 750 В рекомендуется принимать по табл. 5.

Таблица 5

Номинальная площадь сечения	Толщина изоляции из поливинилхлорида, мм, для напряжения, В				
жилы, мм ²	250	750			
0,75 — 1,5	0,7	0,9			
2,5	0,8	0,9			
4 — 6	0,8	1,0			
10	0,9	1,1			
16	1,0	1,2			
25	1,1	1,3			
35	1,2	1,3			
50	_	1,4			
70	_	1,6			
95	_	1,7			
120	_	1,8			
150	_	1,9			
185	_	2,0			
240	_	2,2			
300	_	2,4			

2.5 Допускается уменьшение толщины изоляции жил, указанной в табл. 5, на 10~% номинальной толщины плюс 0,1~мм.

Допускается уменьшение толщины поливинилхлоридных оболочек, принятой по табл. 6, на 15 %номинальной толщины плюс 0,1 мм.

Допускается уменьшение толщины металлических оболочек, указанной в табл. 7, на 10 % номинальной толщины плюс 0,1 мм.

Таблица 6

Диаметр под оболочкой, мм	До 10	10 — 25	25 — 40	40 — 50	Более 50
Номинальная радиальная толщина резиновой оболочки, мм	2,0	2,5	3,0	4,0	4,5

Таблица 7

Диаметр под оболочкой, мм	Радиальная толщина свинцовой оболочки, м						
Ź	минимальная	номинальная	максимальная				
До 16	1,0	1,15	1,2				
16 — 30	1,1	1,25	1,35				
30 — 36	1,2	1,4	1,51				
36 — 40	1,3	1,5	1,62				
40 — 46	1,4	1,6	1,73				
46 — 50	1,5	1,7	1,84				
50 — 56	1,6	1,8	1,94				
56 — 60	1,8	2,05	2,21				
60 — 65	2,0	2,3	2,48				
Более 65	2,2	2,5	2,70				

Допустимое уменьшение номинальной радиальной толщины резиновой оболочки, указанной в табл. 6, должно быть не более 20 %.

Радиальная толщина свинцовой оболочки должна соответствовать указанной в табл. 7.

3. Оболочки.

3.1 Номинальная радиальная толщина резиновой оболочки должна быть не менее указанной в табл. 6.

Указанные в табл. 6 толщины допускается применять для оболочек из поливинилхлорида.

Свинцовая оболочка должна содержать присадку сурьмы в количестве 0.4-0.8 %.

Могут быть допущены и другие легирующие присадки.

Рекомендуемые допуски толщины оболочек указаны в п. 2.5 приложения.

3.2 Свойства составов для неметаллических оболочек рекомендуется принимать по табл. 8.

4. Защитные покрытия.

Диаметр и толщина, мм, стальных проволок и лент для бронирования кабелей рекомендуется принимать по табл. 9.

5. Испытания на пламеустойчивость.

5.1 Общие указания.

Испытание на пламеустойчивость проводится для определения стойкости изолирующих оболочек кабелей и проводников при воздействии пламени. Это испытание нельзя применять при определении воспламеняемости электрических изолирующих материалов.

5.2 Образцы для испытания.

От готовых кабелей или проводников берется образец длиной 600 ± 25 мм.

Таблица 8

№ π/π	Основной материал оболочки		Полихлор	пропилен		Поливин	Поливинилхлорид	
11/11	Обозначение материала оболочки ¹	SP1	SP2	SP3 ²	SP4	SV1	SV2	
	Длительно допустимая рабочая температура на жиле, °C	60	80	60	80	60	80	
1	Механические свойства до старения							
1.1	Прочность на разрыв, минимум, H/мм ²	8,4	8,4	12,7	12,7	10,5	15,0	
1.2	Удлинение при разрыве, минимум, %	250	250	300	300	100	125	
2	Механические свойства после старения в печи:							
	время испытания, ч	168	168	168	168	120	240	
	температура, °С	80	100	80	100	100	100	
2.1	Прочность на разрыв, в процентах от величины прочности до старения:							
	минимум	70	70	70	70	85	80	
	максимум	_	_	_	_	_	120	
3	Механические свойства после старения в кислороде при						120	
	давлении 2,1 H/мм ² :							
	время испытания, ч	96	96	96	96	_	_	
	температура испытания, °С	70	80	70	80	_	_	
3.1	Прочность на разрыв, в процентах от величины прочности до	70	70	70	70	_	_	
	старения, минимум			, ,				
3.2	Удлинение при разрыве, в процентах от величины до старения,	70	70	70	70	_	_	
	минимум		, ,	, ,				
4	Механические свойства после погружения в горячее масло:							
	время испытания, ч	24	24	24	24	_	_	
	температура масла, °С	100	100	100	100	_	_	
4.1	Прочность на разрыв, минимальная, в процентах от величины,	60	60	60	60	_	_	
	полученной на образцах до испытания в горячем масле							
4.2	Удлинение при разрыве минимальное, в процентах от величины, полученной на образцах до испытания в горячем масле	60	60	60	60	_	_	
5	Термопластические свойства							
5.1	Испытание на деформацию при нагревании на образцах, не							
	подвергавшихся старению:							
	время предварительной климатизации, ч	_	l –	_	_	1	1	
	время испытания, ч	_	l –	_	_	1	1	
	температура печи, °С	_	l –	_	_	120	120	
	вес, создающий нажим на образец, г	_	–	_	_	350	400	
	максимальная допустимая деформация, %	_	–	_	_	40	40	
5.2	Испытание на холодный изгиб на образцах, подвергавшихся							
	старению							
5.2.1	Старение в печи:							
	Ч	_	-	_	_	168	168	
	°C	_	-	_	_	80	90	
5.2.2	1 31							
	ч	_	-	_	-	4	4	
_ ,	°C	_	-	_	_	-20	-20	
5.3	Испытание тепловым ударом, температура в печи, °С	_	-	_	_	120 ± 2	120 ± 2	
6	Дополнительное испытание на старение поливинил-							
, .	хлоридного состава:					00	100	
6.1	температура воздуха, °С	_	-	_		80	100	
6.2	время испытания, ч максимальная потеря массы (приблизительно), мг/см ²	_	I —	_		120 2,0	120 2,0	
0.5	максимальная потеря массы (приолизительно), мг/см	_	_	_		۷,0	∠,0	

Таблица 9

	Диа	Толг	цина		
кабеля под броней		проволоки	круглой проволоки	плоской проволоки	ленты
более	до	для оплетки			
_	10	0,2	1,2	1,0	_
10	20	0,3	1,5	1,2	_
20	25	0,3	2,0	1,4	_
25	30	0,4	2,0	1,4	_
30	45	0,4	2,5	1,8	0,5
45	60	0,4	2,5	1,8	0,8

¹ Все составы оболочек допускаются для стационарных кабелей.
2 Состав SP3 допускается применять для оболочек переносных кабелей, предназначенных для работы в тяжелых условиях.

5.3 Испытательное устройство.

Испытательное устройство состоит из металлического ящика, передняя сторона которого открыта, газовой горелки с пламенной трубой с внутренним диаметром 10 мм и штатива.

Металлический ящик имеет следующие размеры: высота — $1200\pm25\,$ мм, ширина — $300\pm25\,$ мм, глубина — $45\pm25\,$ мм.

5.4 Тарировка испытательного пламени.

Пламя устанавливается таким образом, чтобы в вертикальном положении его общая длина составляла примерно 125 мм, а длина конуса ядра пламени примерно 40 мм.

На расстоянии 50 мм над отверстием горелки в пламя горизонально вводится медная проволока длиной 100 мм и диаметром 0,7 мм своим свободным концом.

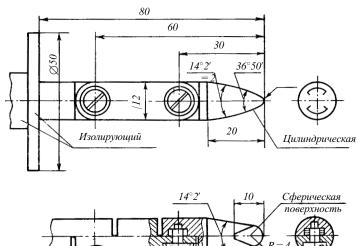
Температура пламени должна быть такая, чтобы медная проволока расплавлялась не менее чем за 4 с и не более чем за 6 с.

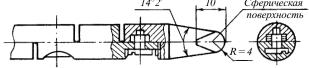
5.5 Проведение испытания.

Испытание проводится в помещении без сквозняков. Образец подвешивается вертикально в середине металлического ящика и подвергается воздействию испытательным пламенем под углом 45° с расстоянием 100 мм над нижним концом, таким образом, чтобы конус пламени касался образца.

Время воздействия пламени t, c, определяется по формуле

$$t = 60 + m/25, (5.5)$$


где m — масса образца, г.


5.6 Оценка результатов.

Кабели и провода считаются пламеустойчивыми, трудновоспламеняемыми, если образец не воспламеняется, или возникшее горение образца после окончания воздействия испытательным пламенем самостоятельно гаснет, и следы огня не достигают верхнего конца образца.

ИСПЫТАТЕЛЬНЫЙ ЩУП

	не более 25 $\pm 0,05$ мм
Допуски	более 25 \pm 0,2 мм
На углы $\ldots \ldots \leq 5'$	
На пинейные размеры:	

ПРИЛОЖЕНИЕ 12

ДОПУСТИМЫЕ ОТКЛОНЕНИЯ ПАРАМЕТРОВ ПРИ МЕХАНИЧЕСКИХ И КЛИМАТИЧЕСКИХ ИСПЫТАНИЯХ

Параметр	Допустимые отклонения	Амплитуда	+20 %
Частота вибрации:		Ускорение при вибрации	
	± 2 Гц		$\pm 20 \%$
более 50	<u>±</u> 3 %	Температура	. ±2 °C
		Относительная влажность	

КЛИМАТИЧЕСКОЕ ИСПОЛНЕНИЕ ИЗДЕЛИЙ, ДОПУСКАЕМЫХ К УСТАНОВКЕ НА МОРСКИХ СУДАХ

Исполнение	Обозначения ¹		
Для судов, предназначенных для эксплуатации в макроклиматических районах с умеренно холодным морским климатом ²	M	M	
Для судов, предназначенных для эксплуатации только в макроклиматических районах с тропическим морским климатом ³	TM	MT	
Для судов неограниченного района плавания Для всех макроклиматических районов на суше и на море	OM B	MU B	

¹ Обозначения: русскими буквами — принятые в России, латинскими — в некоторых странах Европы.

ПРИЛОЖЕНИЕ 14

ПРИНЯТЫЕ В РОССИИ ОБОЗНАЧЕНИЯ ИЗДЕЛИЙ ПО КЛИМАТИЧЕСКИМ КАТЕГОРИЯМ РАЗМЕЩЕНИЯ И РАЗМЕЩЕНИЕ ЭТИХ ИЗДЕЛИЙ НА СУДАХ (ПРИВЕДЕНЫ ТОЛЬКО ПЕРВЫЕ, ОСНОВНЫЕ ЦИФРЫ ОБОЗНАЧЕНИЙ)

Категория размещения	Места установки электрического оборудования
1 2	На открытых палубах В помещениях, где колебания температуры и влажности воздуха несущественно отличаются от колебаний на открытом воздухе и имеется доступ наружного воздуха (например, в металлических помещениях надстроек и рубок без теплоизоляции, в помещениях под палубой переборок без теплоизоляции и не имеющих над собой других помещений); на открытых палубах, но в местах, недоступных прямому воздействию солнечной радиации, атмосферных осадков и
3	обливанию или обрызгиванию морской водой; в оболочках изделий категории размещения 1 В помещениях с повышенной влажностью (особо сырых), в которых возможно длительное наличие воды или частая конденсация влаги на переборках и подволоках
4	В помещениях с теплоизоляцией с естественной вентиляцией без исскуственно регулируемых климатических условий или с длительными перерывами в регулировании, где колебания температуры и влажности воздуха, влияние ветра и атмосферных осадков существенно меньше, чем на открытом воздухе, отсутствуют роса и прямое воздействие солнечной радиации
5	В помещениях с искуственно регулируемыми климатическими условиями (отапливаемых, вентилируемых), в том числе с полностью или частично кондиционированным воздухом

² К этим районам относятся моря и океаны, расположенные севернее 30° северной широты и южнее 30° южной широты. ³ К этим районам относятся моря и океаны, расположенные между 30° северной широты и 30° южной широты.

ИСПЫТАНИЕ ЭЛЕКТРИЧЕСКИХ ИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ НА ВОСПЛАМЕНЯЕМОСТЬ

1. Общие указания.

Испытанию на воспламеняемость подвергаются твердые изоляционные материалы, которые применяются в качестве держателей токоведущих частей или как покрытия электрических и электронных устройств.

Этот метод испытания нельзя применять для изоляционных оболочек и кожухов кабелей и проводников.

2. Образцы для испытания.

Размеры образцов: длина — 200 мм, ширина — 35 мм, толщина — $3\pm1,5$ мм.

Если испытание проводится на образцах с другими размерами, то способ испытания следует согласовать с Регистром.

Если образцы изготовлены из материала толщиной более 4,5 мм, испытание проводится с той стороны образца, где находится неповрежденная прессованная оболочка.

Перед испытанием образец следует нормализовать при относительной влажности воздуха 65 ± 3 % при температуре 20 ± 2 °C.

3. Испытательное устройство.

Испытательное устройство включает в себя петлю из нити накаливания и подвижный держатель образца, который оборудован шкалой для определения высоты пламени и перемещаемым грузом для регулировки давления сжатия.

Для изготовления петли следует применять нить накаливания из хромоникелевого и железохромоалюминевого сплавов.

Конфигурация и размеры петли из нити накала должны соответствовать рис. 1.

Рис. 1 Петля из нити накаливания

Подвижный держатель образца следует располагать таким образом, чтобы образец прижимался под прямым углом к петле из нити накала (см. рис. 2 и 3).

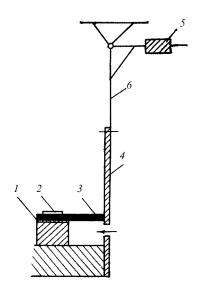


Рис. 2 Схема испытательного устройства: I — подводящий провод; 2 — держатель с зажимами; 3 — петля из нити накала; 4 — образец; 5 — масса; 6 — остов с держателем образца

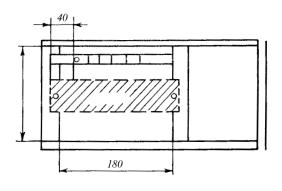


Рис. 3 Держатель образца со шкалой

4. Проведение испытания.

Петля из нити накала нагревается электрическим способом до температуры, соответствующей параметрам испытания. Эту температуру следует

поддерживать при постоянной подаче мощности в течение не менее 120 с перед началом испытания.

Держатель с образцом прижимают в течение установленного времени к петле из нити накала с силой 1 Н. Если при этом изоляционный материал воспламеняется, по шкале определяется высота пламени и продолжительность догорания, отмечая при этом время удаления образца от петли до момента затухания пламени.

5. Условия испытания.

Параметры испытания изоляционных материалов приведены в таблице.

Таблица

Параметры	Группа испытания				
	I	II			
Температура, °С Время воздействия	650 60	960 30			
петли, с Сила сжатия, Н	1	1			

6. Оценка результатов испытания.

6.1 Изоляционные материалы, не воспламеняющиеся при воздействии нагрузкой, соответствующей

группе испытания I, или воспламеняющиеся, но продолжительность сгорания которых составляет не больше 30 с независимо от высоты пламени, считаются трудновоспламеняющимися и пригодны для покрытий, однако для держателей токоведущих частей не пригодны.

- **6.2** Изоляционные материалы, не воспламеняющиеся при воздействии нагрузкой, соответствующей группе испытания II, или воспламеняющиеся, но высота пламени которых не превышает 3 см, а продолжительность сгорания 60 с и более, считаются трудновоспламеняющимися и пригодны для покрытий и для держателей токоведущих частей.
- **6.3** Испытания следует проводить на трех образцах.

Если один из образцов в соответствии с 6.1 или 6.2 нельзя отнести к трудновоспламеняющимся, следует испытать три новых образца.

Изоляционный материал можно считать трудновоспламеняющимся только в том случае, если при втором испытании все образцы в соответствии с 6.1 или 6.2 можно отнести к трудновоспламеняющимся.

Если больше чем один образец считается нетрудновоспламеняющимся в соответствии с 6.1 или 6.2, изоляционный материал считается нетрудновоспламеняющимся.

ПРИЛОЖЕНИЕ 16

ТРЕБОВАНИЯ К ИСПЫТАНИЮ СИСТЕМЫ СИГНАЛИЗАЦИИ ПОСТУПЛЕНИЯ ВОДЫ В ГРУЗОВЫЕ ТРЮМЫ НАВАЛОЧНЫХ СУДОВ И ОДНОТРЮМНЫХ ГРУЗОВЫХ СУДОВ, НЕ ЯВЛЯЮЩИХСЯ НАВАЛОЧНЫМИ

- 1. Защитное исполнение корпусов датчиков и других элементов, установленных в грузовых трюмах, балластных танках и сухих помещениях, должно удовлетворять требованиям IP68 в соответствии со стандартом МЭК IEC 60529.
- 2. Испытание корпусов датчиков/кабельных коробок давлением воды должно основываться на гидростатическом напоре. Высота столба воды для датчиков/кабельных коробок, которые предполагается устанавливать в трюмах, предназначенных для перевозки водяного балласта или в балластных танках, должна равняться глубине трюма или танка, а время выдержки должно составлять 20 дней. Высота столба воды для датчиков/кабельных коробок, предназначенных для установки в помещениях, которые считаются сухими, должна равняться высоте помещения, а время выдержки должно составлять 24 часа.
- 3. Если датчик/кабельная коробка установлены в помещении, примыкающем к грузовому трюму (например, нижняя трапецеидальная опора и т. п.), и это помещение считается затопленным при

- расчетах аварийной остойчивости, то датчик/ кабельная коробка должны удовлетворять требованиям IP68 в отношении столба воды, равного глубине трюма, и времени выдержки 20 дней или 24 часа, в зависимости от того, предназначен ли трюм для использования в качестве балластного танка, как описано выше.
- **4.** Работа датчика в сборе с фильтрующими устройствами должна проверяться в смеси груз/вода путем повторного десятикратного погружения без очистки каких-либо фильтрующих устройств.
- **5.** Для испытания должна использоваться размешанная суспензия из морской воды и репрезентативных мелкозернистых материалов, концентрация которых в смеси составляет 50 % по весу.
- **6.** Размер по высоте и объему испытательного резервуара для смеси груз/вода выбирается таким образом, чтобы обеспечивалось полное погружение датчика с фильтрующими устройствами для повторного десятикратного погружения, а также для возможности испытаний статическими и динамическими наклонами.

- 7. Погружаемые датчик и фильтрующие устройства, которыми он оборудован, располагаются в резервуаре таким же образом, как они должны монтироваться в соответствии с инструкциями по установке.
- **8.** Давление в резервуаре для испытания датчика в сборе не должно превышать 0,2 бар в районе датчика и фильтрующего устройства. Давление может достигаться опрессовыванием или использованием резервуара достаточной высоты.
- **9.** Смесь груз/вода закачивается в испытательный резервуар, при этом обеспечивается перемешивание смеси для поддержания твердых частиц в состоянии суспензии:
- .1 закачивание смеси груз/вода в резервуар не должно влиять на работу датчика и фильтрующих устройств;
- .2 смесь груз/вода закачивается в испытательный резервуар до заданного уровня таким образом, чтобы обеспечивалось погружение сигнализатора, и производится наблюдение за работой АПС;
- 3 после заполнения испытательный резервуар опорожняется, производится наблюдение за отключением сигнала АПС;
- .4 испытательный резервуар и датчик с фильтрующими устройствами должны высохнуть без физического вмешательства.

Если во время каждого из десяти последовательных испытаний сигнал АПС удовлетворительно

- включается и выключается, испытание пройдено успешно.
- 10. Смесь груз/вода, используемая для типовых испытаний, должна быть репрезентативной для набора грузов внутри следующих групп, и в ее состав должен входить груз с самыми мелкими частицами, которые можно обнаружить в типичном репрезентативном образце:
 - .1 частицы железной руды и морская вода;
 - .2 частицы угля и морская вода;
 - .3 частицы зерна и морская вода;
 - .4 частицы заполнителя (песок) и морская вода.
- 11. Должен быть установлен и зарегистрирован наименьший и наибольший размер частиц, а также плотность сухой смеси. Частицы должны быть равномерно распределены в объеме смеси. Все типы грузов, используемых в ходе испытаний с использованием репрезентативных частиц, как правило, подпадают под одну из четырех категорий, указанных выше.
- **12.** Ниже приведены указания по выбору частиц для испытаний:
- .1 частицы железной руды должны состоять, в основном, из мелких сыпучих высевок железной руды, а не кусков руды (размер частиц пыли 3 мм, такие как пшеница);
- .4 частицы заполнителя должны состоять, в основном, из мелких сыпучих гранул песка, без кусков (размер частиц пыли < 0.1 мм).

11 ХОЛОДИЛЬНОЕ ОБОРУДОВАНИЕ

11.1 ОБЩИЕ ПОЛОЖЕНИЯ

- 11.1.1 Положения настоящего раздела применяются при техническом наблюдении за холодильным оборудованием, комплектующими судовыми холодильными установками (СХУ), подлежащими техническому наблюдению Регистра согласно Номенклатуре РС.
- 11.1.2 Раздел определяет объем, характер и методы освидельствований, а также нормы и методы испытаний механизмов, аппаратов, сосудов, труб и арматуры, изоляционных материалов и автоматических устройств СХУ.
- 11.1.3 Общие положения по организации технического наблюдения за изготовлением холодильного оборудования изложены в части I «Общие положения по техническому наблюдению», по технической документации в части II «Техническая документация».
- 11.1.4 Освидетельствование агрегатов, компрессоров, насосов, вентиляторов, аппаратов и сосудов, автоматических приборов и предохранительных устройств, арматуры и труб, а также изоляционных материалов должно проводиться в соответствии с требованиями Правил классификации и постройки морских судов и на основании одобренной Регистром документации и свидетельств на материалы и их свойства.
- 11.1.5 При освидельствовании готовых деталей, выполненных из заготовок (поковок, штамповок, отливок, проката и т. п.), инспектору Регистра должен быть предъявлен документ, подтверждающий их соответствие одобренной технической документации.
- 11.1.6 Техническое наблюдение за изготовлением холодильного оборудования осуществляется в соответствии с Номенклатурой РС Регистра и табл. 11.1.6. При установившемся производстве на основании требований настоящего раздела для

конкретизации объема наблюдения на различных стадиях изготовления холодильного оборудования и с учетом технологии производства предприятием (изготовителем) разрабатывается перечень объектов технического наблюдения Регистра (см. 12.2 части I «Общие положения по техническому наблюдению»), который рассматривается и одобряется подразделением Регистра, осуществляющим техническое наблюдение на данном предприятии (изготовителе).

На основании опыта наблюдения за строительством и эксплуатацией рефрижераторных судов подразделение Регистра вправе потребовать внесения в перечень соответствующих изменений.

11.1.7 Детали изделий, относящиеся к механизмам СХУ, должны иметь документы, предусмотренные Номенклатурой РС и подтверждающие их соответствие технической документации, одобренной Регистром.

Таблица 11.1.6

№ п/п	Объект технического наблюдения		Проверки		Испытания				Ревизия
		техни- ческой докумен- тации	деталей и узлов ¹	сварных соеди- нений сбороч- ных работ	гидрав- лические на проч- ность	пневма- тические на плот- ность	на герметичность вакуумированием ²	стендо- вые	
1	Компрессор поршневой:	+	+	+		+	++	+	
1.1	рама, станина			+					
1.2	блок-картер, блок цилиндров	+	+		+				
1.3	цилиндр, гильза цилиндровая	+	+		+				+
1.4	вал коленчатый	+	+						++
1.5	шатун, шток	+	+						++
1.6	поршень	+	+						+
1.7	сальник коленчатого вала								++
1.8	крышки цилиндров, картера, привода насоса				+				
1.	и т. п.								
1.9	клапаны всасывающие и нагнетательные							+	+
1.10	кольца и пальцы поршневые								++
1.11	вкладыши подшипников: .1 рамовых								++
	.1 рамовых .2 шатунных								++
1 12	иестерни зубчатых передач	+							++
1.13		!							++
	муфты	+							+
2	муфты Компрессор ротационный:	+	+	+		+	++	+	·
2.1	рама фундаментная		'	+			' '	'	
2.2	корпус, цилиндр, крышка	+	+	'	+				++
2.3	ротор пластины, вал ротора	+	+		'				+
2.4	сальник вала ротора		,						++
2.5	клапан нагнетательный							+	++
2.6	подшипники								++
2.7	шестерни зубчатых передач	+							++
2.8	муфты	+							+
3	Компрессор винтовой:	+	+	+		+	++	+	
3.1	рама фундаментная			+					
3.2	корпус, крышка корпуса	+	+		+				++
3.3	ротор винтовой	+	+						+
3.4	уплотнения роторов								++
3.5	подшипники опорные и упорные								++
3.6	шестерни синхронизирующей пары	+	+	+ +					+
3.7	мультипликатор	+	+						+
3.8	регулятор производительности				+				++
3.9	муфты	+							+
4	Турбокомпрессор:	+	+	+		+	+	+	
4.1	1 10 11			+					
4.2		+	+		+				++
4.3	вал колеса рабочие	+	+	,					++
4.4		++	+ +	+ +					+
4.5 4.6	аппарат обратный направляющий	+ +	+ +	+ +					+ +
4.6	диффузор	+	+	+					
4.7		+	+	+					+ +
4.8	, ,	+	+	+					+
	подшипники шестерни и колеса зубчатые мультипли-	+	+	+					
4.10	катора			-					
	Ratopa								

Продолжение табл. 11.1.6

№ π/π	Объект технического наблюдения	Проверки				Ревизия			
11/11	телического наолюдения	техни- ческой докумен- тации	деталей и узлов ¹	сварных соеди- нений сбороч- ных работ	гидрав- лические на проч- ность	пневма- тические на плот- ность	на герметичность вакуумированием ²	стендо- вые	
									+ +
4.12	муфты	+							+
5 5.1	Насос холодильного агента: рама фундаментная	+	+	+ +		+	++	+	
5.2	корпус, цилиндр, крышка	+	+	'	+				++
5.3	вал, ротор, шток	+	+						++
5.4	колесо рабочее, винт, поршень, шестерни	+	+						++
5.5 5.6	уплотнение вала и ротора								++
5.7	подшипники электродвигатель встроенный	+	+	+ +					++
6	Насос холодоносителя:	+	++	+ +				++	
6.1	рама фундаментная			+ +					
6.2	корпус, крышка, патрубок	+	+		++				++
6.3	Ball Kollego pagouee	+ +	+ +						+++
6.5	колесо рабочее подшипники								++
6.6	муфты	+							+
7	Насос охлаждающей воды:	+	++	+ +				++	
7.1	рама фундаментная			+ +	+ +				
7.2	корпус, крышка, патрубок	+	++						++
7.3 7.4	вал колесо рабочее	+ +	++++						++
7.5	подшипники		T T						++
7.6	муфты	+							++
8	Вентилятор:	+	++	+ +					
8.1	рама фундаментная			+ +					
8.2	корпус	+	++						++
8.3 8.4	вал колесо рабочее	+ +	+++						++
8.5	подшипники								++
8.6	муфты	+							++
9	Вентилятор взрывоопасного исполнения:	+	+	+				+	
9.1	рама фундаментная			+					
9.2	корпус	+	+						+
9.3 9.4	вал колесо рабочее	+ +	+ +						++
9.5	подшипники		+						++
	муфты	+							+
10	Сосуды и аппараты СХУ с объемом полости холодильного агента 0,1 м ³ и более:	+		+	+	+	++	++	
	рама фундаментная			+					
	корпус	+	+	+	+				
	днища коллекторы	+ +	+ +		+ +				
	коллекторы	+	+		+				
	решетки трубные	+	+						
10.7	трубы	+	+		+				
	связи анкерные	+	+						
	указатели уровня	+ +	+		+ +	ا ا			
11	Сосуды и аппараты СХУ с объемом полости холодильного агента 0,1 м ³ и более:	+		++	+	+	++	++	
11.1	рама фундаментная			+ +					
	корпус	+	++	+ +	+ +				
11.3	днища	+	++		+ +				
	коллекторы	+	++		+ +				
	крышки	+	++		++				
	решетки трубные трубы	+ +	+++		++				
	труоы указатели уровня	+	++		++				
11.0	умания уровия	<u> </u>	L ' '			<u> </u>			<u> </u>

Продолжение табл. 11.1.6

№ π/π	Объект технического наблюдения	Проверки			Испытания				Ревизия
		техни- ческой докумен- тации	деталей и узлов ¹	сварных соеди- нений сбороч- ных работ	гидрав- лические на проч- ность	пневма- тические на плот- ность	на герметичность вакуумированием ²	стендо- вые	
12	Арматура и трубопроводы:								
12.1	устройства и клапаны предохранительные	+	++	+ +	+	+	+ +	+	++
12.2	клапаны:								
	.1 запорные и регулирующие	+	++	+ +	+	+	+ +	++	++
	.2 соленоидные	+	++	+ +	+	+	++	++	++
	.3 моторные	+	++	+ +	+	+	+ +	++	++
	.4 обратные	+	++	+ +	+	+	+ +	++	++
12.3	коллекторы, трубы	+	++	+ +	+	+	+ +		
13	Приборы системы автоматической								
	защиты и сигнализации (САЗ):								
13.1	реле:								
	.1 давления (всасывания и нагнетания)	+	++	+	+ +	+	++	+	++
	.2 разности давлений (контроля смазки)	+	++	+	+ +	+	++	+	++
	.3 уровня	+	++	+	+	+	++	+	++
	.4 расхода	+	++	+ +	+ +			++	++
	.5 температуры манометрическое	+	++	+		+	++	+	++
	(контроль температуры холодоноси-								
	теля, контроль температуры нагнетания)								
	.6 электромеханические, тепловые	_	++	+ +				+	++
	и комбинированные								
	газоанализатор (стационарный)	+	++	+ +		+	+ +	+	++
13.3	исполнительные механизмы САЗ	+	++	+ +				+	++
13.4	-	+	++	+ +				+	++
13.5	автоматизированная арматура САЗ	+	++	+ +	+ +	+		+	++
14	Приборы системы автоматического управления (CAУ):								
14.1	регуляторы:								
	.1 температуры	+	++	++				++	++
	.2 давления	+	++	+ +	+ +	+ +	+ +	++	++
	.3 холодильной мощности	+	++	+ +				++	++
	.4 уровня	+	++	+ +	+ +	+ +	++	++	++
	.5 влажности	+	++	+ +				++	++
14.2	клапаны:								
	.1 терморегулирующие	+	++	+ +	+ +	+ +	+ +	++	++
	.2 водорегулирующие	+	++	+ +	+ +			++	++
	усилители САУ	+	++	+ +				++	++
14.4	механизмы исполнительные и автоматическая арматура САУ	+	++	+ +	++	++	++	++	++
15	Изоляция	+	++					++	
			1						

¹Предусматривается освидетельствование деталей и узлов на соответствие требованиям одобренной технической документации с проверкой клейм, маркировки и сопровождающих документов на материалы.

²Испытания на герметичность вакуумированием предусматриваются только для оборудования, работающего на холодильных

агентах группы I.

Примечания: 1. Освидетельствования, обозначенные «+», предусматриваются для классифицируемых и неклассифицируемых СХУ.

^{2.} Освидетельствования, обозначенные «+ +», предусматриваются только для оборудования и изделий классифицируемых СХУ.

11.2 ВИДЫ ИСПЫТАНИЙ

- 11.2.1 Программы испытаний холодильного оборудования, в том числе и программы приемосдаточных испытаний при пооперационном контроле, осуществляемом органом технического контроля (ОТК) предприятия (изготовителя), должны быть одобрены Регистром.
- **11.2.2** Испытания образцов, проводимые с целью получения СТО, могут быть совмещены с периодическими или типовыми испытаниями.

11.3 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ КОМПРЕССОРОВ

11.3.1 При предъявлении компрессоров инспектору, осуществляющему техническое наблюдение, должна быть представлена одобренная Регистром документация, включающая: технические условия на поставку компрессоров; программу стендовых испытаний; схему управления, регулирования и защиты с пояснительной запиской, а также чертежи устройств подогрева масла в картере, предохранительных клапанов, байпасов и устройств для облегчения пуска и регулирования холодильной мощности компрессора; комплект рабочей документации.

Кроме технической документации, указанной выше, должны быть представлены описание и инструкция по обслуживанию, а также, по требованию инспектора, другая техническая документация.

- **11.3.2** При изготовлении компрессоров проводятся освидетельствования в соответствии с перечнем.
- 11.3.3 При проведении освидетельствований компрессоров и проверках их деталей и основных узлов необходимо руководствоваться соответствующим указаниям разд. 5 и настоящей главы.
- 11.3.4 После сборки компрессоры должны быть подвергнуты в присутствии инспектора пневматическим испытаниям на плотность и вакуумированием на герметичность. При отсутствии дефектов компрессор допускается к стендовым испытаниям.
- 11.3.5 Стендовые испытания проводятся по программе, одобренной Регистром, в которой должны быть определены их объем и порядок проведения. Указанные испытания должны включать обкатку и контрольные функциональные испытания, которые проводятся только после удовлетворительных результатов обкатки. При обнаружении дефектов в период обкатки и последующей ревизии дефекты должны быть устранены, а компрессор подвергнут повторной обкатке и вторичной ревизии, при положительных результатах которых компресор может быть допущен к контрольным функциональным испытаниям.
- **11.3.6** При установившемся производстве компрессоров объем стендовых испытаний определяется

Регистром для каждого предприятия (изготовителя) в зависимости от принятой технологии и установившегося качества изготовления.

11.3.7 При освидетельствовании стендового оборудования и осуществлении технического наблюдения в период стендовых испытаний инспектор должен руководствоваться требованиями 5.11.18. Стендовое оборудование должно обеспечивать работу компрессора с осуществлением полного холодильного цикла или цикла «парового кольца» с применением указанных в технической документации холодильного агента и масла, с поддержанием паспортных параметров и условий наружной среды, а именно: давления и температуры перед всасывающим и за нагнетальными патрубками, а также кипения и конденсации холодильного агента; промежуточного давления и температуры для двух- и многоступенчатых компрессоров; температуры охлаждающей воды +32 °C и окружающего воздуха +50 °C.

При установившемся производстве определять холодильную мощность серийных компрессоров допускается методом сравнения их объемной подачи с головным или опытным образцом.

11.3.8 При испытаниях компрессоров, проводимых для получения СТО, должно быть предусмотрено определение холодильной мощности на нескольких режимах (не менее 5), объемной подачи, мощности потребляемой и холостого хода, уноса масла.

Должны быть проверены на срабатывание и пропускную прособность предохранительные клапаны каждой ступени компрессора на нескольких режимах при закрытом нагнетательном клапане компрессора.

Дополнительно у компрессоров со встроенными электродвигателями проверяются пусковые характеристики, температура и сопротивление изоляции обмоток. В процессе периодических испытаний оценивается стабильность качества производства компрессоров, износоустойчивость и надежность их деталей, основные параметры с последующим сравнением качества продукции, выпущенной в различное время.

Продолжительность испытаний должна быть не менее 300 ч, из которых 30 % должно приходиться на работу в режиме максимальной разности давлений и 30 % — в режиме максимальной мощности.

- 11.3.9 Ревизия компрессоров после стендовых испытаний должна проводиться в объеме, указанном в табл. 11.1.6, после типовых или периодических испытаний с полной разборкой узлов движения и обмером трущихся деталей.
- 11.3.10 Если по результатам испытаний компрессора принимается решение о возможности его установки на судно, инспектор ставит клеймо и оформляет Акт по форме 6.3.18 и свидетельство Регистра.

В случаях, предусмотренных в разд. 6 части I «Общие положения по техническому наблюдению», Акт по форме 6.3.18 служит основанием для оформления СТО.

11.3.11 При установившемся производстве на компрессор, успешно прошедший стендовые испытания, ставится клеймо и оформляется свидетельство Регистра.

11.4 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ НАСОСОВ ХОЛОДИЛЬНОГО АГЕНТА

- **11.4.1** До изготовления насосов холодильного агента инспектору, осуществляющему техническое наблюдение, должна быть представлена одобренная Регистром документация в объеме, регламентируемом правилами.
- 11.4.2 В процессе изготовления насосов холодильного агента инспектор проводит контрольные проверки и освидетельствования согласно перечню. Вал с дисками (крылатками) после сборки должен быть отбалансирован в соответствии с нормами предприятия (изготовителя) с последующим предъявлением для освидетельствования инспектору.
- **11.4.3** После сборки насос должен быть обкатан и испытан с применением спецификационного холодильного агента на стенде по программе, одобренной Регистром.

Продолжительность испытаний насоса на стенде должна быть достаточной для выявления спецификационных характеристик и надежности: при установившемся производстве — не менее 8 ч, а для испытаний, указанных в примечании 4 к табл. 11.4.6, — не менее 240 ч.

После испытаний насос подвергается ревизии в объеме, указанном в табл. 11.1.6.

11.4.4 На насос холодильного агента, успешно прошедший стендовые испытания под техническим наблюдением Регистра, ставится клеймо и оформляются документы Регистра аналогично 11.3.10 и 11.3.11.

11.5 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ НАСОСОВ ХОЛОДОНОСИТЕЛЯ И ОХЛАЖДАЮЩЕЙ ВОДЫ

11.5.1 Техническое наблюдение за изготовлением насосов холодоносителя и охлаждающей воды проводится в соответствии с 5.8 и табл. 11.1.6.

11.6 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ ВЕНТИЛЯТОРОВ

11.6.1 Техническое наблюдение за изготовлением вентиляторов проводится в соответствии с 5.10.8 и табл. 11.1.6.

11.7 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ ТЕПЛООБМЕННЫХ АППАРАТОВ И СОСУДОВ ПОД ДАВЛЕНИЕМ ХОЛОДИЛЬНОГО АГЕНТА, ХОЛОДОНОСИТЕЛЯ И/ИЛИ ОХЛАЖДАЮЩЕЙ ВОДЫ

- **11.7.1** Техническое наблюдение за изготовлением аппаратов и сосудов под давлением проводится в соответствии с разд. 9 и табл. 11.1.6.
- 11.7.2 Теплообменные аппараты и сосуды под давлением должны предъявляться к освидетельствованию с установленной штатной арматурой и устройствами, предусмотренными технической документацией.

При наружном осмотре во время освидетельствования проверяются: состояние наружных поверхностей; наличие, соответствие чертежным данным и состояние арматуры и приборов; установка предохранительных клапанов; наличие на корпусе таблички с соответствующими техническими данными; длина патрубков; толщина устанавливаемой изоляции.

11.7.3 Стендовые испытания головных (опытных) образцов теплообменных аппаратов и сосудов под давлением холодильного агента, морозильных агрегатов, льдогенераторов, а также испытания при установившемся производстве и для подтверждения СПИ должны проводиться по программе и методике, одобренным Регистром. Стендовое оборудование должно обеспечивать работу вышеперечисленных аппаратов с осуществлением полного холодильного цикла с применением указанного в технической документации холодильного агента.

При стендовых испытаниях теплообменных аппаратов должны быть определены коэффиценты теплопередачи, интенсивности теплообмена и гидравлических сопротивлений при различных режимах работы, для морозильных агрегатов и льдогенераторов — также производительность.

В процессе испытаний конденсаторов измеряются: расход воды, ее температура на входе и выходе из аппарата; перепад давлений со стороны воды; температура и давление конденсации; температура агента на входе и на выходе из конденсатора; масса проходящего через него агента.

При испытании испарителей определяются: холодильная мощность, коэффициент теплопередачи, интенсивность теплообмена и гидравлические сопротивления на стороне холодоносителя и холодильного агента.

Холодильная мощность испарителя должна определяться либо по массе испарившегося холодильного агента, либо по количеству тепла, отданного холодоносителем.

При испытании воздухоохладителей определение холодильной мощности на различных режимах должно определяться по изменению состояния

воздуха или холодильного агента. В первом случае должна быть измерена масса (объем и плотность) циркулирующего воздуха, а также температура и влажность его на входе и выходе из аппарата. При определении холодильной мощности по изменению состояния холодильного агента масса испарившейся жидкости при кратности циркуляции n > 1 должна определяться только калориметрическим методом, а при кратности циркуляции n = 1 может определяться объемным или дроссельным методом.

Продолжительность стендовых испытаний, указанных в примечании 4 к табл. 11.1.6, должна быть не менее 300 ч.

11.7.4 При положительных результатах освидетельствований, проведенных согласно табл. 11.1.6 и настоящей главе, на сосуды, теплообменные аппараты и агрегаты с объемом полости холодильного агента 0,1 м³ и более ставится клеймо и оформляются документы Регистра аналогично 11.3.10 и 11.3.11.

11.8 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ АРМАТУРЫ ХОЛОДИЛЬНЫХ УСТАНОВОК

- **11.8.1** При освидетельствовании запорной, регулирующей и предохранительной арматуры инспектор должен руководствоваться разд. 8 и 10 и табл. 11.1.6.
- **11.8.2** Арматура в сборе после испытаний на прочность, плотность и герметичность должна быть подвергнута пневматическим испытаниям на плотность закрытия.
- 11.8.3 Предохранительные пружинные клапаны после испытаний на прочность, плотность и герметичность должны быть подвергнуты испытаниям для проверки их регулировки и плотности затвора, при этом они должны быть отрегулированы на давление начала срабатывания не выше 1,1 расчетного и закрываться при давлении не менее 0,85 расчетного, принятого в соответствии с 2.2.1 части XII «Холодильные установки» Правил классификации и постройки морских судов. Плотность затвора необходимо проверять под водой вторичным подъемом давления до расчетного после закрытия клапана в результате срабатывания.

11.9 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ ПРИБОРОВ ХОЛОДИЛЬНОЙ АВТОМАТИКИ

11.9.1 Приборы холодильной автоматики должны изготавливаться и испытываться по одобренной технической документации.

- **11.9.2** Техническое наблюдение за изготовлением и испытаниями приборов защитной и регулирующей автоматики должно осуществляться согласно разд. 12 и табл. 11.1.6.
- 11.9.3 Освидетельствование систем автоматической защиты, регулирования и сигнализации автоматизированных механизмов и агрегатов СХУ должно проводиться согласно разд. 11 и 12 части V «Техническое наблюдение за постройкой судов».

11.10 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ

- **11.10.1** Теплоизоляционные материалы должны изготавливаться и испытываться по одобренной технической документации.
- **11.10.2** При проведении освидетельствований, указанных в примечании к табл. 11.1.6, должны проверяться следующие свойства теплоизоляционных материалов:
- **.1** теплофизические: коэффицент теплопроводности, удельная теплоемкость;
- .2 влажностные: гигроскопичность (адсорбционная способность к водяному пару), водопоглощение (способность поглощать воду) и коэффициент диффузии водяного пара;
- .3 механико-структурные: плотность, удельная поверхность и объем пор, радиус микропор и доля их по объему, предел прочности, ударная вязкость, модуль упругости¹, текучесть и уплотняемость (усадка)².

11.11 ГИДРАВЛИЧЕСКИЕ ИСПЫТАНИЯ НА ПРОЧНОСТЬ

- 11.11.1 Контроль за гидравлическими испытаниями холодильного оборудования, отдельными узлами и деталями осуществляется инспектором в соответствии с табл. 11.1.6. При техническом наблюдении за проведением гидравлических испытаний инспектор должен руководствоваться требованиями разд. 5 настоящей части и разд. 9 части V «Техническое наблюдение за постройкой судов», а также положениями, изложенными далее.
- 11.11.2 Поверхности изделий, подвергающихся гидравлическим испытаниям, не должны иметь защитных покрытий (окраски, лужения и т. п.), а отверстия, предназначенные для установки арматуры и приборов, должны быть заглушены.
- 11.11.3 Изделия, работающие под давлением холодильного агента и/или холодоносителя или

¹ Определяется для ячеистых изоляционных материалов.

² Определяется для ячеистых порошкообразных изоляционных материалов.

охлаждающей воды, испытываются на прочность пробным давлением в соответствии с требованиями Правил классификации и постройки морских судов с выдержкой не менее 1 ч для головных образцов и не менее 10 мин — для серийных образцов.

11.11.4 Изделия признаются выдержавшими гидравлические испытания, если не будет обнаружено падения давления, трещин, разрывов, течи, потеков, капель или видимых остаточных деформаций.

11.12 ПНЕВМАТИЧЕСКИЕ ИСПЫТАНИЯ НА ПЛОТНОСТЬ

- **11.12.1** Контроль за пневматическими испытаниями холодильного оборудования, работающего под давлением холодильного агента, осуществляется инспектором в соответствии с табл. 11.1.6.
- 11.12.2 Изделия, подвергающиеся пневматическим испытаниям на плотность, могут быть допущены к таким испытаниям только на основании положительных результатов гидравлических испытаний на прочность.
- **11.12.3** Пневматические испытания на плотность должны проводиться пробным давлением, равным расчетному, при соблюдении следующих условий:
- **.1** наличия двух проверенных и опломбированных манометров;
- .2 испытание должно проводиться сухим воздухом или азотом с температурой насыщения водяных паров не более 45 $^{\circ}$ C;
- .3 температура воды, в которую полностью погружают изделия, должна быть не менее 50 $^{\circ}$ С для малообъемных изделий и 12 $^{\circ}$ С для изделий объемом более 0,1 м 3 ;
- **.4** подкачка во время выдержки при пробном давлении не разрешается;
- .5 продолжительность испытаний должна быть не менее времени стабилизации, но не менее 15 мин.
- **11.12.4** Аппараты и сосуды признаются выдержавшими испытания, если не будет появления

(пропуска) воздуха или азота и падения давления по манометру за время испытания.

- **11.12.5** Проведение испытаний изделий без погружения в воду из-за больших размеров или по другим причинам является в каждом случае предметом специального рассмотрения Регистром.
- 11.12.6 При испытаниях холодильного оборудования на плотность без погружения их продолжительность должна быть не менее 6 ч, при этом суммарное понижение давления за время испытаний за счет адсорбции и течи должно быть не более 1 % первоначального пробного давления.

11.13 ИСПЫТАНИЯ НА ГЕРМЕТИЧНОСТЬ ВАКУУМИРОВАНИЕМ

- **11.13.1** Контроль за испытаниями на герметичность вакуумированием хладонового холодильного оборудования, работающего при давлении ниже атмосферного, осуществляется инспектором в соответствии с табл. 11.1.6 после завершения пневматических испытаний на плотность.
- **11.13.2** Перед испытанием изделия осущаются. Затем они подвергаются вакуумированию до остаточного давления не более 0,8 кПа.
- **11.13.3** Изделия должны находиться под вакуумом в течение 6 ч.

Если суммарное повышение давления за счет парогазовой десорбции и течи во время испытаний будет не более 25 % первоначального остаточного давления, изделия признаются выдержавшими испытания.

После завершения испытаний на герметичность должно быть проверено качество газовой консервации изделия, при этом избыточное давление сухого азота, холодильного агента или их смеси, применяемой для газовой консервации внутренних полостей изделия, должно быть не менее 0,2 МПа при температуре окружающего воздуха 20 °C.

12 ОБОРУДОВАНИЕ АВТОМАТИЗАЦИИ

12.1 ОБЩИЕ ПОЛОЖЕНИЯ

12.1.1 Положения настоящего раздела применяются при техническом наблюдении за оборудованием автоматизации, перечисленным в разд. 15 «Автоматизация» Номенклатуры РС, в других разделах Номенклатуры, а также в настоящем разделе,

если это оборудование применяется в составе систем и устройств автоматизации.

- **12.1.2** Раздел содержит требования технического наблюдения за изготовлением упомянутых выше объектов технического наблюдения на предприятии (изготовителе).
- 12.1.3 Общие положения по организации технического наблюдения за изготовлением объектов технического наблюдения приведены в части I «Общие

положения по техническому наблюдению», по технической документации — в части II «Техническая документация» и в 1.4 настоящей части.

12.2 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

- 12.2.1 Техническая документация на оборудование автоматизации подлежит одобрению в объеме, предусмотренном частью XV «Автоматизация» Правил классификации и постройки морских судов.
- 12.2.2 При рассмотрении технической документации на оборудование автоматизации определяется

соответствие конструкции и эксплуатационных характеристик изделий требованиям соответствующих частей Правил классификации и постройки морских судов, а также судовым условиям эксплуатации по нормам, изложенным в приложении к настоящему разделу.

12.3 ОБЪЕМ И ПОРЯДОК ОСВИДЕТЕЛЬСТВОВАНИЯ ОБОРУДОВАНИЯ АВТОМАТИЗАЦИИ

12.3.1 Объем и виды испытаний оборудования автоматизации при его изготовлении должны соответствовать табл. 12.3.1.

Таблица 12.3.1

Объем и виды испытаний

№	Объект технического наблюдения	Го	ловной обр	азец	Изделия установившегося производства						
п/п		Функцио- нальные (см. 12.4.1)	На соответ- ствие судовым условиям (см. 12.4.2)	Специальные (см. 12.4.5)	Контроль документов на изделия (см. 12.3.2.1)	Функцио- нальные (см. 12.4.1)	На под- тверждение Свидетель- ства о признании (см. 12.4.4)	На под- тверждение Свидетель- ства о типо- вом одоб- рении (см. 12.4.8)			
1	Системы комплексной автоматизации механических установок (Интегри-	+	+	+	+	+	+	+			
2	рованные системы автоматизации) Системы централизованного контроля (АПС), в том числе	+	+	+	+	+	+	+			
3	микропроцессорные (компьютерные) Системы управления главными механизмами:										
3.1	Системы дистанционного автоматизированного управления (ДАУ)	+	+	+	+	+	+	+			
3.2	главными ДВС Системы ДАУ главными механиз- мами с ВРШ	+	+	+	+	+	+	+			
3.3	Системы ДАУ главными паротур-бинными установками	+	+	+	+	+	+	+			
3.4	Системы ДАУ главными пропульсивными винторулевыми колонками	+	+	+	+	+	+	+			
3.5	Системы автоматизированного управления динамическим позиционированием судов и ПБУ	+	+	+	+	+	+	+			
3.6	Системы автоматизированного управления главными пропульсивными установками типа "Azipod"	+	+	+	+	+	+	+			
3.7	Системы автоматизированного управления механизмами подъема и спуска самоподъемных ПБУ	+	+	+	+	+	+	+			
3.8	Системы ДАУ балластными системами полупогружных ПБУ	+	+	+	+	+	+	+			
3.9	Системы ДАУ азимутальными и туннельными подруливающими устройствами	+	+	+	+	+	+	+			
3.10	устроиствами Системы управления стабилизацией и положением корпусов высоко- скоростных судов	+	+	+	+	+	+	+			
4.1	Системы управления электро- энергетическими установками: Системы дистанционного автомати-	+	+	+	+	+	+	+			
	зированного пуска и остановки дизель-генераторов	·	·		,	,		·			

№	Объект технического наблюдения	Го	ловной обр	азец	Изделия установившегося производства						
π/π		Функцио- нальные (см. 12.4.1)	На соответ- ствие судовым условиям (см. 12.4.2)	Специальные (см. 12.4.5)	Контроль документов на изделия (см. 12.3.2.1)	` ′	На под- тверждение Свидетель- ства о признании (см. 12.4.4)	На под- тверждение Свидетель- ства о типо- вом одоб- рении (см. 12.4.8)			
4.2	То же турбогенераторов	+	+	+	+	+	+	+			
4.3	То же валогенераторов (при наличии	+	+	+	+	+	+	+			
5	системы управления муфтой) Системы управления котельными установками:										
5.1	Системы автоматизированного управ-	+	+	+	+	+	+	+			
	ления главными котельными уста-										
	новками										
5.2	То же вспомогательными паровыми	+	+	+	+	+	+	+			
5.3	котельными установками То же утилизационными котельными	+	+	+	+	+	+	+			
5.5	установками	, ,	<u>'</u>	<u>'</u>	<u>'</u>	'		,			
5.4	То же водогрейными котельными	+	+	+	+	+	+	+			
6	установками Системы управления вспомога-										
6.1	тельными механизмами:	+	+	+	+	+	+	+			
0.1	Системы автоматизированного управления компрессорами	'	'	<u>'</u>	'	'	'	'			
6.2	То же сепараторами	+	+	+	+	+	+	+			
6.3	То же фильтрами	+	+	+	+	+	+	+			
6.4	То же насосами (масла, топлива,	+	+	+	+	+	+	+			
6.5	охлаждения и т. п.) То же топливоподготовки	+	+	+	+	+	+	+			
0.5	(температуры, вязкости)	,	,	· ·	,	, i	,	·			
7	Системы дистанционного управле-										
	ния судовыми системами:										
7.1	Системы дистанционного управления	+	+	+	+	+	+	+			
	арматурой и насосами балластных и осущительных систем										
7.2	То же креновой и дифферентной	+	+	+	+	+	+	+			
	систем ледоколов и крановых судов										
7.3	То же грузовыми системами нефтена-	+	+	+	+	+	+	+			
, ,	ливных судов										
7.4	То же грузовой системой газовозов То же грузовой системой химовозов	+ +	+ +	+ +	+ +	+ +	+ +	+			
8	Системы автоматизации палуб-	+	+	+	+	+	+	+			
	ных механизмов										
9	Устройства:										
9.1	Устройства регулирования, входящие	+	+	+	+	+	+	+			
	в состав систем управления, перечисленных в пп. $1-8$										
9.2	Устройства контроля (АПС и	+	+	+	+	+	+	+			
	индикации), входящие в состав										
	комплексных и централизованных										
	систем контроля и управления										
9.3	перечисленных в пп. 1 – 8 Устройства защиты, входящие в	+	+	+	+	+	+	+			
'	состав систем, перечисленных	'	·	<u> </u>	·	'	, ' <u> </u>	'			
	в пп. 1 – 8										
9.4	Устройства регистрации, входящие в	+	+	+	+	+	+	+			
	состав систем, перечисленных										
9.5	в пп. 1 – 8 Устройства обнаружения масляного	+	+	+	+	+	+	+			
'	тумана в картерах ДВС	'	'	<u>'</u>	'	'	'	'			
9.6	Компьютеры и программируемые	+	+	+	+	+	+	+			
	логические контроллеры										

Продолжение табл. 12.3.1

№	Объект технического наблюдения	Го	ловной обр	азец	Изделия установившегося производства					
п/п		Функцио- нальные (см. 12.4.1)	На соответ- ствие судовым условиям (см. 12.4.2)	Специальные (см. 12.4.5)	Контроль документов на изделия (см. 12.3.2.1)	` /	На под- тверждение Свидетель- ства о признании (см. 12.4.4)	На под- тверждение Свидетель- ства о типо- вом одоб- рении (см. 12.4.8)		
9.7	Электронные устройства управления	+	+	+	+	+	+	+		
1.	рабочим процессом ДВС									
10	Регуляторы непрямого действия:									
10.1	уровня	+	+	+	_	+	+	+		
10.2	давления	+	+	+	_	+	+	+		
10.3 10.4	температуры вязкости	+	+ +	+ +	_	+ +	+ +	+ +		
10.4		+	+	+	_	+	+	+		
10.5	частоты вращения Датчики и сигнализаторы:				_					
11.1	уровня	+	+	+	_	+	+	+		
11.1	**	+	+	+		+	+	+		
11.3	температуры	+	+	+		+	+	+		
11.4	потока	+	+	+	_	+	+	+		
11.5	солености	+	+	+	_	+	+	+		
11.6	вибрации	+	+	+	_	+	+	+		
11.7	положения	+	+	+	_	+	+	+		
11.8	концентрации газа	+	+	+	_	+	+	+		
12	Пульты, щиты и другие оболочки									
	для систем:									
12.1	управления	_	+	+	_	_	+	+		
12.2	контроля (АПС и индикации)	_	+	+	_	_	+	+		
12.3	регистрации	_	+	+	_	_	+	+		
13	Приборы дистанционные конт-	+	+	+	_	+	+	+		
	рольно-измерительные									

Испытания опытного образца в проектной организации или на опытном производстве проводятся в объеме испытаний головного образца, за исключением испытаний на надежность.

- **12.3.2** Перед испытаниями оборудования автоматизации должно быть проверено наличие:
- .1 документов на комплектующие изделия, подтверждающих техническое наблюдение Регистра при их изготовлении в соответствии с Номенклатурой РС;
- **.2** комплекта одобренной технической документации на испытываемое оборудование;
 - .3 одобренной программы испытаний;
- .4 полного комплекта испытательного оборудования с необходимыми документами, подтверждающими их характеристики, свидетельства или акта о признании испытательной лаборатории. Измерительные приборы должны иметь класс точности не ниже 1,5;
- .5 документов компетентных органов, подтверждающих положительные результаты специальных видов испытаний, если они предусматриваются программой испытаний (на взрывозащищенность, помехоустойчивость и др.).
- 12.3.3 При проведении испытаний пневмоэлементы автоматики (аналоговые и дискретные) должны монтироваться и соединяться между собой таким же образом, как это будет предусмотрено в блоках автоматизации.

- **12.3.4** Дистанционно управляемая арматура, как правило, должна испытываться в комплекте с сигнализаторами конечного положения (особенно при испытаниях на вибро- и удароустойчивость).
- **12.3.5** Регуляторы, датчики и сигнализаторы должны испытываться, как правило, на стендах с реальными рабочими средами.
- **12.3.6** Пневматические и гидравлические трубопроводы систем автоматизации должны быть подвергнуты гидравлическим испытаниям на давления согласно разд. 8.
- **12.3.7** На опытном или головном образце осуществляется проверка ремонтопригодности систем и устройств автоматизации, при этом проверяются:
- **.1** простота и удобство замены деталей, ремонта, обслуживания и настройки, а также время, необходимое для этого;
- .2 замена деталей (не должна сопровождаться сложными наладками и подрегулировкам) оборудования автоматизации. При проверке ремонтопригодности должно быть обращено внимание на наличие номеров, шильдиков, бирок и других индексов, обозначающих соответствующие запасные части, а также их место в системе автоматизации и в схемах.
- 12.3.8 Перед началом испытаний должна проводиться приработка систем и устройств автоматизации для выявления в них внутренних дефектов, которые по теории надежности обнару-

живаются в первые часы работы, в так называемое время приработки.

Приработка систем и устройств должна проводиться на предприятии (изготавителе) в течение 30 - 60 ч на стенде предприятия (изготовителя) при выполнении системой или устройством основных функций. Результаты приработки (сведения об отказах и задержках в работе и т. п.) должны представляться инспектору. При наличии запасных блоков эти испытания проводятся как со штатными, так и с запасными блоками. Время испытаний систем при этом увеличивается.

- 12.3.9 Испытания головных образцов систем автоматизации (управления, регулирования, сигнализации и защиты) на предприятиях (изготовителях) должны проводиться в комплекте с датчиками и исполнительными механизмами.
- 12.3.10 Головной образец системы должен пройти фукциональные испытания на автоматизируемом объекте на предприятии (изготовителе). Без получения положительных результатов таких испытаний установка указанных систем на судно не допускается.
- 12.3.11 По согласованию с подразделением Регистра, осуществляющим техническое наблюдение за изготовлением, для системы автоматизации могут быть зачтены некоторые испытания, кроме функциональных, ранее проведенные на элементах и устройствах, входящих в состав данной системы, либо ранее проведенные испытания самой системы, при условии, что эти испытания были выполнены по нормам не ниже норм Регистра.
- 12.3.12 После проведения механических и климатических испытаний, любых видов специальных испытаний и проверок, после которых возможны механические повреждения отдельных деталей, а также при нарушении работоспособности во время любого испытания, должен проводиться детальный осмотр оборудования.
- 12.3.13 В случае неудовлетворительных результатов испытаний отдельных образцов оборудования или получения отрицательных результатов эксплуатации этого оборудования на судах может потребоваться проведение дополнительных испытаний.
- 12.3.14 По окончании испытаний головного (опытного) образца составляется акт Регистра в соответствии с требованиями разд. 1. При положительных результатах испытаний оформляется СТО.

12.4 УКАЗАНИЯ ПО ОТДЕЛЬНЫМ ВИДАМ ИСПЫТАНИЙ

12.4.1 Функциональные испытания.

12.4.1.1 При функциональных испытаниях оборудования автоматизации на предприятии (изготовителе) испытывается каждый образец.

Перед проведением этого вида испытаний проверяется и испытывается:

- .1 комплектность;
- .2 соответствие конструкций технической документации;
- .3 маркировка предприятии (изготовителя) и монтаж;
 - .4 материалы и запасные части;
- .5 сопротивление изоляции (согласно п. 3.1 приложения для нормальных климатических условий):
 - .6 электрическая прочность изоляции;
 - .7 взаимозаменяемость,
- а так же проводятся другие испытания и проверки, оговоренные в технической документации, но не относящиеся к испытаниям на соответствие судовым условиям эксплуатации (периодические испытания).
- **12.4.1.2** Проверка функционирования и работоспособности оборудования автоматизации проводится на режимах, предусмотренных технической документацией.

Испытания проводятся в стандартных климатических условиях.

Во время функциональных испытаний проводятся соответствующие замеры и проверяются:

- .1 все характеристики на соответствие требованиям технической документации (погрешность, быстродействие или инерционность, чувствительность, динамические и статические выходные характеристики и т. п.) и алгоритмы автоматизации, т. е. весь объем, порядок и последовательность выполняемых системой или устройством функций управления, регулирования, контроля и защиты;
- .2 автоматический контроль исправности системы (если такой предусматривается) путем имитации отдельных неисправностей внутри системы, в датчиках или испытательных механизмах, обрывами, короткими замыканиями и т. п.;
- .3 время и простота контроля исправности, удобство расположения контрольных точек для замеров и т. п., если для оборудования автоматизации предусматривается только регламентный контроль. Время проверки работоспособности и нахождения неисправностей должно быть минимальным. Для проверки работоспособности не должно требоваться большого количества различных точных приборов, сложных приспособлений и т. п.;
- .4 влияние коротких замыканий и обрывов в цепях датчиков и исполнительных механизмов на работоспособность отдельных каналов и всей системы в целом путем имитации коротких замыканий и обрывов. При имитации коротких замыканий и обрывов в отдельных цепях не должна нарушаться работоспособность смежных цепей и каналов, и тем более не должна выходить из строя вся система.

- 12.4.1.3 Проверка взаимозаменяемости осуществляется путем замены отдельных датчиков, блоков и узлов из комплекта запасных частей. После замены блока или датчика погрешность в работе системы не должна выходить за пределы, установленные технической документацией.
- **12.4.2** Испытаниям на соответствие судовым условиям эксплуатации подвергаются опытные, головные, а также впервые предъявляемые Регистру образцы оборудования автоматизации.

В процессе этих испытаний должны быть проверены следующие свойства оборудования автоматизации:

- .1 устойчивость к колебаниям напряжения и частоты (к колебаниям давления питания для пневмои гидросистем), устойчивость работы при предельно допустимых коэффицентах нелинейных искажений;
- .2 устойчивость к воздействию магнитных и электрических помех (электромагнитная совместимость ЭМС);
 - .3 уровень создаваемых радиопомех;
 - .4 устойчивость к качке и длительным наклонам;
 - .5 виброустойчивость;
 - .6 удароустойчивость;
 - .7 защищенность корпуса;
 - .8 теплоустойчивость;
 - .9 холодоустойчивость;
 - .10 влагоустойчивость;
 - .11 коррозийная стойкость;
- .12 устойчивость к воздействию инея и росы для оборудования автоматизации, предназначенного для установки на открытых палубах;
- .13 плеснеустойчивость для оборудования автоматизации, предназначенного для постоянной эксплуатации в тропических условиях (если все элементы, входящие в состав системы или устройства, такие испытания выдержали, то испытания оборудования в сборе могут не проводиться);
- .14 надежность уплотнений в месте монтажа и надежности герметизации при выходе из строя погружной части датчика;
- .15 испытания гидравлических и пневматических элементов и устройств на сохранение работоспособности при кратковременных полуторакратных перегрузках, создаваемых повышенным давлением рабочей среды.

Указанные испытания должны проводиться по программе, одобренной Регистром, и по методике, изложенной в приложении к настоящему разделу.

По согласованию с Регистром могут быть допущены и другие методы испытаний.

Объем испытаний должен определяться с учетом вида используемой энергии и конструктивных особенностей оборудования автоматизации.

- 12.4.3 Для подтверждения соответствия изделия одобренной технической документации в процессе установившегося производства предприятие (изготовитель) должно периодически проводить испытания в объеме испытаний на соответствие судовым условиям эксплуатации (см. 12.4.2) по одобренной Регистром программе. Перед началом этих испытаний должны проводиться функциональные испытания (см. 12.4.1). Графики проведения испытаний согласуются с подразделением Регистра, осуществляющим техническое наблюдение на предприятии. Указанные выше испытания могут быть совмещены с периодическими испытаниями, требуемыми национальными стандартами.
- 12.4.4 Для подтверждения Свидетельства о признании (см. часть I «Общие положения по техническому наблюдению») Регистру представляются результаты испытаний, указанных в 12.4.3. В необходимых случаях Регистр принимает участие в этих испытаниях.
- **12.4.5** В зависимости от назначения и размещения на судне для отдельных видов оборудования проводятся специальные испытания:

на взрывозащищенность, на помехоустойчивость, на устойчивость к воздействию солнечной радиации, на отсутствие помех для работы магнитного компаса и др. Специальные испытания проводятся по программе и методике, изложенной в технической документации на оборудование автоматизации.

Взрывозащищенность должна быть проверена и подтверждена специальной компетентной организацией. На каждый вид такого оборудования должно представляться свидетельство.

- **12.4.6** Указанные в технической документации характеристики надежности элементов, устройств и систем автоматизации, должны подтверждаться протоколами испытаний на надежность, проводимых предприятиями (изготовителями).
- **12.4.7** Входной контроль элементов должен осуществляться предприятием (изготовителем) систем и устройств автоматизации.

Результаты этого контроля должны предъявляться инспектору по его требованию.

Служба входного контроля предприятия (изготовителя) контролируется Регистром при выдаче и подтверждении Свидетельства о признании.

12.4.8 После внесения изменений в конструкцию оборудования автоматизации для подтверждения СТО образцы должны быть подвергнуты испытаниям по программе, одобренной Регистром, и под его техническим наблюдением.

Указанные испытания могут быть совмещены с типовыми испытаниями оборудования, требуемыми национальными стандартами.

ПРИЛОЖЕНИЕ

НОРМЫ И МЕТОДЫ ИСПЫТАНИЙ ОБОРУДОВАНИЯ АВТОМАТИЗАЦИИ

1. Общие положения.

- **1.1** В настоящем приложении приведены минимальные требования, предъявляемые к испытаниям оборудования автоматизации.
- 1.2 Оборудование автоматизации, испытанное по настоящим требованиям, считается выдержавшим испытания, если оно удовлетворяет условиям, указанным в основных определениях и тексте данного приложения.

2. Определения и пояснения.

- **2.1** В и броустойчивость оборудования выполнять свои функции в условиях вибрации, сохраняя параметры в заданных пределах.
- 2.2 Удароустойчивость оборудования выполнять свои функции в условиях ударов, сохраняя параметры в заданных пределах.
- 2.3 Защищенность оборудования степень защиты встроенного в оболочку оборудования от попадания твердых посторонних тел, а также степень защиты оборудования, расположенного внутри оболочки, от проникновения воды.
- 2.4 Теплоустойчивость оборудования выполнять свои вания свойство оборудования выполнять свои функции при наиболее высокой температуре окружающего воздуха, которая может наблюдаться в условиях эксплуатации, сохраняя параметры в заданных пределах и не подвергаясь повреждениям.
- 2.5 Холодоустойчивость оборудования выполнять свои функции при наиболее низкой температуре окружающего воздуха, которая может наблюдаться в условиях эксплуатации, сохраняя параметры в заданных пределах и не подвергаясь повреждениям.
- 2.6 Коррозионная стойкость свойство металлических изделий противостоять образованию коррозии при воздействии раствора солей.
- **2.7** Плеснеустой чивость свойство изделий противостоять развитию грибковой плесени в среде, зараженной грибками.
- **2.8** Нормальные климатические условия условия, характеризующиеся сочетанием следующих параметров атмосферы:
 - **.1** температуры 25 ± 10 °C;
 - **.2** относительной влажности $60 \pm 30 \%$;
 - .3 атмосферного давления 96 ± 10 кПа.

- 2.9 Стандартные климатические условия условия, характеризующиеся сочетанием следующих параметров атмосферы:
 - **.1** температуры $20 \pm 2\%$;
 - **.2** относительной влажности $65 \pm 2 \%$.
 - .3 атмосферного давления 96 ± 10 кПа.

Примечание. В случае невозможности поддержания стандартных климатических условий в начале и в конце испытаний на теплоустойчивость, холодоустойчивость, влагоустойчивость и плеснеустойчивость допускается производить изменение параметров оборудования в нормальных климатических условиях. Однако различие между параметрами атмосферы в начале и в конце испытаний по возможности не должно превышать допусков, предусмотренных для стандартных климатических условий. Отклонения от стандартных значений температуры и влажности, определяемые условиями испытаний, должны быть указаны в протоколе испытаний.

3. Нормы и методы испытаний.

3.1 Измерение сопротивления изоляции.

Сопротивление изоляции при испытаниях на стенде для каждой отдельной системы или устройства должно быть не ниже указанных в табл. 3.1 значений:

Таблица 3.1

Номинальное напряжение питания, В	Испытательное напряжение, В	Минимально сопротивлени МС	е изоляции,
		до испытаний ¹	после испытаний ¹
$U_{\rm H} \leq 65 {\rm B}$ $U_{\rm H} > 65 {\rm B}$	$2 \times U_{\rm H}$, но не менее 24 В 500	10 100	1 10

¹Измерение сопротивления изоляции должно проводиться до и после испытаний на влагоустойчивость, холодоустойчивость, коррозионную стойкость и испытаний электрической прочности изоляции.

Элементы, которые могут быть повреждены при измерении, а также обеспечивающие электромагнитную совместимость, могут быть отключены на время проведения измерения.

3.2 Испытание электрической прочности изоляции.

Электрическая изоляция оборудования автоматизации должна выдержать без пробоя в течение 1 мин при нормальных климатических условиях переменное синусоидальное напряжение С частотой 50 Гц или 60 Гц и со значением, указанным ниже:

Номинально	ъe,	В						И	спі	ыта	атель	ьное, В
До 65										2	$2U_{\rm H}$	+500
66 - 250 .												1500
251 - 500.												2000

Для оборудования автоматизации с полупроводниковыми элементами величина испытательного напряжения является в каждом случае предметом специального рассмотрения Регистром.

3.3 Испытания на отклонение питания от номинальных значений.

Отклонения напряжения и частоты от номинальных значений при испытаниях электрического и электронного оборудования автоматизации должны соответствовать указанным в табл. 3.3.

Таблица 3.3

№ п/п	Параметр	Отклонения от номинальных значений							
,		длительное, %	кратковре- менное, %	время, с					
1 2	Напряжение Частота	+6, -10 ±5	±20 ±10	1,5 5,0					

Элементы и устройства, получающие питание от аккумуляторных батарей, должны быть испытаны при отклонении напряжения от номинального значения +30~% -25~%.

Трехкратное прерывание питания на 30 с в течение 5 мин не должно оказывать влияния на работоспособность оборудования автоматизации. В случае если для включения оборудования требуется достаточно длительное время, например при наличии автоматической начальной загрузки программного обеспечения (ПО), общее время проведения испытаний на устойчивость к прерыванию питания может превышать 5 мин.

При наличии автоматической начальной загрузки ПО должно быть предусмотрено дополнительное прерывание питания в процессе загрузки.

Пневматические и гидравлические элементы и устройства должны быть испытаны при колебаниях рабочей среды $\pm 20~\%$ от номинального значения, в течение 15 мин.

- **3.4** Испытания на электромагнитную совместимость (ЭМС).
- **3.4.1** Испытания на уровень помех, создаваемых другому оборудованию.

Во время испытаний оборудование должно работать в нормальных условиях, а положение органов управления, влияющих на уровень помех, должно быть таким, чтобы установить максимальный уровень помех, создаваемых испытуемым оборудованием. Если оборудование имеет несколько энергетических режимов, то должен быть определен режим, создающий максимальный уровень помех, и именно для этого режима должны выполняться все измерения.

3.4.1.1 Кондуктивные помехи.

Для оборудования, размещаемого на открытой палубе и ходовом мостике, уровни создаваемого напряжения радиопомех в цепях питания и вводавывода не должны превышать следующих значений в указанных ниже диапазонах частот:

Для оборудования, размещаемого в машинных и других закрытых помещениях судна, уровни создаваемого напряжения радиопомех в цепях питания и ввода-вывода не должны превышать следующих значений в указанных ниже диапазонах частот:

$$10 - 150 \text{ к}\Gamma\text{ц} - 120 - 69 \text{ дБмкВ};$$
 $150 - 500 \text{ к}\Gamma\text{ц} - 79 \text{ дБмкВ};$ $500 \text{ к}\Gamma\text{ц} - 30 \text{ М}\Gamma\text{ц} - 73 \text{ дБмкВ}.$

Для измерения уровня напряжения помех должен использоваться эквивалент сети и квазипиковый измерительный приемник. Ширина полосы пропускания приемника при измерениях в частотном диапазоне от $10~\mbox{к}\mbox{Г}\mbox{ц}$ до $150~\mbox{к}\mbox{Г}\mbox{ц}$ должна быть $200~\mbox{Г}\mbox{ц}$, а в частотном диапазоне от $150~\mbox{к}\mbox{Г}\mbox{ц}$ до $30~\mbox{M}\mbox{Г}\mbox{ц}$ — $9~\mbox{к}\mbox{Г}\mbox{ц}$.

Соединительные кабели между клеммами электропитания испытуемого оборудования и эквивалентом сети питания должны быть экранированными и не превышать по длине 0,8 м. Если испытуемое оборудование состоит из нескольких приборов с индивидуальными клеммами для постоянного и переменного тока, то клеммы питания с одинаковым номиналом напряжения могут быть подключены параллельно.

При выполнении измерений все измерительные приборы и испытуемое оборудование должны быть установлены на заземленной плоскости и подсоединены к ней. При отсутствии возможности использования заземленной плоскости должно быть выполнено эквивалентное заземление на металлическую раму или корпус испытуемого оборудования.

3.4.1.2 Излучаемые помехи.

Для оборудования, размещаемого на открытой палубе и ходовом мостике, уровни создаваемого электромагнитного поля радиопомех на расстоянии 3 м не должны превышать следующих значений в указанных ниже диапазонах частот:

за исключением диапазона 156-165 Мгц, где устанавливается 24 дБмкВ/м.

Для оборудования, размещаемого в машинных и других закрытых помещениях судна, уровни создаваемого электромагнитного поля радиопомех на расстоянии 3 м не должны превышать следующих значений в указанных ниже диапазонах частот:

0,15 МГц — 30 МГц — 80 — 50 дБмкВ/м; 30 МГц — 100 МГц — 60 — 54 дБмкВ/м; 100-2000 МГц — 54 дБмкВ/м;

за исключением диапазона 156 — 165 Мгц, где устанавливается 24 дБмкB/м.

Для измерений должен использоваться квазипиковый измерительный приемник. Ширина полосы пропускания приемника в диапазоне частот от 0,15 МГц до 30 МГц и от 156 МГц до 165 МГц должна быть 9 кГц, а в диапазоне частот от 30 МГц до 156 МГц и от 165 МГц до 1 ГГц — 120 кГц.

Размеры измерительной антенны в направлении на испытуемое оборудование не должны превышать 20 % расстояния до него. На частотах более 80 МГц должна обеспечиваться возможность изменения высоты расположения центра антенны относительно земли в пределах от 1 м до 4 м.

Помещение для проведения испытаний должно иметь металлическую заземленную плоскость. Испытуемое оборудование должно быть представлено в полной комплектации со всеми соединительными межприборными кабелями и установлено в нормальном рабочем положении.

Если испытуемое оборудование состоит из нескольких блоков, то соединительные кабели между основным и всеми другими блоками должны иметь максимальную длину, указанную в спецификации предприятия (изготовителя). Имеющиеся входные и выходные разъемы испытуемого оборудования должны быть подключены к эквивалентам обычно используемого вспомогательного оборудования с использованием кабелей с максимальной длиной, указанной предприятием (изготовителем).

Избыточная длина кабелей должна быть собрана в бухты, уложенные на расстоянии 30 — 40 см (по горизонтали) от разъемов, к которым они подключены. Если это практически невозможно сделать, то следует выполнить размещение избыточной длины кабелей как можно ближе к изложенным требованиям.

Измерительная антенна должна быть размещена на расстоянии 3 м от испытуемого оборудования. Центр антенны должен быть выше заземленной плоскости, по крайней мере, на 1,5 м. Для определения максимального уровня помех антенна, измеряющая напряженность электрического поля, должна регулироваться только по высоте и иметь возможность вращения для получения горизонтальной и вертикальной поляризации. Сама антенна должна оставаться параллельной полу. С целью определения максимального уровня помех должна быть обеспечена возможность перемещения антенны вокруг испытуемого оборудования или вращения самого оборудования, размещаемого в ортогональной плоскости измерительной антенны на уровне ее средней точки.

3.4.2 Устойчивость к воздействию внешних электромагнитных помех.

При проведении этих испытаний испытуемое оборудование должно быть представлено в своей нормальной рабочей комплектации, работать при нормальных условиях.

При испытании устойчивости к воздействию внешних электромагнитных помех результаты оцениваются по критериям функционирования (работоспособности), отнесенным к рабочим условиям и функциональному назначению испытуемого оборудования. Эти критерии определяются следующим образом:

критерий функционирования А: испытуемое оборудование должно продолжать работать в соответствии с назначением во время и после проведения испытаний. Не допускается ухудшение работоспособности или потеря функций, определенных в соответствующем стандарте на оборудование и технической документации производителя;

критерий функционирования В: испытуемое оборудование должно продолжать работать в соответствии с назначением во время и после проведения испытаний. Не допускается ухудшение работоспособности или потеря функций, определенных в соответствующем стандарте на оборудование и технической документации производителя. При этом во время испытаний допускается ухудшение или потеря функций или работоспособности, которые могут самовосстанавливаться, но не допускается изменение установленного режима или оперативных данных;

критерий функционирования С: во время испытаний допускается временное ухудшение или потеря функции или работоспособности. При этом обеспечивается функция самовосстановления, или может быть обеспечено восстановление нарушений в конце испытаний путем использования регулировок в соответствии со стандартом на оборудование и технической документацией предприятия (изготовителя).

3.4.2.1 Устойчивость к кондуктивным низкочастотным помехам.

Эти испытания имитируют воздействие помех, генерируемых, например, электронными потребителями (тиристорами и т. п.) и вносимых в цепи питания в виде гармонических составляющих. Эти испытания не применяются к оборудованию с питанием исключительно от аккумуляторов.

Оборудование должно оставаться работоспособным (критерий функционирования А) при наложении на его напряжение питания дополнительных тестовых напряжений:

для оборудования с электропитанием от постоянного тока:

синусоидального напряжения, действующее значение которого составляет 10 % от номинального

напряжения питания в диапазоне частот от 50 Гц до 10 кГц;

для оборудования с электропитанием от переменного тока:

синусоидального напряжения, действующее значение которого изменяется в зависимости от частоты: 10~% от действующего значения питающего напряжения в диапазоне частот от номинальной частоты напряжения питания до 15-ой гармоники; 10-1~% в диапазоне от 15-ой до 100-й гармоники и 1~% в диапазоне от 100-ой до 200-ой гармоники.

3.4.2.2 Устойчивость к кондуктивным радиочастотным помехам.

При испытании создаются радиочастотные напряжения, возникающие в цепях питания, управления и передачи сигналов от работы преобразователей электроэнергии, эхолотов и судовых радиопередатчиков на частотах ниже 80 МГп.

Испытуемое оборудование должно быть размещено на изолированной подставке, расположенной на высоте 0,1 м над заземленной поверхностью. Кабели, подключаемые к испытуемому оборудованию, должны быть обеспечены соответствующими устройствами связи и развязки, расположенными на расстоянии 0,1 м — 0,3 м от испытуемого оборудования.

Испытания должны выполняться с использованием генератора, последовательно подключаемого к каждому устройству связи и развязки. При этом незадействованные входные клеммы устройства связи и развязки, используемые для подключения испытательного генератора, должны быть нагружены эквивалентом с безиндуктивным сопротивлением, равным волновому сопротивлению кабеля. Испытательный генератор должен настраиваться для каждой схемы связи и развязки; при этом дополнительное и испытуемое оборудование отключается и заменяется безиндуктивными резисторами соответствующих номиналов (при сопротивлении кабеля 50 Ом дополнительные сопротивления должны составлять 150 Ом). Испытательный генератор должен быть настроен таким образом, чтобы обеспечить немодулированное напряжение требуемого уровня на входных клеммах испытуемого оборудования.

Оборудование должно оставаться работоспособным (критерий функционирования А) при следующих уровнях испытательного сигнала:

действующее значение напряжения 3 В при изменяющейся частоте в диапазоне от 150 кГц до 80 МГц;

для оборудования, размещаемого на открытой палубе и ходовом мостике, действующее значение напряжения увеличивается до 10 В в точках с частотами: 2 МГц, 3 МГц, 4 МГц, 6,2 МГц; 8,2 МГц, 12,6 МГц, 16,5 МГц, 18,8 МГц, 22 МГц и 25 Мгц.

Скорость изменения частоты не должна превышать 1.5×10^{-3} декада/с (или 1 % / 3 с), чтобы иметь возможность обнаружить отклонение в работе испытуемого оборудования.

Частота модуляции должна быть $1000~\Gamma u \pm 10~\%$ при глубине модуляции $80~\% \pm 10~\%$. При частоте модуляции входного сигнала испытываемого оборудования $1000~\Gamma u$ частота модуляции сигнала помехи может быть выбрана $400~\Gamma u$.

3.4.2.3 Устойчивость к электромагнитному полю. При этих испытаниях создается испытательное электромагнитное поле, возникающее на судах при работе радиопередатчиков на частотах свыше 80 МГц, например, судовых стационарных и носимых УКВ-радиостанций, находящихся рядом с оборудованием.

Испытуемое оборудование должно устанавливаться в подходящем экранированном помещении или в безэховой камере, размеры которой соизмеримы с оборудованием. Испытуемое оборудование должно быть установлено в зоне равномерного (однородного) поля и быть изолировано от пола диэлектрической подставкой. Испытания должны выполняться при всех ориентациях (со всех сторон) оборудования.

Скорость изменения частоты не должна превышать 1.5×10^{-3} декада/с (или 1 %/3 с). При испытаниях должны быть особо проверены частоты, при которых оборудование наиболее чувствительно к помехам.

Оборудование должно оставаться работоспособным (критерий работоспособности А) при размещении его в модулированном электрическом поле с напряженностью 10~B/m и при изменении частоты в диапазоне от 80~MFц до 2~FFц. Частота модуляции должна быть 1000~Fg \pm 10~% при глубине модуляции 80~% \pm 10~%. При частоте модуляции входного сигнала испытываемого оборудования 1000~Fg частота модуляции сигнала помехи может быть выбрана 400~Fg.

3.4.2.4 Устойчивость к наносекундным импульсным помехам от быстрых переходных процессов в цепях источников питания переменного тока, сигнальных и управляющих цепях.

При этих испытаниях имитируются быстрые низкоэнергетические переходные процессы, создаваемые оборудованием, включение которого сопровождается искрением на контактах.

Оборудование должно оставаться работоспособным (критерий работоспособности В), если к его входам источников питания, сигнальных и управляющих цепей прикладывается импульсное напряжение со следующими параметрами:

время нарастания — 5 нс (на уровне 10 % — 90 % амплитуды);

длительность — 50 нс (на уровне 50 % амплитуды);

амплитуда 2 кВ — при подаче через устройство связи-развязки в цепи питания переменного тока относительно корпуса);

амплитуда 1 кВ — при подаче через емкостные клещи в сигнальные цепи, цепи управления и питания постоянного тока низкого напряжения;

частота повторения импульсов — 5 к Γ ц; длительность пачек импульсов 15 мс; период повторения пачек 300 мс;

продолжительность — 5 минут для каждой положительной и отрицательной полярности импульсов.

3.4.2.5 Устойчивость к микросекундным импульсным помехам от медленных переходных процессов в цепях электропитания переменного тока.

Эти испытания имитируют воздействие импульсных напряжений, вызываемых включением и отключением мощных индуктивных потребителей.

Оборудование должно оставаться работоспособным (критерий функционирования В), если к его цепям питания прикладывается импульсное напряжение со следующими параметрами:

время нарастания — 1,2 мкс (на уровне 10 % — 90 % амплитуды);

длительность — 50 мкс (на уровне 50% амплитуды);

амплитуда — 2 кВ — при подаче через устройство связи-развязки между каждой цепью (линией) и корпусом; 1 кВ — при подаче через устройство связи-развязки между цепями (линиями);

частота повторения — 1 импульс в минуту;

количество импульсов — 5 импульсов для каждой положительной и отрицательной полярности импульсов.

3.4.2.6 Устойчивость к электростатическим разрядам. При этих испытаниях имитируются разряды статического электричества, которые могут возникать при контакте человека с корпусом оборудования.

Испытания должны выполняться с использованием генератора электростатических разрядов (накопительная емкость 150 пФ и разрядное сопротивление 330 Ом, подключаемые к разрядному наконечнику). На рабочем месте для

испытаний должен быть деревянный стол высотой $0.8\,$ м, установленный на плоскость заземления. На стол должна быть уложена горизонтальная плоскость связи размером $1.6\,$ м $\times\,0.8\,$ м. Плоскости связи должны быть соединены с плоскостью заземления с помощью проводов, имеющих на каждом конце резисторы сопротивлением $470\,$ кОм. Оборудование и кабели должны быть изолированы от плоскости связи изоляционной прокладкой толщиной $0.5\,$ мм.

Разряды от генератора должны прикладываться к тем точкам и поверхностям оборудования, которые доступны персоналу при нормальной работе. При испытаниях генератор должен располагаться перпендикулярно поверхности, а места приложения разрядов могут выбираться в режиме 20 разрядов в секунду. Каждая выбранная точка должна подвергаться испытаниям на 10 положительных и 10 отрицательных разрядов с интервалом, как минимум, 1 с между разрядами, чтобы обеспечить выявление любых отклонений в работе оборудования. При испытаниях предпочтительным методом является контактный разряд. Если нельзя использовать контактный метод (при наличии покрашенных поверхностей), то должен использоваться воздушный разряд.

Для имитации разрядов на объектах, расположенных или установленных около оборудования, должны быть выполнены 10 положительных и 10 отрицательных контактных разрядов в горизонтальную плоскость связи. Места приложения разрядов должны отстоять на расстоянии 0,1 м от испытуемого оборудования. Следующие 10 разрядов должны быть приложены к центру вертикальной плоскости связи размером 0,5 м $\times 0,5$ м. Эти испытания должны быть проведены для всех четырех сторон оборудования.

Оборудование должно оставаться работоспособным (критерий функционирования В) при напряжении 6 кВ для контактного разряда и 8 кВ для воздушного разряда.

3.5 Испытания устойчивости оборудования автоматизации к качке и длительным наклонам.

3.5.1 Оборудование автоматизации должно выдерживать испытания по следующей методике:

№ π/π	Последовательность, условия и нормы испытаний	Числовое значение
2	Установка оборудования на стенд, включение и измерение параметров. Выдержка оборудования в состоянии качки при установке его последовательно в двух взаимно перпендикулярных положениях и измерение параметров при каждом положении, при этом: предельный угол наклона период качки продолжительность испытаний Выдержка оборудования последовательно в двух взаимно перпендикулярных положениях под углом 22,5° к горизонтали и измерение параметров	22,5°1 10 с Любая, достаточная для измерения параметров, но не менее 15 мин в каждом положении В течение любого времени, достаточного для измерения параметров, но не менее 3 мин в
3	Снятие оборудования со стенда, измерение параметров, выключение и осмотр	каждом положении
ихи	$^{1}30^{\circ}$ — для оборудования автоматизации аварийного источника электрическо мовозов.	й энергии газовозов, перевозящих сжиженные газы,

Во время испытаний оборудование должно находиться в рабочем состоянии при нормальных климатических условиях. Оборудование должно устанавливаться на специальный стенд на штатных амортизаторах.

По согласованию с Регистром испытания на устойчивость к качке и длительным наклонам могут не проводиться для оборудования автоматизации, не имеющего движущихся частей.

3.6 Вибрационные испытания.

3.6.1 Испытания проводят при воздействии вибрации в диапазоне частот от 2 до 100 Гц. Испытания проводятся в трех взаимно перпендикулярных направлениях по отношению к оборудованию. Способ крепления оборудования для проведения испытаний должен быть указан в технической документации с учетом возможных положений оборудования при эксплуатации. Если в технической документации предусмотрены различные способы крепления при эксплуатации оборудования, то оно должно испытываться при наиболее опасном способе крепления. Во время испытаний проводится проверка функционирования оборудования. Диапазон частот вибрации, амплитуда, частота перехода, ускорение должны соответствовать указанным в табл. 3.6.1.

Таблица 3.6.1

			raominga bioi				
Диапазон частот, Гц	Амплитуда, мм	Частота перехода, Гц	Ускорение, g				
для оборудования обычного исполнения							
2 — 100	±1,0	13,2	± 0,7				
для оборудования, подверженного повышенной вибрации							
2 — 100	±1,6	25,0	±4,0				

Примечание. В отношении оборудования, для которого возможны большие значения рабочих ускорений (например: оборудование, устанавливаемое непосредственно на коллекторах выпускных газов средне- и высокооборотных двигателей внутреннего сгорания и т. п.), программа испытаний является, в каждом случае, предметом специального рассмотрения Регистром.

Испытания должны проводиться на штатных амортизаторах, если таковые имеются.

Скорость изменения должна быть достаточной для проверки и регистрации необходимых параметров, но не более чем две октавы в минуту. Прохождение полного диапазона частот должно занимать не менее 30 мин.

Во время испытаний проводится поиск резонансных частот, на которых ухудшаются параметры оборудования. Время поиска должно быть достаточным для выявления резонанса.

При обнаружении резонансных частот, амплитуда которых в два — пять раз превышает

номинальную, испытания проводят на каждой резонансной частоте в течение не менее 90 мин. Превышение номинальной амплитуды более чем в 5 раз не рекомендуется.

В случае близкого расположения нескольких резонансных частот допускается проведение испытаний плавным изменением частоты в обнаруженном диапазоне в течение 120 мин.

В случае отсутствия резонансных частот испытания проводятся в течение 90 мин на частоте 30 Гц.

Оборудование считается выдержавшим испытания, если в процессе воздействия вибрации и после испытаний оно сохраняет свои параметры в заданных пределах и не получает повреждений.

3.6.2 Испытание на воздействие вибрационных нагрузок для изделий установившегося (серийного) производства проводят на каждом изделии с целью выявления грубых технологических дефектов при ускорении $\pm 4.0g$ для изделий, подверженных повышенной вибрации, и 0.7g — для остального оборудования.

Испытания проводятся на частоте 30 Γ ц в течение 30 мин.

3.7 Испытания на удар.

Испытания проводят в рабочем состоянии при воздействии ударной нагрузки поочередно в каждом из трех взаимно перпендикулярных направлений по отношению к изделию.

Форма ударного импульса не регламентируется, но рекомендуется близкой к синусоидальной. Величина ускорения, длительность удара, число ударов в каждом положении изделия, а также частота ударов указаны в табл. 3.7.

Таблица 3.7

Ускорение, g	Длительность удара, мс	Число ударов в каждом положении	Частота следования ударов, мин
±5,0	10 — 15	20	40 — 80

Способ крепления изделий для проведения испытаний должен быть указан в технической документации с учетом возможных положений изделий при эксплуатации. Если в технической документации на изделия предусмотрены различные способы крепления при эксплуатации, то изделие должно испытываться при наиболее опасном способе крепления, указанном в технической документации.

Оборудование считается выдержавшим испытания на ударную устойчивость, если в процессе и после испытаний оно отвечает требованиям, установленным в технической документации для данного вида испытания.

3.8 Испытания степени защиты оборудования.

Испытания для проверки степеней защиты от попадания твердых посторонних тел и проникновения воды внутри оболочки должны проводиться в соответствии с разд. 10.

3.9 Испытания теплоустойчивости оборудования. Оборудование автоматизации должно обладать теплоустойчивостью и выдерживать испытания по следующей методике:

Последовательность, условия

и нормы испытаний

Повышение температуры в камере до стандартной -

Выдержка оборудования при стандартных климатических

Включение и выдержка оборудования при стандартных

климатических условиях (самонагрев) — продолжи-

Измерение параметров при стандартных климатических

скорость повышения температуры, °С/мин

условиях, выключение оборудования и осмотр

условиях — продолжительность, ч

 Π/Π

9

10

11

.9 Понижение температуры в камере
до стандартной — скорость понижения
температуры, °С/мин 0,5 — 3
.10 Выдержка оборудования при стандартных
климатических условиях — продолжи-
тельность, ч
.11 Измерение параметров при стандартных
климатических условиях, выключение
оборудования и осмотр

Примечание. Испытания на теплоустойчивость могут также проводиться в соответствии со стандартом МЭК 60068-2-2, при температуре 55 ± 2 °C, продолжительностью 16 ч, либо при температуре 70 ± 2 °C, продолжительностью 2 ч. Оборудование должно находиться во включенном состоянии в течение всего периода испытаний. Проверка на функционирование оборудования проводится в последний час при испытательной температуре. Элементы и устройства, предназначенные для установки в щиты, пульты или кожухи совместно с другими тепловыделяющими элементами и устройствами, должны испытываться при температуре 70 ± 2 °C.

В отношении оборудования, для которого возможны большие значения рабочих температур (устанавливаемое непосредственное на двигателях, котлах и т.п.), программа испытаний является в каждом случае предметом специального рассмотрения Регистром.

3.10 Испытания холодоустойчивости оборудования.

Оборудование автоматизации должно обладать холодоустойчивостью и выдерживать испытания по следующей методике:

Числовое значение для оборудования, предназначенного для

работы

Таблица 3.10

0.5 - 3

0,2-2

на открытой палубе во внутренних помещениях 0,2-2Установка оборудования в камеру холода, включение и 0,2-2выдержка при стандартных климатических условиях (самонагрев) — продолжительность, ч 2 Измерение параметров при стандартных климатических 3 Понижение температуры в камере до рабочей: скорость понижения температуры, °С/мин 1 - 21 - 2рабочая температура, °С -10 ± 3 30 ± 3 4 Выдержка оборудования при рабочей температуре -6 6 продолжительность, ч 5 Измерение параметров при рабочей температуре и выключение 6 Понижение температуры в камере до предельной: 1 - 21 - 2 -50 ± 3 -50 ± 3 предельная температура, °С 7 2 Выдержка оборудования при предельной температуре продолжительность, ч

0,2-2

Испытания на холодоустойчивость в рабочем состоянии оборудования, рабочая среда которого не допускает работу при отрицательных температурах, необходимо проводить при температуре 0 $^{\circ}$ C.

3.11 Испытания влагоустойчивости оборудования. Оборудование автоматизации должно обладать влагоустойчивостью и выдерживать испытания по

следующей методике:

Последовательность, условия

Числовое значение

- и нормы испытаний значение .1 Установка оборудования в камеру влажности, включение и выдержка при стандартных климатических условиях (самопрогрев) продолжительность, ч 0,2 2
- .2 Измерение параметров при стандартных климатических условиях и выключение . —
- .4 Выдержка оборудования при рабочей температуре продолжительность, ч 1,5-2
- .5 Повышение относительной влажности в камере до рабочей рабочая относительная влажность, % 95 ± 3
- .6 Выдержка оборудования при рабочих значениях температуры и относительной влажности продолжительность, сут . . 10
- .7 Включение, измерение параметров при рабочих значениях температуры и относительной влажности и выключение (один раз в сутки) продолжительность, ч не более 1
- Извлечение оборудования из камеры и выдержка при стандартных климатических условиях — продолжительность, ч. . . 6 — 12

- .9 Включение и выдержка оборудования при стандартных климатических условиях (самонагрев) — продолжительность, ч 0,2 — 2

Примечание. Испытания на влагоустойчивость могут также проводиться в соответствии со стандартом МЭК 60068-2-30, тест Db, при температуре 55 ± 2 °C и относительной влажности 95+5 %. Испытания должны включать в себя два цикла (12+12 ч). Оборудование должно находиться во включенном состоянии в течение первого цикла, и в выключенном, за исключением проверки функционирования, в течение второго цикла. Проверка на функционирование оборудования проводится в течение первых двух часов первого цикла, а также в течение двух последних часов второго цикла, при испытательной температуре. После извлечения оборудования из камеры и выдержки в нормальных климатических условиях в течение 1-3 часов проводится измерение сопротивления изолящии.

Оборудование всех видов исполнения должно испытываться в штатных оболочках в полном сборе, за исключением оборудования, имеющего степень защиты от проникновения воды 4 и выше, крышки которого во время испытания в камере должны быть открыты. Испытания должны проводиться с периодическим включением оборудования в работу.

3.12 Испытания коррозионной стойкости оборудования (устойчивости к воздействию морского тумана).

Оборудование, предназначенное для работы на открытой палубе, должно обладать коррозионной стойкостью и выдерживать испытания по методике, приведенной в табл. 3.12.

В процессе испытаний брызги раствора из пульверизатора или аэрозольного аппарата, а также капли конденсата, падающие с потолка и стен камеры, не должны попадать на испытываемое оборудование.

Таблица 3.12

№ п/п	Последовательность, условия и нормы испытаний	Числовое значение
1	Измерение сопротивления изоляции и проведение функциональных испытаний	_
2	Установка оборудования в камеру и выдержка при циклическом распылении раствора солей (морской туман) 1 : температура в камере, $^{\circ}$ С состав синтетического раствора солей на 1 л дистиллированной воды для образования	35 ± 2
	морского тумана, г/л: хлористый натрий хлористый магний хлористый кальций хлористый калий дисперсность морского тумана (90 % капель), мк	27 6 1 1 1—5
	водность морского тумана, г/м продолжительность испытаний, количество циклов ² продолжительность распыления раствора (в начале каждого цикла), ч	2 - 3 4 2
3	Извлечение оборудования из камеры, измерение сопротивления изоляции и проведение функциональных испытаний, ч	4 — 6

Во время испытания оборудование находится в выключенном состоянии.

² Каждый цикл состоит из следующих этапов: распыление раствора солей, выдержка оборудования в камере в течение 7 сут, проведение функциональных испытаний на седьмые сутки цикла.

3.13 Испытания устойчивости оборудования к воздействию инея и росы.

Оборудование автоматизации, предназначенное для установки на открытых палубах морских судов, должно выдерживать испытания на устойчивость к воздействию инея и росы по следующей методике:

Последовательность, условия Числовое и нормы испытаний значение .1 Установка оборудования в камеру холода и выдержка в выключенном состоянии: продолжительность, ч2 Извлечение оборудования из камеры, включение и выдержка в нормальных климатических условиях. При этом сразу после включения и через каждые 30 — 60 мин проводится измерение параметров оборудования — продолжительность выдержки, ч

3.14 Испытания на плеснеустойчивость оборудования автоматизации

Выключение и осмотр

.3

Оборудование автоматизации должно обладать плеснеустойчивостью и выдерживать испытания по методике, приведенной ниже.

Перед началом испытаний оборудование должно быть выдержано при температуре 60 ± 2 °C в течение 6 ч, а затем помещено на 1-6 ч в стандартные климатические условия для осмотра и измерения параметров. Испытания оборудования должны проводиться в среде, зараженной грибковой плесенью, при отсутствии света и движения воздуха. Плесень должна представлять собой

водную суспензию из смеси плесневых грибков, названия которых приведены в табл. 3.14.

В качестве питательной среды для выращивания плесневых грибков рекомендуется использование пивного сусла или синтетической среды «Чапек — Докса».

Стерилизованная питательная среда в чашках Петри вместе с отключенным от источников питания оборудованием устанавливается в испытательную камеру и опрыскивается из пульверизатора с диаметром выходного отверстия не менее 1 мм водной суспензией на 1 м³ полезного объема камеры. После опрыскивания в испытательной камере устанавливается температура $20\pm5~^{\circ}$ С и относительная влажность $95-98~^{\circ}$

Оборудование выдерживается в этих условиях в течение 48 ч. Если после такой выдержки в контрольных чашках Петри не наблюдается роста плесени, следует произвести повторное опрыскивание чашек и оборудования жизнеспособной суспензией спор плесневых грибков и произвести повторную выдержку в течение 48 ч. После обнаружения в контрольных чашках роста плесени температура в камере повышается до 29 ± 1 °C при относительной влажности 95 — 98 %, и оборудование выдерживается в таких условиях 28 сут. По истечении этого срока оборудование помещается в стандартные климатические условия на 24 ч, а затем проводится осмотр и измерение его параметров. Оборудование считается плеснеустойчивым, если при наблюдении через лупу с 50-кратным увеличением на нем не обнаруживается очагов грибковой плесени или видны лишь единичные проросшие споры.

Таблица 3.14

№	Споры	Штамм	Типичные культуры	Свойства
п/п				
1	Aspergillus niger	v.Tieghem	ATCC.6275	Обильно растет на многих материалах, стойка к солям меди
2	Aspergillus terreus	Thom	PQMD.82j	Воздействует на пластмассовые материалы
3	Aureobasidium pullulans	(De Barry)	ATCC.9348	Воздействует на лаки и краски
	_	Arnaud		
4	Paecilomyces varioti	Bainier	IAM.5001	Воздействует на пластмассы и кожу
5	Penicillium finiculosum	Thom	IAM.7013	Воздействует на многие материалы, особенно на текстильные
6	Penicillium ochrochlo- rom	Biourga	ATCC.9112	Стойка к солям меди
7	Scopulariopsia brevicuulis	(Sacc) Bain Var. glabra Thom	IAM.5146	Воздействует на резину
8	Trichoderma viride	Pers.ex.Er.	IAM.5061	Воздействует на целлюлозу, текстиль и пластмассы

13 СПАСАТЕЛЬНЫЕ СРЕДСТВА

13.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **13.1.1** Положения настоящего раздела применяются при техническом наблюдении за спасательными средствами, перечисленными в Номенклатуре РС.
- **13.1.2** Раздел содержит требования технического наблюдения Регистра за изготовлением упомянутых объектов технического наблюдения на предприятии (изготовителе).
- 13.1.3 Общие положения по организации технического наблюдения за изготовлением спасательных средств изложены в части I «Общие положения по техническому наблюдению», по технической документации в части II «Техническая документация.
- **13.1.4** Регистр может потребовать в случае необходимости, чтобы под его техническим наблюдением разрабатывались и изготовлялись спасательные средства, включая предметы оборудования и снабжения, не предусмотренные Номенклатурой РС.

13.2 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ГОЛОВНЫМ ОБРАЗЦОМ

- 13.2.1 Техническое наблюдение Регистра за разработкой и изготовлением образцов (партий) спасательных средств, включая предметы оборудования и снабжения, подразделяется на следующие этапы:
- **.1** рассмотрение и одобрение технического или технорабочего проекта;
- **.2** рассмотрение и одобрение программы и методики испытаний головных образцов;
- .3 участие в испытании головных образцов (партий);
- .4 рассмотрение и одобрение программы испытаний спасательных средств при установившемся производстве, откорректированной по результатам испытаний головного образца.
- 13.2.2 При рассмотрении технической документации и освидетельствовании образцов спасательных средств необходимо проверить выполнение общих технических требований, предъявляемых к данным изделиям соответствующими частями Правил согласно 13.1.1.
- **13.2.3** Объем технической документации, представляемой на одобрение Регистру, должен отвечать требованиям 1.3 части II «Спасательные средства» Правил по оборудованию морских судов.

13.3 ВИДЫ ИСПЫТАНИЙ

- **13.3.1** Программа приемосдаточных испытаний, осуществляемых органом технического контроля предприятия (изготовителя), должна быть одобрена Регистром.
- 13.3.2 Контрольные испытания Регистром материалов или изделий для подтверждения СПИ или для подтверждения стабильного производства и соответствия материалов и изделий одобренной технической документации в тех случаях, когда СПИ не оформляются, могут быть совмещены с периодическими испытаниями материалов и изделий.
- **13.3.3** Испытания Регистром головных образцов и испытания для выдачи СТО (или СПИ) могут быть совмещены с типовыми испытаниями материала или изделия.

13.4 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ НА ПРЕДПРИЯТИИ (ИЗГОТОВИТЕЛЕ)

- 13.4.1 Все материалы и комплектующие изделия, идущие на изготовление спасательных средств, должны иметь документы, подтверждающие их соответствие одобренной документации. Эти документы должны быть оформлены в соответствии с формой технического наблюдения, предусмотренной Номенклатурой РС.
- 13.4.2 Освидетельствование инспектором спасательных средств на предприятии (изготовителе) на различных этапах производства должно осуществляться в соответствии с перечнем объектов технического наблюдения, разрабатываемым предприятием (изготовителем) на основании требований настоящего раздела (см. табл. 13.4.2-1 13.4.2-5) и согласованным с подразделением Регистра (см. 12.2 части I «Общие положения по техническому наблюдению»).

По инициативе подразделения Регистра перечень корректируется предприятием (изготовителем) по результатам освидетельствований спасательных средств судов в эксплуатации.

Испытания головных образцов должны проводиться по программе, одобренной Регистром.

Число образцов головной партии изделий, подвергаемых испытаниям, устанавливается программой испытаний. Число проверяемых изделий при установившемся производстве по усмотрению инспектора может быть увеличено, либо уменьшено.

Таблица 13.4.2-1 Объем освидетельствований спасательных шлюпок и дежурных шлюпок

	Объем освидетельствований спасатель	ных шлюпок и дежу	рных шлюпок	
№ п/п	Испытания (проверки)	Освидетель- ствование головного образца	Освидетель- ствование изделий при установившемся производстве	Число проверяемых изделий при установившемся производстве, %
	-			
1	Проверка качества материалов	+	+	100
2	Проверка размеров и конструкции шлюпки	+	+	100
3	Статическое испытание корпуса спускаемой с помощью	+	+	Каждое 10-е, но не
,	лопарей спасательной щлюпки на прочность	1	1	менее 1 от партии
4	Испытание подъемно-спускового приспособления на прочность	+	+	100
5	Испытания корпуса спасательной шлюпки на непроницаемость	+	+	100
6	Определение объема воздушных ящиков и отсеков и объемов с плавучим материалом	+	+	_
7	Испытание воздушных ящиков и отсеков на непроницаемость	+	+	100
8	Обмер шлюпки (определение вместимости)	+	_	_
9	Определение массы корпуса шлюпки	+	+	Каждое 10-е, но не
				менее 1 от партии
10	Определение высоты надводного борта шлюпки	+	_	_
11	Проверка остойчивости шлюпки (кренование)	+	_	_
12	Проверка непотопляемости шлюпки	+	_	_
13	Проверка на удар	+	_	_
14	Испытание на сбрасывание	+	_	
15	Проверка прочности заделки и крепления подъемно- спускового приспособления шлюпки	+	+	100
16	Проверка защитного устройства, установки тента	+	+	100
17	Проверка размещения в шлюпке людей и снабжения	+	_	_
18	Проверка парусного вооружения шлюпки в сборе	+	+	100
19	Проверка сборки и монтажа механического привода	+	+	100
20	Швартовные испытания моторных и приводных шлюпок	+	+	100
21	Ходовые испытания шлюпки с моторной установкой в течение не менее 2 ч	+	+	100
22	Определение скорости шлюпки с моторной установкой и испытанием рулевого устройства	+	_	_
23	Определение скорости шлюпки с ручным механическим приводом	+	_	_
24	Огневые испытания танкерных спасательных шлюпок	+	_	_
25	Мореходные испытания	+	_	_
26	Проверка комплектности и снабжения шлюпок	+	+	100
27	Проверка окраски и маркировки шлюпок	+	+	100
28	Проверка дежурных шлюпок	+	+	100
29	Испытание разобщающего механизма спасательных и дежурных шлюпок	+	+	100
30	Проверка наклейки световозвращающих полос	+	+	100
31	Испытание двигателя переворачиванием до установки его на	+	_	_
32	спасательную шлюпку Испытание двигателя в погруженном в воду состоянии	+	_	_
33	Испытание двигателя вне воды	+		
34	Испытание пуском двигателя из холодного состояния	+	_	_
35	Испытания самовосстанавливающихся, частично закрытых и	+	_	_
	полностью закрытых спасательных шлюпок		,	.
36	Испытания спасательных шлюпок с автономной системой воздухоснабжения	+	+	+
37	Воздухоснаожения Испытания системы орошения огнезащищенных шлюпок	+	+	100
38	Испытания герметичности закрытий люков полностью	+	+	100
"	закрытых шлюпок	·	·	150
39	Испытания электрооборудования шлюпок	+	+	100
40	Испытание пуском двигателя полностью закрытой шлюпки	+	+	100
	после ее переворачивания			100
41	Проверка крепления ремней безопасности в полностью закрытых шлюпках	+	+	100
42	Испытание спускаемой с помощью лопарей спасательной	+	+	100
,,	шлюпки и дежурной шлюпки 10-процентной перегрузкой		,	100
43	Испытание сбрасываемой спасательной шлюпки сбрасыванием	+	+	100
44	при нагрузке, в 1,1 раза превышающей рабочую Испытание сбрасываемой спасательной шлюпки сбрасыванием	+	_	
""	с высоты, в 1,3 раза превышающей высоту установки	'		_
45	Испытание сбрасываемой спасательной шлюпки сбрасыванием для	+	_	_
	испытание сорасываемой спасательной шлюпки сорасыванием для определения перегрузок	<u> </u>		_ _

 ${\rm Ta\, fn\, u\, u\, a} \ \ 13.4.2-2$ Объем освидетельствований спасательных плотов на различных этапах производства

	Ооъем освидетельствовании спасательных п				
№ п/п	Испытания (проверки)	Освидетель- ствование головного образца	Освидетель- ствование изделий при установившем- ся производстве	Число проверяемых изделий при установившемся производстве, %	
1	Проверка материалов и клеевых соединений	+	+	Для каждой партии	
2	Наружный осмотр и проверка размеров плота	+	+	100	
3	Испытания спасательных плотов на прочность сбрасыванием и	+	+	_	
-	прыжками				
4	Испытание подъемно-спускового приспособления плота на	+	+	100	
-	прочность	·	·	100	
5	Испытание металлического плота на водонепроницаемость	+	+	100	
6	Испытание надувного плота и его контейнера на непро-	·	·	100	
`	ницаемость	+	+	_	
1 7	Проверка водонепроницаемости плота из стеклопластика	+	+	100	
8	Испытание контейнеров снабжения на водонепроницаемость и	+	+	2	
۱	плавучесть	· ·			
9	Проверка остойчивости	+	+	_	
10	Проверка плавучести спасательных плотов, предназначенных	+	_	_	
	для спуска методом свободного всплытия				
11	Испытание нагрузкой и размещение людей	+	_	_	
12	1.	+	_	_	
	устройства (фалиня)				
13	Испытание заливанием и проверка защитного устройства	+	+	2	
	(тента)				
14	Испытания надувного плота на легкость переворачивания	+	_	_	
15		+	+	2	
	работоспособности системы газонаполнения				
16	Проверка комплектующих изделий и предметов снабжения	+	+	100	
17	Проверка массы плота и баллона	+	+	100	
18	Проверка окраски и маркировки плота	+	+	100	
19	Проверка расположения и крепления световозвращающих	+	+	100	
	полос				
20	Проверка гидростатических разобщающих устройств	+	+	2	
21	Проверка спускаемых с помощью плотбалки плотов 10 %-ной	+	+	100	
	перегрузкой				
22	Проверка маневренности	+	_	–	
23	Испытания слабого звена	+	+	2	
24	Испытания спускаемых с помощью плотбалки плотов ударом,	+	_	–	
	сбрасыванием и посадкой в него				
25	Дополнительные испытания, применимые только к надувным	+	_	-	
	плотам				
26	Дополнительные испытания, применимые только к автоматически	+	_	_	
	самовосстанавливающимся плотам				
27	Испытания автоматически самовосстанавливающихся плотов и	+	_	-	
	двухсторонних с тентом плотов погружением				
28	Испытания, связанные со скоростью ветра	+	+	1 % или 1 плот	
29	Испытание на самоосушение днищ	+	_	-	
		I	I		

 Π р и м е ч а н и е . Испытания проводятся в соответствии с применимыми положениями резолюции ИМО MSC.81(70).

 $\label{eq:Tadia} \mbox{Таd}\,\pi\,\mu\,\mu\,a\ \ 13.4.2-3$ Объем освидетельствований спасательных кругов, огней и автоматически действующих дымовых шашек

№ п/п	Испытания (проверки)	Освидетель- ствование головного образца при установившем- ся производстве		Число проверяемых изделий при установившемся производстве, %
1	Проверка качества материала	+	+	Для каждой партии спасательных кругов
2	Проверка размеров	+	+	2 % от партии, но не менее 2
3	Контроль конструкции (с вскрытием оболочки)	+	_	_
4	Проверка внешнего вида, окраски, маркировки и расположения световозвращающих полос	+	+	100
5	Определение массы	+	+	10
6	Испытание на плавучесть	+	_	_
7	Определение водопоглощаемости	+	_	_
8	Испытание циклическим изменением температур	+	_	_
9	Испытание на стойкость к воздействию нефти	+	_	_
10	Испытание сбрасыванием	+	_	_
11	Испытание на прочность	+	+	2 % от партии,
				но не менее 2
12	Испытание наполнителя на распространение пламени	+	_	_
13	Огневое испытание	+	_	_
14	Проверка работы спасательных кругов, снабженных огнями и	+	_	_
1	дымовыми шашками			
15	Испытание самозажигающихся огней	+	_	-
16	Испытание автоматически действующих дымовых шашек	+	_	_
	Примечание. Испытания проводятся в соответствии с пр.	<u> </u> имененимыми положе	<u>I</u> ниями резолюции ИМ	O MSC.81(70).

Объем освидетельствования спасательных жилетов

Таблица 13.4.2-4

№ п/п	Испытания (проверки)	Освидетель- ствование головного образца	Освидетель- ствование изделий при установившем- ся производстве	Число проверяемых изделий при установившемся производстве, %
1	Проверка качества материалов	+	+	Для каждой партии
2	Проверка размеров	+	+	2 % от партии,
	r · · · r · · · r · ·			но не менее 2
3	Контроль конструкции (с вскрытием оболочки)	+	_	_
4	Проверка внешнего вида, цвета оболочки, надписей,	+	+	100
	маркировки и размещения световозвращающих полос			
5	Определение массы	+	+	10
6	Испытание на плавучесть	+	+	2 % от партии,
				но менее 2
7	Испытание на водопоглощаемость	+	_	_
8	Проверка комплектности	+	+	10
9	Испытание циклическим изменением температур	+	_	2 % от партии,
				но не менее 2
10	Огневые испытания	+	_	_
11	Испытание на стойкость к воздействию нефти	+	_	<u> </u>
12	Испытание на прочность сбрасыванием	+	+	2 % от партии,
l.,				но не менее 2
	Испытание наполнителя на распространение пламени	+	_	_
14	Испытание на правильность распределения сил поддержания и	+	_	_
1	удобство пользования			2.0/
15	Испытание на прочность	+	+	2 % от партии,
14	Hora was a superior of the sup	1		но не менее 2
16 17	1	†	_	_
18	Испытание плавучего материала Испытание надеванием			
19	Испытания, проводимые в воде			
20	Испытания, проводимые в воде Испытания детских спасательных жилетов	+		
21		<u>'</u>		
-1	тепытание надувных спасательных жилетов	,		_ _

Примечание. Испытания проводятся в соответствии с применимыми положениями резолюции ИМО MSC.81(70).

Таблица 13.4.2-5

Объем освидетельствования	спусковых	устройств	спасательных	шлюпок и плотов

№	Испытания	'3ка		та	Освидетельствование					
	(проверки)				головных	образцов	изделий при установившемся производстве			
		нрофП	Пробная напри испытан Угол крена (антикрена)		шлюп- балки	плот- балки	шлюп- балки	плот- балки		
1	Проверки размеров, конструкции и качеств материалов	_	_	_	+	+	+	+		
2	Испытания на прочность:									
2.1	спускового устройства в сборе	$2,2p_{\mathrm{pa6}}$	20°	10°	+	+	+	+		
2.2	обухов для крепления подтягивающего устройства и найтовов	$2,2p_{\mathrm{pa}}$	20°	10°	+	+	+	+		
2.3	стопоров крепления стрел "по-походному" и рогов стрел шлюпбалок	$1,2p_{\mathrm{pa}}$	20°	10°	+	_	+	_		
3	Оспытания в действии спускового устройства под нагрузкой:									
3.1	стопоров крепления стрел шлюпбалок "по-походному"	$1,1p_{pa6}$	20°	10°	+	_	+	_		
3.2	на вываливание и спуск шлюпки (плота)	$1,1p_{\text{pa6}}$	20°	10°	+	+	+	+		
3.3	определение натяжения в ходовых концах лопарей при вываливании и спуске	$p_{ m pa6}$	20°	10°	+	+	_	_		
3.4	на самовываливание стрел шлюпбалок	$p_{ m pa}$	20°	10°	+	_	+	_		
3.5	на подъем и заваливание шлюпки	$p_{\rm pao}$	20°	10°	+	_	+	_		
3.6	определение натяжения в ходовых концах лопарей при подъеме шлюпки	$p_{ m pa6}$	20°	10°	+	_	_	_		
3.7	определение натяжения в ходовых концах лопарей при заваливании стрел шлюпбалок	$p_{ m pa f o}$	20°	10°	+	_	_	_		
3.8	на спуск плота под действием силы тяжести и на работоспособность подъемно-спускового разоб-	$p_{ m pa6}$	20°	10°	_	+	_	+		
3.9	щающего приспособления плот-балки	1.1.	0°	0°						
3.9	динамическое испытание тормозов лебедки статическое испытание тормозов лебедки	1,1 <i>p</i> _{раб} 1,5 <i>p</i> _{раб}	0°	0°	+	+	+	+		

 $^{1}p_{\mathrm{paf}}$ принимается для соответствующего этапа операции.

П р и м е ч а н и е. Испытания проводятся в соответствии с применимыми положениями резолюции ИМО MSC.81(70).

- 13.4.3 Методика испытаний (проверок) спасательных средств на предприятии (изготовителе) приведена в резолюции ИМО MSC.81(70) «Пересмотренная рекомендация по испытаниям спасательных средств».
- **13.4.4** Форма технического наблюдения за изготовлением спасательных средств и устройств на предприятии (изготовителе) указана в Номенклатуре РС.
- 13.4.5 Техническое наблюдение за изготовлением двигателей спасательных шлюпок осуществляется в соответствии с требованиями разд. 5 и дополнительными требованиями, изложенными в резолюции ИМО MSC.81(70).

Объем освидетельстования и испытаний гидротермокостюмов, защитных костюмов, теплозащитных средств, скоростных дежурных шлюпок, линеметательных устройств, огней-указателей местоположения спасательных средств, морских эвакуационных систем, прожекторов для спасательных и дежурных шлюпок принимается в соответствии с положениями резолюции ИМО MSC.81(70).

13.5 ТРЕБОВАНИЯ К ПРЕДПРИЯТИЯМ (ИЗГОТОВИТЕЛЯМ) И КОНТРОЛЬ ПРОИЗВОДСТВА

- 13.5.1 До заключения договора о техническом наблюдении или осуществления технического наблюдения по заявке без заключения договора предприятие (изготовитель) подлежит освидетельствованию Регистром.
- 13.5.2 При освидетельствовании предприятия (изготовителя) Регистр проверяет технологическую оснастку, оборудование и помещения для хранения исходных материалов и изготовления изделий, соблюдение одобренной Регистром технологии изготовления, порядок оформления и хранения результатов всех видов испытаний и проверок лабораториями предприятия (изготовителя) и персоналом ОТК.
- 13.5.3 Помещения и оборудование предприятий (изготовителей) должны обеспечивать необходимые условия, предусмотренные стандартами, техническими условиями и технологией изготовления. Для контроля технологических и климатических режимов должна применяться соответствующая аппаратура.

13.5.4 При осуществлении технического наблюдения за изготовлением спасательных средств Регистр проводит периодические освидетельствования предприятия (изготовителя) для подтверждения СПИ и в других случаях, предусмотренных частью І «Общие положения по техническому наблюдению».

13.6 МАРКИРОВКА И КЛЕЙМЕНИЕ СПАСАТЕЛЬНЫХ СРЕДСТВ

13.6.1 Порядок нанесения маркировки, клейм и штемпелей Регистра указан в Инструкции по клеймению объектов технического наблюдения Регистра части I «Общие положения по техническому наблюдению».

14 СИГНАЛЬНЫЕ СРЕДСТВА

14.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **14.1.1** Положения настоящего раздела применяются при техническом наблюдении за сигнальными средствами, подлежащими техническому наблюдению Регистра согласно Номенклатуре РС.
- **14.1.2** В настоящем разделе устанавливаются требования по техническому наблюдению Регистра за изготовлением и испытаниями сигнальных средств.
- **14.1.3** Определения и пояснения, относящиеся к общей терминологии, приведены в части III «Сигнальные средства» Правил по оборудованию морских судов.
- 14.1.4 Общие положения по техническому наблюдению за сигнальными средствами изложены в части I «Положения об освидетельствованиях» Правил по оборудованию морских судов и в части I «Общие положения по техническому наблюдению» Правил.
- **14.1.5** Объем освидетельствований Регистром сигнальных средств при установившемся производстве указан в табл. 14.1.5.

14.2 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

- **14.2.1** Сигнальные средства должны отвечать требованиям Правил по оборудованию морских судов и изготавливаться по технической документации, одобренной Регистром.
- **14.2.2** Общие указания о порядке рассмотрения и одобрения технической документации изложены в части II «Техническая документация».
- **14.2.3** Техническая документация на изготовление сигнальных средств должна содержать:
- .1 спецификацию изделия с описанием светотехнических, звуковых и других характеристик, применяемых материалов, сварки или других методов соединений, указаний по технологии обработки, сборки, способам нанесения покрытий, организации контроля;
- .2 чертежи общего вида и конструктивные чертежи сечений, узлов и отдельных элементов;
 - .3 программу приемосдаточных испытаний;
 - .4 перечень комплектующих изделий.

Таблица 14.1.5

Объект технического наблюдения	мате-				Пров	ерка					звукового
	Проверка документов на м риалы и комплектующие изделия	Наружный осмотр	размеров и массы	прочности узла креп- ления подвесных фонарей	на функционирование	взаимозаменяемости	водозащищенности	электрической проч- ности изоляции	Замер сопротивления изоляции	Проверка диапазона основных частот	Определение уровня звук давления
Сигнально-отличительные фонари	+	+	+	+	+	+	+	+	+	_	_
Сигнально-проблесковые фонари	+	+	+	+	+	+	+	+	+	_	_
Звуковые сигнальные средства	+	+	+	_	+	+	_	_	+	+	+

14.3 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ СИГНАЛЬНЫХ СРЕДСТВ

- **14.3.1** Техническое наблюдение за изготовлением сигнальных средств включает:
 - .1 рассмотрение технической документации;
- **.2** проверку принятой на предприятии (изготовителе) системы контроля качества, включая входной контроль;
- **.3** контроль качества материалов, полуфабрикатов, изделий, средств (при необходимости);
- **.4** освидетельствование и испытание головных образцов сигнальных средств;
- .5 освидетельствование и испытание сигнальных средств при установившемся производстве:
- .6 клеймение и оформление документов на готовые сигнальные средства.

14.4 СИГНАЛЬНО-ОТЛИЧИТЕЛЬНЫЕ И СИГНАЛЬНО-ПРОБЛЕСКОВЫЕ ФОНАРИ

- **14.4.1** Головные образцы фонарей подвергаются испытаниям по программе, одобренной Регистром.
- **14.4.2** Испытания головных образцов фонарей должны включать:
- **.1** проверку соответствия деталей и сборочных единиц рабочей документации;
 - .2 проверку размеров и массы;
 - .3 проверку на функционирование;
 - .4 светотехнические испытания;
- .5 проверку работы в условиях вибрации и ударных сотрясений, в том числе проверку прочности крепления подвесных фонарей;
 - .6 проверку на водозащищенность;
- .7 проверку работы при высоких и низких температурах окружающего воздуха;
 - .8 проверку на коррозийную стойкость;
 - .9 проверку на термостойкость;
 - .10 проверку на влагостойкость;
 - .11 проверку работы при крене и дифференте;
- **.12** проверку электрической прочности изоляции фонарей;
- .13 измерение сопротивления изоляции электрических фонарей;
- .14 проверку работы и параметров электрических фонарей при отклонениях питающего напряжения и частоты тока от номинальных величин в пределах, регламентируемых Правилами классификации и постройки морских судов и Правилами по оборудованию морских судов;
- .15 проверку степени защиты от соприкосновения с токоведущими частями;
- **.16** проверку на ветронезадуваемость масляных фонарей;
- .17 проверку продолжительности горения масляных фонарей.

- **14.4.3** Проверка дальности и секторов видимости головных образцов фонарей проводится в период натурных морских испытаний.
- **14.4.4** Результаты этих испытаний считаются удовлетворительными, если испытываемые фонари полностью отвечают требованиям Правил классификации и постройки морских судов и Правил по оборудованию морских судов.
- **14.4.5** При установившемся производстве фонари подвергаются приемосдаточным испытаниям по программе, одобренной Регистром.
- **14.4.6** При установившемся производстве освидетельствования и испытания фонарей должны включать следующие проверки:
- .1 соответствия деталей и сборочных единиц рабочей документации;
 - .2 размеров и массы;
 - .3 на функционирование;
 - .4 взаимозаменяемости деталей и узлов;
 - .5 прочности узла крепления подвесных фонарей;
 - .6 на водозащищенность;
- .7 электрической прочности изоляции электрических фонарей и измерение ее сопротивления.
- **14.4.7** При удовлетворительных результатах освидетельствований и испытаний на фонари ставится клеймо Регистра и выдается свидетельство установленного образца.
- **14.4.8** Маркировка допущенного Регистром фонаря должна включать: товарный знак предприятия (изготовителя), наименование и тип фонаря, порядковый номер, дальность видимости и мощность лампы, дату изготовления, клеймо Регистра.
- **14.4.9** Маркировка должна наноситься на постоянно прикрепленную к фонарю табличку из коррозийно-стойкого металла, доступную для осмотра при установке фонаря на судне. Кроме того, на корпусе секторного фонаря должны быть нанесены риски осевой линии (ДП).

14.5 ЗВУКОВЫЕ СИГНАЛЬНЫЕ СРЕДСТВА

- **14.5.1** Головные образцы звуковых сигнальных средств подвергаются стендовым и натурным морским испытаниям по программе, одобренной Регистром.
- **14.5.2** Стендовые испытания головных образцов звуковых сигнальных средств должны включать:
 - .1 наружный осмотр;
- **.2** проверку размеров, массы, а также характеристик применяемых материалов;
- .3 проверку работы в условиях вибрации и ударных сотрясений;
 - .4 проверку на водозащищенность;
- **.**5 проверку работы при высоких и низких температурах окружающего воздуха;

- .6 проверку работы при крене и дифференте;
- .7 проверку на коррозионную стойкость;
- .8 проверку на термостойкость;
- .9 определение диапазона основных частей;
- .10 определение уровня звукового давления;
- .11 измерение сопротивления изоляции;
- .12 проверку электрической прочности изоляции звукового сигнального средства;
- .13 проверку степени защиты от соприкосновения с токоведущими частями.
- 14.5.3 Натурные морские испытания головных образцов звуковых сигнальных средств должны включать: определение уровня звукового давления, дальности слышимости, перепада уровня звукового давления в горизонтальной плоскости, продолжительности и частоты звучания, а также проверку возможности подачи сигналов автоматом и вручную, сбора и удаления конденсата.
- 14.5.4 Результаты испытаний головных образцов звуковых сигнальных средств считаются удовлетворительными, если испытываемые звуковые сигнальные средства полностью отвечают требованиям Правил по оборудованию морских судов.
- **14.5.5** При установившемся производстве образцы звуковых сигнальных средств подвергаются стендовым испытаниям по программе, одобренной Регистром.
- **14.5.6** При установившемся производстве освидетельствования и стендовые испытания звуковых сигнальных средств должны включать:
 - .1 наружный осмотр;
 - .2 проверку размеров и массы;
- .3 проверку взаимозаменяемости деталей и узлов;
 - .4 определение диапазонов основных частот;
 - .5 определение уровня звукового давления;
 - .6 измерение сопротивления изоляции;
 - .7 функциональные испытания.
- **14.5.7** При удовлетворительных результатах освидетельствований и испытаний на звуковые сигнальные средства ставится клеймо Регистра и выдается свидетельство установленного образца.
- **14.5.8** Маркировка освидетельствованного Регистром звукового сигнального средства должна включать товарный знак предприятия (изготовителя), порядковый номер, назначение по длине судна в метрах, дату изготовления и клеймо Регистра.

14.6 ПИРОТЕХНИЧЕСКИЕ СИГНАЛЬНЫЕ СРЕДСТВА

14.6.1 Техническое наблюдение Регистра за изготовлением пиротехнических сигнальных средств включает рассмотрение технической документации.

- **14.6.2** Головные образцы пиротехнических сигнальных средств должны подвергаться стендовым и натурным испытаниям по программе, одобренной Регистром.
- **14.6.3** Стендовые испытания головных образцов пиротехнических сигнальных средств должны включать:
 - .1 наружный осмотр;
 - .2 проверку размеров и массы;
 - .3 определение силы света;
 - .4 определение цветности;
 - .5 определение продолжительности горения;
 - .6 температурные испытания;
- .7 испытание на коррозионную стойкость и влагостойкость;
- .8 испытание на безопасность работы с пиротехническими средствами;
 - .9 функциональные испытания;
 - .10 испытание на транспортабельность.
- **14.6.4** Натурные испытания головных образцов пиротехнических сигнальных средств должны включать определение высоты взлета, продолжительности горения, дальности слышимости и высоты затухания.
- 14.6.5 Результаты испытаний головных образцов считаются удовлетворительными, если испытываемые пиротехнические сигнальные средства полностью отвечают требованиям Правил по оборудованию морских судов.
- **14.6.6** Маркировка пиротехнического сигнального средства должна включать наименование, назначение, дату изготовления, срок годности, наименование и номер технической документации, одобренной Регистром, и дату ее одобрения.
- **14.6.7** Пиротехнические сигнальные средства должны иметь краткую инструкцию по использованию, нанесенную на корпус изделия несмываемой краской.

14.7 СИГНАЛЬНЫЕ ФИГУРЫ

- **14.7.1** Техническое наблюдение Регистра за изготовлением сигнальных фигур включает рассмотрение технической документации.
- **14.7.2** Головные образцы сигнальных фигур, отвечающие требованиям Правил по оборудованию морских судов, должны сохраняться на предприятии (изготовителе) вплоть до внесения какого-либо изменения в конструкцию сигнальных фигур.
- **14.7.3** Маркировка сигнальных фигур должна содержать упоминание о том, что изделие изготовлено по технической документации, одобренной Регистром.

14.8 ИСПЫТАТЕЛЬНЫЕ ЛАБОРАТОРИИ, СТЕНДОВЫЕ ИСПЫТАНИЯ

- 14.8.1 Испытательные лаборатории, осуществляющие регламентируемые Правилами по оборудованию морских судов испытания сигнальных средств, должны быть признаны Регистром согласно разд. 9 части І «Общие положения по техническому наблюдению». Свидетельство о признании должно подтверждаться не реже одного раза в два года.
- **14.8.2** Лаборатории и их оборудование для испытаний сигнальных средств должны отвечать требованиям соответствующих стандартов. Испыта-

ния должны проводиться лицами, имеющими удостоверение, выданное компетентным органом, подтверждающее их правомочность на проведение этих испытаний. Головные образцы сигнальных средств должны испытываться по программе, одобренной Регистром. Программа должна составляться с учетом положений и требований Правил, нормативных документов Регистра и одобренной им технической документации.

14.8.3 Требования к стендовым испытаниям изложены в разд. 5 и в приложениях 1, 2 и 3.

ПРИЛОЖЕНИЕ 1

ИСПЫТАНИЯ ГОЛОВНЫХ ОБРАЗЦОВ ФОНАРЕЙ (ТИПОВЫЕ ИСПЫТАНИЯ)

1. Наружный осмотр.

Предполагает тщательный визуальный осмотр фонарей снаружи и изнутри на соответствие технической документации.

Качество материала должно удостоверяться сертификатами предприятия (изготовителя), а также результатами входного контроля.

Фонари в сборе и их детали должны подвергаться наружному осмотру. Перед сборкой изделия все детали должны быть тщательно очищены от загрязнений, консервации и т. п. Сварные швы, неровности должны быть зачищены, острые кромки притуплены. Поверхности сопряжения деталей и уплотнительные поверхности не должны иметь забоин, царапин, рисок и прочих дефектов.

Проверяется комплектность, правильность сборки и монтажа, качество покрытий, надежность крепления деталей, наличие маркировки. Особое внимание должно быть обращено на состояние и правильность установки линз Френеля и цилиндров. Их внутренние и наружные поверхности должны быть гладкими, а стекло не должно иметь трещин, инородных включений, пузырей и забоин, посечек, сколов, матовых участков поверхности и т. п. Окраска цветных линз или светофильтров должна быть однородной.

Светофильтры должны быть установлены в фонарях таким образом, чтобы предотвращалось их самопроизвольное перемещение и падение, а также исключалась возможность установки красного светофильтра вместо зеленого и наоборот.

2. Проверка размеров.

Производится мерительным инструментом, шаблонами, калибрами, специально изготовленными для этой цели и обеспечивающими требуемую точность.

Обязательному контролю подлежат габаритные и установочные размеры, в том числе положение вертикальной оси электропатрона по отношению к базе крепления основания фонаря, а также секторные углы и положения отогнутых фланцев шторок фонарей. Должна быть проверена правильность нанесения осевой линии на корпусе фонаря.

3. Проверка на функционирование.

Производится на испытательном стенде или фотометрической скамье при установленной конт-

рольной лампе, включенной в сеть с номинальным напряжением. При этом для всех секторных фонарей проверяются границы горизонтальных угловых секторов, включая исчезновение света в пределах 5° (кроме бортовых огней в направлении по носу), а также правильность нанесения рисок осевой линии (ДП). эта проверка может быть совмещена со светотехническими испытаниями (см. п. 4). Для круговых фонарей проверяется правильность сборки электромонтажной схемы. Кроме того, для всех фонарей проверяется правильность положения тела накала лампы по отношению к вертикальной и горизонтальной осям линзы или цилиндра.

4. Светотехнические испытания.

Светотехнические испытания фонарей в лабораторных условиях (см. п. 8) необходимо проводить в соответствии с действующими стандартами. При этом требуется выполнение условий, перечисленных в 4.1 — 4.4.

- **4.1** При номинальном и сниженном на 5 % напряжении кривая вертикального светораспределения должна обеспечивать:
- .1 силу света не менее указанной в 3.1.7.1 части III «Сигнальные средства» Правил по оборудованию морских судов в пределах углов в вертикальном секторе от 5° выше до 5° ниже горизонтальной плоскости;
- .2 не менее 60 % предписанной силы света в пределах углов вертикального сектора от 7.5° выше до 7.5° ниже горизонтальной плоскости, а для фонарей парусных судов не менее 50 % предписанной силы света в пределах углов видимости до 25 % в обе стороны от горизонтальной плоскости.
- **4.2** При номинальном и сниженном на 5 % напряжении кривая горизонтального светораспределения должна обеспечивать:
- .1 для круговых фонарей минимальную требуемую силу света по дуге горизонта в 360° ;
- .2 для кормовых и топовых фонарей, а также для бортовых фонарей (в пределах секторов до 22.5° позади траверза) минимальную требуемую силу света по дуге горизонта, не доходя 5° до границ секторов, предписанных соответствующему типу фонарей;
- .3 начиная с 5° до границы секторов, уменьшение силы света до 50 % на границе сектора и дальнейшее постепенное уменьшение до полного исчезновения в пределах не более 5° за предписанными границами;

¹ Имеется в виду допустимое (а не обязательное) уменьшение силы света.

- .4 для бортовых фонарей равномерный уровень силы света в пределах углового сектора. В направлении носа должно быть обеспечено исчезновение силы света в пределах до 3° при помощи носовой ширмы щитов, предписанных Правилами по оборудованию морских судов (см. приложение 1 к разд. 14 части V «Техническое наблюдение за постройкой судов»).
- **4.3** Внутри предписанных угловых секторов горизонтальная сила света не должна иметь резких скачков: отношение максимального значения силы света к минимальному не должно превышать 1,5.
- **4.4** Следует проверить светопропускание и цветовые характеристики огней в соответствии с действующим стандартом. При этом координаты x, y должны лежать внутри областей диаграммы, установленной частью III «Сигнальные средства» Правил по оборудованию морских судов.
- **5.** Проверка работы в условиях вибрации и ударных сотрясений осуществляется по нормам и методам, приведенным в разд. 10.
- 6. Проверка на водозащищенность осуществляется обливанием водой (см. 4.1 приложения 2). При этом не должно быть попадания воды на токоведущие части электрических фонарей и на ламповое стекло, горелку и другие детали масляных фонарей, влияющие на процесс горения. Электрические фонари должны быть водозащищенной конструкции (IP56), а также отвечать требованиям разд. 10.
- 7. Проверка работы при высоких и низких температурах окружающего воздуха осуществляется в диапазоне от +45 до -30 °C, а для судов с ледовыми усилениями категорий **Arc5** и выше до -40 °C.
- **8.** Проверка фонарей на коррозионную стойкость (испытание на воздействие соляного тумана) осуществляется по нормам и методам, приведенным в

- разд. 10. Изделие считается выдержавшим испытание, если отсутствуют следы коррозии и сопротивление изоляции после окончания испытания составляет не менее 1 МОм.
- **9.** Проверка на термостойкость осуществляется по нормам и методам, приведенным в разд. 10.
- **10.** Проверка на влагоустойчивость осуществляется по нормам и методам, приведенным в разд. 10.
- **11.** Проверка работы при крене и дифференте осуществляется по нормам и методам, приведенным в разд. 10.
- 12. При измерении сопротивления изоляции электрических цепей фонарей и при испытании электрической прочности изоляции фонарей следует руководствоваться нормами и методами, приведенными в разд. 10.
- 13. Проверка работы фонарей при длительном отклонении от номинального значения питающего напряжения и частоты тока в регламентируемых Правилами по оборудованию морских судов пределах предусматривает, чтобы фонари обеспечивали требуемую Правилами дальность видимости. Такая проверка осуществляется при светотехнических испытаниях (см. п. 4) и при натурных испытаниях.
- **14.** Проверка масляных фонарей на ветронезадуваемость осуществляется при скорости ветра до 30 м/с.
- 15. Проверка продолжительности горения масляных фонарей осуществляется в течение не менее 16 ч непрерывного горения лампы. При этом вместимость резервуара масляной лампы должна быть такой, чтобы обеспечивалась эта продолжительность горения. В процессе испытаний периодически, но не реже одного раза в час, проводится замер силы света.

ПРИЛОЖЕНИЕ 2

СТЕНДОВЫЕ ИСПЫТАНИЯ ГОЛОВНЫХ ОБРАЗЦОВ ЗВУКОВЫХ СИГНАЛЬНЫХ СРЕДСТВ

1. Наружный осмотр предполагает визуальное освидетельствование звуковых сигнальных средств на соответствие одобренной технической документации.

Качество материалов, идущих на изделие, удостоверяется сертификатом предприятия (изготовителя). Детали и само изделие должны подвергаться наружному осмотру без применения увеличительных приборов. Перед сборкой изделия все детали должны быть тщательно очищены от ржавчины, окалины, консервации и т. п. Сварные швы, неровности должны быть зачищены, острые кромки притуплены. Поверхности сопряжения

деталей и уплотнительные поверхности не должны иметь царапин, рисок и прочих дефектов.

По согласованию с Регистром допускается устранение поверхностных дефектов, не влияющих на работоспособность звуковых сигнальных средств.

2. Конструкция изделия, размеры, масса, шероховатость поверхностей, допуски и посадки должны отвечать требованиям технической документации.

Литые части изделия (или само изделие) при осмотре должны обстукиваться в подвешенном состоянии приспособлением, указанным в технической документации, для определения (по тону звучания)

трещин, внутренних раковин, расслоений и др. Если деталь изделия (или само изделие) должна быть опробована на прочность и плотность, она должна быть подвергнута гидравлическим испытаниям давлением $P_{\rm пр}$ в соответствии с требованием технической документации. Конструкция считается выдержавшей испытание, если при постоянном давлении в течение времени, необходимого для осмотра, не будет обнаружено свищей, просачивания, отпотевания и др.

3. Проверка работы в условиях вибрации и ударных сотрясений осуществляется по нормам и методам, приведенным в разд. 10.

4. Проверка звуковых средств:

.1 на водозащищенность, для чего их устанавливают в положение, соответствующее положению этих средств при эксплуатации, и обливают со всех сторон струей воды из шланга с выходным отверстием 25 мм с расстояния 5 м при давлении воды перед выходом из шланга 0,8 Па в течение 5 мин. Затем звуковое средство обтирают, вскрывают и подвергают осмотру. Изделие считается выдержавшим испытание, если внутри оболочек (кожухов) не будет обнаружено воды;

.2 на безотказную работу:

при высоких и низких температурах окружающего воздуха с помощью испытаний в рабочем состоянии на нагревание при температуре окружающего воздуха 55 $^{\circ}$ C в течение 10 ч и при температуре -30 $^{\circ}$ C в течение 6 ч, а также в нерабочем состоянии при температуре -50 $^{\circ}$ C в течение 2 ч;

при крене и дифференте. Во время испытаний звуковое сигнальное средство должно находиться в рабочем состоянии при нормальных климатических условиях и испытываться в двух взаимно перпендикулярных нормальных эксплуатационных положениях. Испытания звукового средства при крене и дифференте могут не проводиться, если оно выдержало испытания на удароустойчивость на однокомпонентном стенде в трех взаимно перпендикулярных положениях. Во всех случаях испытаний дифферент должен быть не менее 10°;

при качке последовательно в двух взаимно перпендикулярных положениях с предельным углом наклона в 45° при дифференте 10° , с периодом качки 7 — 9 с, продолжительностью не менее 5 мин в каждом положении;

при выдержке последовательно в двух взаимно перпендикулярных наклонных положениях под углом 45° при дифференте 10° , продолжительностью не менее 3 мин в каждом положении;

- .3 на коррозионную стойкость по нормам и методам, приведенным в разд. 10. Изделие считается выдержавшим испытание, если отсутствуют следы коррозии и сопротивление изоляции после окончания испытания не менее 1 МОм;
- .4 на термостойкость по нормам и методам, приведенным в разд. 10. При этом температура

нагрева изоляции должна проверяться после работы звукового средства в течение 30 мин на режиме циклами: 10 с — «включено» и 5 с — «отключено».

5. Определение диапазона основных частот и уровня звукового давления.

- 5.1 Акустические испытания звуковых сигнальных средств в лабораторных условиях должны проводиться на специально оборудованном стенде. Точки установки испытываемых изделий должны быть строго определены и соответствовать их расположению в условиях свободного звукового поля. Характеристики приборов должны отвечать требованиям Правил по оборудованию морских судов.
- **5.2** Измерение уровня звукового давления должно проводиться по общему уровню и в активных полосах со среднегеометрическими частотами: 63, 125, 250, 500, 1000 и 2000 Гц, а определение частот в полосе пропускания (3 или 6 %) в частном диапазоне 50 2000 Гц с помощью шумомеров, фильтров и анализаторов.

Направленность излучения оценивается по общему уровню и по уровню в активных полосах в горизонтальной плоскости по круговой характеристике.

- **5.3** При измерении уровня силы звука на опорном радиусе, равном 3, 5 и 10 м, результат измерения должен быть приведен к опорному радиусу 1 м.
- 5.4 При стендовых испытаниях головных образцов звуковых сигнальных средств должны быть получены полные характеристики звукового сигнала согласно 9.2. При этом общий уровень и тональность испытываемого изделия должны отвечать требованиям технической документации, одобренной Регистром.

Определение уровня звукового давления и диапазона частот колокола и гонга должны проводиться на соответствие и в объеме требований Правил по оборудованию морских судов.

6. Электрооборудование свистков должно подвергаться измерению сопротивления изоляции, проверке на электрическую прочность изоляции и на степень защиты от соприкосновения с токоведущими частями (см. разд. 10). Степень защиты электрического оборудования звукового сигнального средства закрытого типа и звукового сигнального средства с электромагнитным приводом пускового клапана должна быть IP56.

Кроме того, звуковое сигнальное средство должно подвергаться проверке на полную защиту персонала от возможности соприкосновения с находящимися под напряжением или движущимися частями, расположенными внутри корпуса.

7. Работа системы сбора и удаления конденсата должна проверяться в соответствии с методикой, указанной в технической документации на каждый тип свистка.

ПРИЛОЖЕНИЕ 3

СТЕНДОВЫЕ ИСПЫТАНИЯ ГОЛОВНЫХ ОБРАЗЦОВ ПИРОТЕХНИЧЕСКИХ СИГНАЛЬНЫХ СРЕДСТВ

В стендовые испытания входит следующее.

1. Наружный осмотр, т. е. визуальное освидетельствование пиротехнических средств на соответствие одобренной технической документации.

2. Проверка размеров и массы.

Пиротехнические средства замеряются универсальным измерительным инструментом и взвешиваются.

3. Определение силы света, цветности и продолжительности горения.

Сила света пиротехнических сигнальных средств проверяется в фотокамере.

Звездка закрепляется в штативе в вертикальном положении воспламенительным составом вверх и поджигается от электроспирали, включенной в сеть напряжением 24 — 36 В или с помощью огнепроводного шнура.

Скорость потока воздуха в зоне горения должна быть 1 — 2 м/с. Время горения звездок, замеренное двумя секундомерами с ценой деления 0,2 с должно быть не менее указанного в части III «Сигнальные средства» Правил по оборудованию морских судов.

При испытаниях фальшфейеров красного огня осуществляется замер длины цветной волны, которая должна находиться в пределах 602 — 607 H/м и иметь насыщенность пламени не менее 85 %.

4. Температурные испытания.

- **4.1** Пиротехнические средства должны подвергаться поочередно воздействию температур окружающей среды $-30\,^{\circ}\text{C}$ и $+65\,^{\circ}\text{C}$ в следующей последовательности, повторяемой 10 раз, после чего они должны нормально работать:
- .1 выдержка в термокамере при температуре 65 ± 2 °C в течение 8 ч;
- .2 образцы извлекаются из термокамеры в тот же день и содержатся открытыми в обычных комнатных условиях до следующего дня;
- .3 выдержка в морозильной камере при температуре -30 ± 2 °C в течение 8 ч;
- .4 образцы извлекаются из морозильной камеры в тот же день и содержатся открытыми в обычных комнатных условиях до следующего дня.
- **4.2** Пиротехнические средства выдерживаются в морозильной камере в течение не менее 48 ч при температуре -30 ± 2 °C, после чего они должны нормально работать при этой температуре.
- **4.3** Пиротехнические средства выдерживаются в термокамере в течение не менее 48 ч при темпе-

ратуре 65 ± 2 °C, после чего они должны нормально работать при этой температуре.

4.4 Пиротехнические средства выдерживаются в термокамере при температуре $65\pm2~^{\circ}\mathrm{C}$ и относительной влажности 90 % в течение не менее 96 ч, а затем при температуре 20 — 25 $^{\circ}\mathrm{C}$ и относительной влажности 65 % в течение 10 дней, после чего они должны эффективно работать.

5. Испытания на коррозионную стойкость и влагостойкость.

Каждое пиротехническое средство должно нормально работать после:

- .1 погружения его в воду на глубину 1 м на 24 ч;
- **.2** погружения его в воду на глубину 10 см на 5 мин, когда запальное устройство готово к действию;
- .3 воздействия распыленной соленой воды (5-процентный раствор хлористого натрия) при температуре $+35\pm3$ °C в течение не менее 100 ч.

6. Испытание на безопасность работы.

- 6.1 Каждое пиротехническое средство должно быть сброшено сначала в вертикальном, а затем в горизонтальном положении с высоты 2 м на стальную плиту толщиной 6 мм, зацементированную в бетонный пол. После проведения этого испытания пиротехническое средство должно нормально работать.
- **6.2** Каждое пиротехническое средство должно быть приведено в действие в соответствии с инструкцией предприятия (изготовителя) для того, чтобы убедиться, что при этом не наносится телесных повреждений оператору или находящимся поблизости людям.

7. Испытание фальшфейеров.

- 7.1 Фальшфейер должен быть приведен в действие и должен гореть в течение не менее 1 мин. Через 30 с после начала горения он должен быть на 10 с погружен в воду на глубину 100 мм, после чего фальшфейер должен продолжать гореть в течение не менее 20 с.
- 7.2 Фальшфейер должен быть приведен в действие на расстоянии 1,2 м над испытательным поддоном квадратной формы со стороной 1 м, содержащим 2 л гептана, налитого поверх слоя воды. Испытание должно проводиться при температуре окружающей среды в диапазоне 20 25 °C. При полном сгорании фальшфейера гептан не должен возгораться от фальшфейера или выделяющихся из него материалов.

8. Испытание плавучих дымовых шашек.

- 8.1 После проведения испытания в соответствии с 4.1 одна дымовая шашка должна нормально работать в морской воде с температурой —1 °C, а вторая с температурой +30 °C. Через 1 мин после начала дымообразования дымовая шашка должна быть полностью погружена в воду не менее чем на 10 с. Дымообразование не должно прекращаться как во время, так и после погружения. Общее время дымообразования должно быть не менее 3 мин, а для автоматически действующих дымовых шашек не менее 15 мин.
- **8.2** Дымовая шашка должна работать в воде, покрытой слоем гептана толщиной 2 мм, не вызывая его возгорания.

8.3 При пропускании дыма через трубу диаметром 18 см с помощью вентилятора, обеспечивающего забор воздуха со скоростью 18,4 м 3 /мин, ослабление света (дымом) на выходе трубы должно быть не более 30 %.

9. Испытание на транспортабельность.

Фальшфейеры испытываются на транспортабельность тряской на стенде в течение 30 мин при 60 ударах в мин и сбрасыванием изделий с высоты не менее 15 см. Испытание остальных пиротехнических сигнальных средств на транспортабельность проводится на специальном стенде в течение 1 ч по специальному режиму. При испытании на транспортабельность допускаются местные повреждения покрытия поверхности фальшфейера.

ПРИЛОЖЕНИЕ 4

НАТУРНЫЕ МОРСКИЕ ИСПЫТАНИЯ ГОЛОВНЫХ ОБРАЗЦОВ ФОНАРЕЙ

Натурные морские испытания головных образцов фонарей заключаются в проверке дальности и секторов видимости фонарей, установленных на судне.

Эти испытания проводятся по программе, одобренной Регистром.

ПРИЛОЖЕНИЕ 5

НАТУРНЫЕ МОРСКИЕ ИСПЫТАНИЯ ГОЛОВНЫХ ОБРАЗЦОВ ЗВУКОВЫХ СИГНАЛЬНЫХ СРЕДСТВ

- 1. До начала натурных испытаний головных образцов звуковых сигнальных средств должны быть проведены проверочные испытания на опорном радиусе по общему уровню и уровням в октавных полосах.
- 1.1 Натурные морские испытания головных образцов звуковых сигнальных средств должны проводиться на водной акватории с достаточным удалением от берега объектов и сооружений, которые могут повлиять на распространение звука. Испытания должны проводиться в дневное время при благоприятных метеорологических условиях: ясной погоде и ветре не более 3 м/с в направлении движения судна. Фон шума на наблюдательных постах судна в направлении максимальной силы звука в условиях безветренной погоды должен быть не более регламентируемого Правилами по оборудованию морских судов.
- **1.2** Замеры общего уровня и уровней звукового давления в октавных полосах производятся в

- направлении максимальной силы звука в регламентируемом секторе и на соответствующих расстояниях. При этом уровень сигнала должен превышать фон не менее чем на 5 дБ. Замеры должны проводиться не менее трех раз.
- 1.3 При определении уровней звукового давления проводится субъективная оценка слышимости наблюдателями. При прослушивании ничто не должно влиять на их субъективность восприятия звуковых сигналов. При этом дублирование звуковых сигналов световыми не допускается. Прослушивание должно производиться не менее трех раз.
- 2. Перепад уровня давления свистка, отнесенный к 1 м по отношению к уровню в основном направлении звука в горизонтальной плоскости в пределах $\pm 45^{\circ}$ от основной оси свистка (в направлении прямо по ходу судна), не должен превышать 4 дБ. Замеры уровня звукового давления должны проводиться на опорном радиусе по дуге на углах от 0 до 45° на каждый борт соответственно; во всех

остальных направлениях в горизонтальной плоскости перепад уровня звукового давления по отношению к уровню на основном направлении не должен превышать 10 дБ.

3. Определение продолжительности звучания проводится импульсными шумомерами в направлении максимальной силы звука на опорном радиусе. При этом возможность подачи короткого звука (длительностью около 1 с) и продолжительного звука (4 — 6 с) должна быть определена не менее трех раз.

Общий уровень, отнесенный к 1 м, не должен быть ниже регламентированного техническими условиями на свисток и изменяться при продолжительном сигнале более чем на 1 дБ. Чистота звучания определяется анализом звукового сигнала в соответствии с 5.2 приложения 2.

Свистки должны испытываться при ручном управлении в течение 2 ч, а при автоматическом управлении в — течение 12 ч; при этом звуковые параметры должны оставаться в допустимых пределах.

ПРИЛОЖЕНИЕ 6

НАТУРНЫЕ ИСПЫТАНИЯ ГОЛОВНЫХ ОБРАЗЦОВ ПИРОТЕХНИЧЕСКИХ СИГНАЛЬНЫХ СРЕДСТВ

1. Определение высоты взлета и высоты затухания головных образцов пиротехнических сигнальных средств проводится приборами, специально предназначенными для этих целей (например, теодолитом); причем высота, при которой должны гаснуть сигнальные ракеты, не должна быть менее 50 м от поверхности моря. Скорость спуска парашютной ракеты должна быть не более 5 м/с.

Парашютная ракета должна нормально работать при запуске ее под углом 45° к горизонту.

2. Определение продолжительности горения проводится при натурных испытаниях. Время действия сигнала замеряется секундомерами с ценой деления 0,2 с и должно быть не менее указанного в табл. 3.5.1 части III «Сигнальные средства» Правил по оборудованию морских судов.

3. Определение дальности слышимости.

Дальность слышимости ракет или звуковых гранат определяется над поверхностью воды при ветре силой до 1 балла и ясной погоде на фоне шума окружающей среды не менее 45 дБ приборами, специально предназначенными для этих целей и одобренными Регистром.

4. Дымовая шашка должна быть испытана на волнении высотой не менее 300 мм. Она должна работать нормально не менее 3 мин.

5. Определение удобства и безотказности в обращении.

Все операции по приведению в действие пиротехнических сигнальных средств должны выполняться в соответствии с инструкциями и правилами эксплуатации предприятий (изготовителей).

При поведении натурных испытаний пиротехнических сигнальных средств обращается внимание:

- **.1** на удобство, безотказность и безопасность пользования ими в любых метеорологических условиях (при дожде, ветре);
 - .2 на безотказное воспламенение фальшфейеров;
- .3 на горение фальшфейеров, которое должно быть ровным при ветре и дожде, без вспышек и образования шлака в количестве, мешающем горению. Нагрев рукоятки фальшфейера не должен превышать $40~^{\circ}\mathrm{C}$.

ПРИЛОЖЕНИЕ 7

ОСВИДЕТЕЛЬСТВОВАНИЯ И ИСПЫТАНИЯ ФОНАРЕЙ ПРИ УСТАНОВИВШЕМСЯ ПРОИЗВОДСТВЕ

Освидетельствования и испытания фонарей должны включать:

- .1 наружный осмотр (см. п. 1 приложения 1);
- **.2** проверку размеров и массы (см. п. 3 приложения 1);
- **.3** проверку на функционирование (см. п. 4 приложения 1);
- .4 проверку взаимозаменяемости деталей и узлов (проверяется возможность быстрой замены электрических или масляных ламп, возможность вставлять

лампу масляного фонаря с поставленным ламповым стеклом);

- .5 проверку прочности узла крепления подвесных фонарей;
- .6 проверку на водозащищенность (см. п. 4 приложения 1);
- .7 проверку электрической прочности изоляции фонарей (см. п. 12 приложения 1);
- **.8** измерение сопротивления изоляции электрических цепей фонарей (см. п. 11 приложения 1).

ПРИЛОЖЕНИЕ 8

ОСВИДЕТЕЛЬСТВОВАНИЯ И СТЕНДОВЫЕ ИСПЫТАНИЯ ЗВУКОВЫХ СИГНАЛЬНЫХ СРЕДСТВ ПРИ УСТАНОВИВШЕМСЯ ПРОИЗВОДСТВЕ

Освидетельствования и стендовые испытания звуковых сигнальных средств должны включать:

- .1 наружный осмотр, проверку размеров, массы, взаимозаменяемости деталей и узлов и т. д.;
- .2 проверку общего уровня и уровней звукового давления каждого изделия в октавных полосах частот. Характеристики должны отвечать требованиям одобренной Регистром технической документации. Допустимое отклонение ± 1 дБ;
- .3 проверку на соответствие диапазона основных частот (тональности) технической документации путем узкополосного анализа звукового сигнала. Допустимое отклонение ± 1 %;
- **.4** электрооборудование звукового сигнального средства должно подвергаться измерению сопротивления изоляции (см. п. 6 приложения 2).

15 РАДИООБОРУДОВАНИЕ

15.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **15.1.1** Положения настоящего раздела применяются при техническом наблюдении за радиооборудованием, указанным в Номенклатуре РС.
- **15.1.2** Раздел устанавливает порядок, объем и методы технического наблюдения Регистра за изготовлением радиооборудования на предприятиях (изготовителях).
- 15.1.3 Общие положения по организации технического наблюдения за изготовлением изделий радиооборудования для судов изложены в части I «Общие положения по техническому наблюдению», по технической документации в части II «Техническая документация».

Радиооборудование, устанавливаемое на судах, должно быть одобренного типа. Свидетельства по форме 6.5.30 (6.5.31) должны выдаваться на основании действующего СТО или, в исключительных случаях (разовая поставка, нестандартное судно и т. д.), по согласованию с ГУР на основании проведенного освидетельствования.

15.2 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

- **15.2.1** При осуществлении технического наблюдения за изготовлением изделий радиооборудования при установившемся производстве предприятием (изготовителем) должны быть представлены следующие технические документы, одобренные Регистром:
- .1 проектно-техническая документация в объеме, предусмотренном 1.3 части IV «Радиооборудование» Правил по оборудованию морских судов;
- .2 программы испытаний изделия, если они не содержатся в документах, указанных в 15.2.1.1;
- .3 извещения об изменении требуемых документов;
- .4 перечень объектов наблюдения (см. 12.2 части I «Общие положения по техническому наблюдению»).
- 15.2.2 На следующие объекты технического наблюдения РС комплектующие изделия, материалы, элементы, узлы, блоки и тому подобное, входящие в состав подлежащего освидетельствованию радиооборудования должны быть представлены документы, подтверждающие, что указанные изделия изготовлены под техническим наблюдением Регистра.
- **15.2.3** При проведении освидетельствования инспектор может потребовать от предприятия (изготовителя) другие (в дополнение к указанным в

15.2.1) технические документы, необходимые для выполнения его функций.

15.3 ОБЪЕМ ОСВИДЕТЕЛЬСТВОВАНИЙ ПРИ УСТАНОВИВШЕМСЯ ПРОИЗВОДСТВЕ

- 15.3.1 Техническое наблюдение за изготовлением изделий радиооборудования на предприятии (изготовителе) при установившемся производстве должно осуществляться путем освидетельствования каждого готового изделия по перечню объектов технического наблюдения (см. 12.2 части I «Общие положения по техническому наблюдению»), предусматривающего:
- .1 проверку документов, подтверждающих техническое наблюдение Регистра на комплектующие материалы и изделия; документов службы контроля качества, документов компетентных организаций, подтверждающих соответствие изделия особым требованиям (взрывозащищенность и т. п.);
- **.2** проверку комплектности аппаратуры и технической документации;
 - .3 проведение наружного и внутреннего осмотров;
 - .4 проверку функционирования изделия;
- .5 проверку и электрические испытания изделия для определения его общих характеристик и параметров;
- **.6** проведение испытаний в объеме, предусмотренном действующими документами на изделия;
 - .7 проверку запасных частей;
- **.8** выдачу на изделия документов Регистра, предусмотренных установленной формой технического наблюдения.
- **15.3.2** К освидетельствованию должны предъявляться законченные изделия, прошедшие все проверки и испытания, проводимые органом технического контроля предприятия (изготовителя).
- **15.3.3** Освидетельствованием должно быть определено соответствие изделия требованиям Правил по оборудованию морских судов и технической документации на данное изделие, указанной в 15.2.1.1 15.2.1.3.
- 15.3.4 Инспектор может потребовать проведения необходимых дополнительных проверок и испытаний отдельных блоков, узлов, конструкций, комплектующих изделий и других частей, входящих в состав изделия, подлежащего техническому наблюдению, если при его комплектном освидетельствовании будет установлено, что такие компоненты отрицательно влияют на качество.

- 15.3.5 Если в процессе освидетельствования изделия будет обнаружено несоответствие требованиям одобренной Регистром технической документации, то изделие считается не выдержавшим проверку и возвращается для выявления причины брака, устранения дефектов и перепроверки.
- 15.3.6 Забракованные Регистром изделия могут быть вторично предъявлены к освидетельствованию после устранения дефектов и проверки после предъявления документа с указанием причин несоответствия и мер, принятых по его устранению.
- 15.3.7 Повторная проверка ранее забракованного изделия проводится в полном объеме или, по согласованию с Регистром, только по пунктам несоответствия изделия требованиям технической документации.

15.4 ОБЩИЕ УКАЗАНИЯ ПО ОСВИДЕТЕЛЬСТВОВАНИЮ ПРИ УСТАНОВИВШЕМСЯ ПРОИЗВОДСТВЕ

- **15.4.1** В зависимости от установленного на предприятии (изготовителе) процесса производства для освидетельствования предъявляются отдельные экземпляры полностью укомплектованных изделий или их партии.
- **15.4.2** Освидетельствование изделия должно начинаться с проверки одобренной технической документации, предусмотренной 15.2.

При этом должно быть установлено следующее:

- **.1** комплект документации соответствует указанному в 15.2.1;
- **.2** сроки одобрения документации Регистром не истекли (если они установлены);
- .3 все изменения, дополнения или исключения в чертежах, схемах, конструкции, тексте технических условий и в другой документации подтверждены соответствующими извещениями, согласованными или одобренными в установленном порядке.
- **15.4.3** Должно быть установлено наличие метрологических документов на приборы, аппараты, испытательное оборудование и т. п., предназначенные для проведения проверок и испытаний изделий при освидетельствовании.
- **15.4.4** Для УКВ-аппаратуры двусторонней радиотелефонной связи, а также радиолокационных ответчиков и радиобуев должно быть проверено наличие на корпусе каждого вида оборудования инструкций для приведения в действие этого оборудования неподготовленным персоналом.
- 15.4.5 Проверка комплектности должна проводиться на соответствие технической документации для всех предусмотренных модификаций изделия и должна касаться выделенных в отдельные корпуса узлов, блоков центральных и периферийных приборов и устройств, пультов управления и др.

15.4.6 При наружном осмотре должно быть проверено соответствие изделия требованиям Правил по оборудованию морских судов и технической документации.

Должны быть проверены:

- габаритные размеры каждого блока или устройства;
- **.2** материалы, применяемые для изготовления каркасов, шасси, оболочек, крышек, поддонов и других конструктивных частей корпуса изделия;
- **.3** качество крепления конструктивных частей корпуса и шасси (сварка, винтовые и болтовые крепления);
- .4 надежность крепления и правильность расположения устройств для крепления изделий на штатных местах (амортизаторы, лапы, скобы, отверстия и др.);
- .5 правильность расположения органов управления, измерительных и индикаторных приборов, сигнальных ламп и т. п., наличие соответствующих ограждений для механической защиты органов управления;
- .6 наличие соответствующих надписей или одобренных символов для обозначения органов управления;
- .7 наличие надлежащих антикоррозионных покрытий корпусов оборудования, а также покрытий, исключающих образования контактных пар, вызывающих электрическую коррозию; соответствие корпусов требуемой степени защиты от попадания воды, посторонних предметов и прикосновений;
- .8 наличие маркировки с указанием типа, серийного номера изделия, года выпуска, рода тока и напряжения питания, безопасного расстояния установки от магнитного компаса и других данных, необходимых для конкретного вида оборудования;
- .9 наличие винтов, болтов или планок заземления корпусов оборудования, достаточности их количества и правильность расположения, состояние контактной поверхности;
- .10 плотность механического и надежность электрического соединений съемных крышек, дверей, горловин и стационарных оболочек с каркасами изделия;
- .11 надежность, плавность, легкость и удобство обслуживания всех открывающихся или снимающихся конструкций корпусов, работы всех видов шарнирных, навесных и скользящих устройств для открывания или вынимания отдельных блоков и приборов из корпуса, а также наличие замков, упоров, защелок и тому подобных устройств для удержания подвижных узлов в фиксированном штатном и открытом положениях;
- .12 обеспеченность доступа без специального инструмента во внутреннюю часть изделия для

снятия отдельных съемных и заменяемых частей: предохранителей, печатных плат и т. п.;

- .13 функционирование органов управления, легкость хода, четкость фиксации в установленном положении, правильность действия по направлению при увеличении или уменьшении величины регулируемого параметра, а также удобство и безопасность пользования ими обслуживающим персоналом;
- .14 кабельные и антенные вводы, кабельные коробки, сальники, штепсельные разъемы для подключения кабелей питания и межприборного монтажа, удобство их расположения и доступность для периодических проверок;
- .15 масса переносного оборудования, например, переносной УКВ-аппаратуры двусторонней радиотелефонной связи спасательных шлюпок и плотов, а также радиолокационных ответчиков, радиобуев и др.
- **15.4.7** При внутреннем осмотре должно быть проверено соответствие изделия требованиям правил, технической документации, регламентирующей требования к внутреннему (механическому, электрическому) монтажу изделия, а именно:
- .1 надежность крепления внутренних узлов, деталей, блоков, панелей, плат, жгутов и других элементов внутреннего монтажа на своих штатных местах:
- **.2** наличие средств, не допускающих самоотвинчивания конструктивных и контактных резьбовых соединений; отсутствие случаев ослабления таких креплений;
- 3 укладка монтажных проводов, исключающая касание оголенных монтажных цепей противоположных полюсов, фаз и цепей;
- .4 способы группирования монтажных проводов в жгуты, их увязка, зашивка в чехлы, укладка и крепление внутри оборудования, исключающие перетирание, перегибы, сминания движущимися частями оборудования;
- .5 разделка монтажных проводов для контактного соединения с элементами схемы, способы контактного оконцевания монтажных проводов, качество их пайки к лепесткам, стойкам, контактным проводам резисторов, транзисторов, конденсаторов и другим деталям оборудования; недопустимость контактных соединений с помощью пайки внахлест, без механического закрепления контактного соединения;
- .6 наличие и качество заземления экранов, участков схемы, требующих экранирования для исключения взаимовлияния, завязок и т. п., а также проводов, несущих высокочастотные сигналы и сигналы звуковых частот;
- .7 наличие маркировки всех элементов схемы в соответствии с нумерацией, принятой в принципиальной схеме:
- **.8** плотность посадки в гнезда всех штепсельных, штекерных, ножевых разъемов, контакторов и т. п.;

- .9 надежность крепления обмоток катушек индуктивности на их каркасах, крепление выводов и отводов от катушек на каркасах, не допускающих движение отдельных витков или всей обмотки;
- .10 плотность посадок сердечников катушек индуктивности, трансформаторов, дросселей и т. п., а также надежность их заземления, если это предусмотрено схемой;
- .11 качество объемного монтажа в отношении расположения соединительных проводов (отсутствие их переплетения и излишних длин), применение негибких проводов, отсутствие повреждений изоляции проводов и их экранировки и других недостатков;
- .12 качество печатного монтажа: отсутствие повреждений поверхностей плат, их надломов или повреждений покрытий, надежность пропайки контактных проводов элементов в печатных соединениях;
- .13 отсутствие возможности произвольного изменения положений элементов внутреннего монтажа относительно друг друга при наклонениях, перестройках, замене съемных элементов, открываниях дверей и т. п.;
- .14 наличие штепсельных разъемов для микрофонов, микротелефонных трубок, головных телефонов, выносных громкоговорителей и других периферийных приборов, а также отключающих и регулирующих устройств для встроенных источников звука;
- .15 соблюдение непрерывности экранировки подводимых высокочастотных кабелей с зажимом и внутренним монтажом антенных трактов.
- 15.4.8 Если проверки, предусмотренные в 15.4.2 15.4.8, дадут положительные результаты, изделие, подлежащее освидетельствованию, должно быть подвергнуто проверкам и испытаниям, указанным в 15.3.1.4 —15.3.1.6. Эти проверки, измерения и испытания должны проводиться по программе испытаний, указанных в 15.2.1.2, и должны предусматривать:
- .1 измерение сопротивления изоляции входных цепей в холодном и нагретом состояниях. Измерение должно проводиться после испытаний изделия на продолжительность работы;
- .2 включение и выключение питания изделия. Включение и выключение должно быть произведено не менее 4 5 раз, чтобы можно было убедиться, что органы включения (тумблеры, автоматические выключатели, пусковые кнопки, контакторы и другие коммутационные аппараты) работают нормально, без сбоев, что сигнальные лампы, измерительные приборы функционируют нормально, цвета сигнальных ламп соответствуют требованиям, а приборы показывают требуемые величины напряжений и токов;
- **.3** проверку срабатывания блокировки высокого напряжения при открывании дверей, снятии съемных крышек и других закрытий;

- .4 проверку величины остаточного напряжения на конденсаторах через требуемое Правилами по оборудованию морских судов время после выключения питания и вскрытия съемных частей корпуса изделия;
- .5 проверку работы устройства для снятия блокировки подачи высокого напряжения при вскрытых съемных частях корпуса изделия;
- .6 проверку освещения шкал настройки измерительных приборов, сигнальных табло, дисплеев, электронно-лучевых трубок, а также органов управления и надписей или символов на панелях управления изделий; при этом необходимо убедиться, что освещение является достаточным и эффективным;
- .7 проверку работы изделия при допустимых колебаниях напряжения и частоты в судовой электрической сети;
- **.8** проверку систем управления, сигнализации и контроля, включая пульты дистанционного управления изделием;
- **.9** проверку работы вентиляторов охлаждения, если они предусмотрены;
- **.10** проверку продолжительности работы изделия при номинальной нагрузке;
- .11 измерение времени, необходимого для готовности изделия к работе с момента ручного, дистанционного или автоматического включения; измерение времени автоматической настройки требуемых параметров;
- .12 проверку вибропрочности изделия на одной частоте. Порядок проведения испытаний изложен в приложении 1. Испытаниями должно быть установлено, что ни одна конструктивная часть изделия или ее элементы не входят в резонанс. Наступление явления, близкого к резонансу, может быть определено при увеличении амплитуды колебаний отдельных частей, плат, панелей и элементов более чем в 2 раза по отношению к колебаниям вибростенда. Предусмотренный порядком испытания осмотр должен подтвердить, что не произошло ослабления креплений, изменения положений элементов монтажа и основных характеристик и параметров изделия;
- **.13** проверку работы всех органов оперативного управления:

рукояток и кнопок установки частоты, усиления высокой, промежуточной и низкой частот, подстройки каскадов передатчиков, антенных контуров, яркости, контрастности электронно-лучевых трубок и т. п. в зависимости от вида и назначения изделия. При проверке должны быть установлены плавность регулировки, надежность фиксации переключателей и степень регулирования выходных параметров;

.14 проверку наличия на шкалах, органах установки частот особых цветовых отметок установки частот бедствия.

15.5 ОСВИДЕТЕЛЬСТВОВАНИЕ ОТДЕЛЬНЫХ ВИДОВ РАДИООБОРУДОВАНИЯ ПРИ УСТАНОВИВШЕМСЯ ПРОИЗВОЛСТВЕ

- 15.5.1 В дополнение к общим осмотрам, проверкам, испытаниям и измерениям, приведенным в 15.4, отдельные виды изделий радиооборудования должны быть подвергнуты проверкам и испытаниям конструкций, характеристик и параметров, обусловленных назначением данного вида изделия радиооборудования.
- 15.5.2 При освидетельствовании передатчиков, являющихся отдельными или комбинированными радиопередающими устройствами или входящими в состав радиостанций, в зависимости от назначения, должны быть проверены:
- .1 работа на жестко фиксированных частотах, на отдельных диапазонах, на сетках частот. Фиксация частот, диапазонов должна быть устойчивой и четкой, набор частот по сетке частот или другими устройствами надежным, без сбоев, западаний кнопок и т. п.;
- .2 работа различными типами излучений. Устройства коммутации типов излучений должны выполнять переключение надежно, с хорошей фиксацией типа излучений. Фактическое излучение должно соответствовать указанному на надписи;
- .3 работа при номинальной мощности на стандартный эквивалент антенны и работа при сниженной мощности. Мощность в обоих случаях должна соответствовать требуемой в технической документации;
- .4 работа органов настройки в заданном диапазоне параметров антенны и отдаваемой мощности на нестандартный эквивалент. Передатчик должен легко настраиваться во всех диапазонах частот на все антенны с предусмотренными параметрами, при этом мощности должны находиться в пределах, оговоренных технической документацией;
- .5 работа индикатора для постоянного контроля тока в антенне;
- **.6** работоспособность передатчиков при имитации обрыва антенны или замыкании ее на корпус.
- 15.5.3 При освидетельствовании приемников, являющихся отдельными радиоприемными устройствами или входящих в состав радиостанций, в зависимости от назначения, должны быть проверены:
 - .1 соответствие диапазона частот;
 - .2 точность установки частоты;
 - .3 уход частоты за время до 15 мин;
- .4 чувствительность в режимах приема излучений НЗЕ, ЈЗЕ, F1B или J2B (G3E, G2B для УКВ) и других видах работы, предусмотренных технической документацией на всех диапазонах;

- .5 прием всех предусмотренных типов излучений при автоматической регулировке усиления;
- **.6** ослабление чувствительности по соседнему каналу, промежуточной частоте, по зеркальному каналу и по другим параметрам;
- **.7** пределы ручной регулировки усиления по высокой, промежуточной и низкой частотам;
- **.8** полоса пропускания тракта промежуточной частоты;
- .9 полоса пропускания звуковых частот во всех режимах приема радиотелефонных передач;
- .10 наличие и величины нелинейных искажений в радиотелефонных режимах работы;
- **.11** уровни напряжений на выходе промежуточной и низкой частот.
- **15.5.4** При освидетельствовании автоматических согласующих антенных устройств, встроенных в передатчики или изготовляемых отдельными блоками, должны быть проверены и испытаны:
- .1 работа согласующего устройства на одну общую и раздельные для передатчика и приемника антенны:
- .2 работа согласующего устройства на всех предусмотренных диапазонах передатчика и на все предусмотренные антенны, например, штыревые 6 и 10 м, наклонный луч и др. Такие проверки могут проводиться на эквиваленты антенны;
- .3 измерение времени настройки согласующего устройства и его перестройки при переходе с одной частоты передатчика на другую, которое должно быть в пределах 5 15 с;
- .4 наличие и работа световой сигнализации о готовности передатчика к работе, о возникновении ошибки в настройке и др.;
- .5 наличие в согласующем устройстве возможности подключения передающей антенны, коммутатора антенны, приемной антенны, их заземление и изоляция;
- .6 определение минимальной величины сопротивления изоляции антенны, при которой согласующее устройство автоматически дает отказ в настройке передатчика и которая должна быть не более 1 МОм;
- .7 работа ручной настройки согласующего устройства.
- 15.5.5 При освидетельствовании устройств электрического питания, входящих в состав изделий радиооборудования, как встроенных в общую конструкцию изделия, так и являющихся отдельными блоками этих изделий, должны быть проверены и испытаны:
- наличие устройств электрической защиты и их соответствие номинальным величинам напряжения и тока:
- .2 работа коммутационных аппаратов включения и отключения питания;

- **.3** работа световой сигнализации о положениях «включено-выключено»;
- **.4** наличие измерительных приборов напряжения, тока и их работа по измерению контролируемых величин (постоянно, эпизодически, выборочно);
- .5 температура наиболее нагревающихся частей после длительной работы под нагрузкой;
- **.6** мощность, потребляемая от источника электрической энергии;
- .7 сопротивление изоляции входных цепей и установленных в них защитных и коммутационных устройств;
- .8 электрическая прочность изоляции источников питания до 24, 220 и 380 В испытательным напряжением 500, 1000 и 1500 В соответственно, отсутствие при этом пробоев, новообразований и разрядов;
- .9 работоспособность радиооборудования при изменении питающего напряжения на \pm 10 % и частоты тока на \pm 5 % от номинальных значений:

отсутствие самовозбуждения и генерации паразитных колебаний;

отсутствие составляющих переменного напряжения на выходе выпрямителей;

- .10 работоспособность радиооборудования, рассчитанного на питание от аккумуляторов, при снижении напряжения на 25 % и повышении напряжения на 30 % от номинального.
- 15.5.6 При освидетельствовании передатчиков, приемников, устройств питания, автоматических податчиков сигналов тревоги, согласующих автоматических антенных устройств, пультов дистанционного управления и других блоков, входящих в комплект радиостанций, должны быть, в дополнение к проверкам, указанным в 15.5.2 15.5.5, проверены:
- .1 надежное крепление основных блоков (передатчика, приемника, устройства питания, автоподатчика), обеспечение экранировки и защиты от взаимных помех;
- **.2** наличие возможности управления радиостанциями как непосредственно, так и через пост дистанционного управления, при его наличии;
- .3 возможность ведения переговоров как от радиостанции, так и с дистанционного поста управления, при его наличии;
- **.4** работа устройства автоматического перехода на частоту дежурного приема при установке микротелефонной трубки на штатное место;
- .5 работа устройства автоматического согласования антенны с выходными каскадами передатчиков:
- **.6** работа автоматических податчиков сигналов тревоги;
- .7 наличие устройства для заземления и изоляции, подключенных к радиостанциям антенн;

- **.8** измерение температуры отдельных блоков, находящихся в одном корпусе, после длительной непрерывной работы до установившейся температуры;
- **.9** отсутствие взаимных вредных температурных, электрических, механических, магнитных и других влияний отдельных блоков друг на друга;
- **.10** работа радиостанции на симплексных и дуплексных каналах.
- **15.5.7** При освидетельствовании оборудования средств командной трансляции должны быть проверены:
- **.1** приоритетность громкоговорящей связи и командной трансляции при трансляции радиовещания;
 - .2 система дистанционного пуска;
- .3 работоспособность при обеспечении питания от аварийного переходного источника электрической энергии, при его наличии.
- **15.5.8** При освидетельствовании УКВ-радиоустановки ГМССБ должны быть проверены и испытаны:
- .1 категории вызовов с использованием как телефонии, так и цифрового избирательного вызова (ЦИВ), а также обеспечение связи в режиме телефонии для целей:

бедствия, срочности и безопасности;

передачи информации, необходимой для эксплуатации судна;

общественной корреспонденции;

.2 наличие:

кодирующего устройства ЦИВ;

приемника для ведения наблюдения за ЦИВ; радиотелефонной станции;

.3 наличие в устройстве ЦИВ:

средства декодирования и кодирования сообщений ЦИВ;

средства, необходимого для составления сообщения ЦИВ;

средства проверки подготовленного сообщения до его передачи;

.4 наличие:

средства отображения информации, содержащейся в полученном вызове, в ясной форме;

средства ручного и, если предусмотрено, автоматического ввода информации о местоположении судна;

средства ручного и, если предусмотрено, автоматического ввода времени, на которое было определено местоположение;

достаточного объема памяти, обеспечивающей хранение в устройстве ЦИВ, по крайней мере, 20 полученных сообщений о бедствии в случае, если полученные сообщения не выводятся сразу на печать;

защиты от непреднамеренного использования средств подачи вызова бедствия;

.5 наличие:

приоритетной подачи вызовов бедствия ЦИВ по отношению к любой другой работе устройства;

данных самоидентификации в памяти устройства ЦИВ, отсутствие возможности их легкой замены;

- **.6** возможность проверки устройства ЦИВ без излучения сигналов;
- .7 наличие неотключаемой, с возможностью квитирования вручную, звуковой и световой сигнализации, срабатывающей после приема вызова бедствия или срочности, или вызова, имеющего категорию бедствия, а также вызовов, не являющихся вызовами при бедствии и срочности;
- **.8** при освидетельствовании радиотелефонной станции УКВ-радиоустановки должны быть проверены и испытаны:
 - .8.1 работоспособность:
- в диапазоне 156 174 МГц с использованием излучения типа G3E (радиотелефонные каналы) и G2B (70-й канал ЦИВ) с разносом частот 25 кГц;
- в диапазоне частот 156,3 156,875 МГц на симплексных каналах:
- в диапазоне частот 156,025 156,875 МГц для передачи и в диапазоне частот 160,625 162,025 МГц для приема на дуплексных каналах;
- **.8.2** наличие не менее пяти каналов, в том числе канала 70 (156,525 МГц); канала 6 (156,3 МГц); канала 13 (1156,65 МГц); канала 16 (156,8 МГц);
- **.8.3** максимальная девиация частоты, не превышающая \pm 5 к Γ ц при глубине модуляции 100 %;
- **.8.4** предварительная коррекция частотной модуляции 6 дБ на октаву;
- .8.5 полоса пропускания звуковых частот, не превышающая 3000 Γ ц;
- **.8.6** работа на антенну с вертикальной поляризацией;
- **.8.7** номинальная мощность передатчика не менее 6 Вт и не более 25 Вт;
- **.8.8** снижение мощности от 0,1 до 1 Вт, кроме канала 156,525 МГц (70-й канал);
- .8.9 средняя мощность любого побочного излучения, обусловленного продуктами модуляции, в любом другом канале Международной морской подвижной службы, не превышающая предела в 10 мкВт, а средняя мощность любого другого побочного излучения на любой дискретной частоте полосы Международной подвижной службы 2,5 мкВт;
- **.8.10** чувствительность приемника при отношении сигнал/шум 20 дБ, которая должна быть не хуже 2 мкВ ЭДС;
- **.8.11** наличие выхода приемника радиостанции, рассчитанного на громкоговоритель мощностью не менее 0,5 Вт и микротелефонную трубку;
- **.8.12** автоматическое отключение громкоговорителя при дуплексной работе;
- **.8.13** время перехода с одного канала на другой не более 5 с, перехода с передачи на прием и наоборот 0.3 с;

- .8.14 ручная регулировка силы звука приемника;
- **.8.15** наличие устройства, обеспечивающего на 16-ом канале минимальную мощность 50 мВт на громкоговорителе при нулевом положении регулятора громкости;
- .8.16 наличие отключаемого шумоподавителя на лицевой напели радиостанции, двухпозиционного выключателя для включения всей УКВ-радиоустановки со световой сигнализацией, указывающей, что радиоустановка включена;
- .8.17 наличие визуальной сигнализации об излучении несущей частоты;
 - .8.18 высвечивание номера настроенного канала;
- **.8.19** достаточность полосы пропускания приемника для приема сигнала с максимальной девиацией частоты \pm 5 к Γ ц по высокой (промежуточной) частоте на уровне 6 д Γ ;
- **.8.20** коэффициент нелинейных искажений приемника, который должен быть не более 7 %;
- **.8.21** избирательность приемника по соседнему каналу, которая должна быть не менее 75 дБ;
- **.8.22** интермодуляционная избирательность приемника, которая должна быть не менее 70 дБ;
- .8.23 наличие устройства, переключающего радиостанцию на 16-й канал при установке микротелефонной трубки в штатное место (при отсутствии режима сканирования);
- **.8.24** автоматический переход с симплексной работы на дуплексную и наоборот при переходе на соответствующие каналы;
- **.8.25** наличие подавления выходной мощности приемника в режиме передачи при симплексной работе;
- .9 при освидетельствовании радиотелефонной станции, имеющей устройство для многоканального наблюдения (сканирования), должны быть проверены и испытаны:

.9.1 наличие:

двухканального контроля, автоматически сканирующего приоритетный и дополнительный каналы;

приоритетности 16-го канала, если выбор приоритетного канала не предусмотрен;

четкого обозначения номера обоих сканируемых каналов;

отсутствия возможности передачи во время режима сканирования;

автоматического переключения передатчика и приемника на дополнительный канал при отключении устройства сканирования;

возможности ручного переключения на приоритетный канал;

.9.2 характеристики сканирования:

сканирование приоритетного канала с частотой не менее одного раза в 2 с;

удержание приемника на приоритетном канале в течение всего времени продолжительности сигнала;

прерывание приема сигнала на дополнительном канале не дольше чем 150 мс при продолжении сканирования на приоритетном канале;

продолжительность пребывания на дополнительном канале, которая должна быть не менее 850 мс в случае, если на приоритетном канале сигнал не принимается, а на дополнительном канале принимается;

обеспечение индикации капала, на котором принимается сигнал.

- **15.5.9** При освидетельствовании ПВ-радиоустановки ГМССБ должны быть проверены и испытаны:
- .1 категории вызовов с использованием как радиотелефонии, так и цифрового избирательного вызова, а также обеспечение связи в режиме радиотелефонии для целей:

бедствия, срочности и безопасности;

передачи информации, необходимой для эксплуатации судна;

общественной корреспонденции;

.2 наличие:

передатчика/приемника с антенной;

встроенного или выносного пульта управления с микротелефонной трубкой и встроенным или выносным громкоговорителем;

встроенного или выносного устройства ЦИВ;

специального приемника, обеспечивающего непрерывное наблюдение на частоте 2187,5 кГц (ЦИВ);

- .3 работоспособность передатчика в диапазоне частот $1605 4000 \text{ к}\Gamma\text{ц}$ с числом рабочих частот не менее двух: $2182 \text{ и } 2187,5 \text{ к}\Gamma\text{ц}$;
 - .4 классы излучений J3E, H3E и J2B или F1B;
- .5 наличие средств автоматического предотвращения перемодуляции;
- .6 стабильность частоты в пределах 10 Гц от заданной после прогрева передатчика;
- .7 пиковая мощность огибающей при нормальной модуляции и классе излучений J3E и H3E или средняя мощность при классе излучений J2B или F1B, которая должна быть не менее 60 Вт;
- **.8** возможность уменьшения выходной мощности до 400 Вт или менее при превышении 400 Вт средней выходной мощности;
- .9 работоспособность на частотах 2182 и 2187,5 кГц не позднее одной минуты после включения радиоустановки;
- .10 непрерывность работы передатчика на номинальной мощности;
- .11 снабжение передатчика стандартным эквивалентом антенны C = 300 пФ, R = 4 Ом;
- .12 дискретная или плавная настройка приемника в диапазоне частот 1605 4000 кГц;
- .13 работа приемника с классами излучений ЈЗЕ, НЗН, Ј2В и F1В;

- .14 отклонение частоты приемника от требуемой в пределах 10 Гц;
- .15 чувствительность приемника для классов излучений J3E и F1B, которая должна быть не менее 6 мкВ при отношении сигнал/шум на входе приемника 20 дБ;
- **.16** мощность приемника, которая должна быть не менее 2 Вт на громкоговоритель и не менее 1 мВт на микротелефонную трубку;
- .17 наличие дополнительного выхода для сигналов ЦИВ, если устройство ЦИВ, не является встроенным;
- .18 избирательность приемника по соседнему каналу, которая должна быть не менее 60 дБ при отстройке помехи на \pm 6 кГц:

избирательность по побочным каналам, которая должна быть не менее 80 дБ;

интермодуляционная избирательность относительно 1 мкВ, которая должна быть не менее 70 дБ; коэффициент нелинейных искажений, который должен быть не более 7 %;

- .19 наличие автоматической регулировки усиления;
- **.20** декодирование и кодирование форматов ЦИВ и их набор, автоматическое удаление этих сообщений через 48 ч после их приема;
- .21 достаточность объема памяти, обеспечивающей хранение в устройстве ЦИВ, по крайней мере, 20 полученных сообщений о бедствии в случае, если полученные сообщения не выводятся сразу на печать, автоматическое удаление этих сообщений через 48 ч после их приема;
- .22 возможность управления радиоустановкой со встроенного или выносного(ых) пульта(ов) управления (приоритетным является пульт управления в месте, откуда обычно осуществляется управление судном);
- .23 возможность подготовки и подачи вызовов бедствия и безопасности, осуществления связи, относящейся к бедствию и безопасности, с места, откуда обычно осуществляется управление судном;
- .24 защищенность от непреднамеренного использования средств подачи вызова бедствия;
- .25 работа системы управления радиоустановкой: включение вызова бедствия ЦИВ (с приоритетом перед другими видами работ);

подтверждение приема вызова бедствия ЦИВ; ретрансляция вызова бедствия ЦИВ; включение частот 2182 и 2187,5 кГц;

автоматический выбор класса излучения ЈЗЕ (НЗЕ)

при переключении на частоту 2182 кГц; автоматический выбор класса излучения J2B или F1B при переключении на частоту 2187,5 кГц;

- .26 переключение классов излучений одним органом управления;
- .27 независимость настройки частот приемника и передатчика;

- **.28** возможность ручного ввода координат судна и времени их определения;
- **.29** отсутствие нежелательных излучений при работе органов управления;
- **.30** наличие индикации в доступной для понимания форме вводимых и принятых форматов ЦИВ;
- .31 наличие звуковой и световой сигнализации приема вызова бедствия или срочности или вызова, имеющего категорию бедствия, неотключаемой с возможностью квитирования вручную. Возможность проверки сигнализации;
 - .32 индикация частот передачи и приема;
- .33 хранение в памяти устройства ЦИВ данных самоидентификации, отсутствие возможности их легкой замены;
- .34 наличие средств, обеспечивающих проверку устройства ЦИВ без излучения сигнала;
- .35 защита от случайного выключения выключателя цепей подогрева, если таковой требуется для нормальной работы радиоустановки;
- .36 автоматическая задержка подачи питания на любую часть передатчика, если таковая требуется.
- **15.5.10** При освидетельствовании ПВ/КВ-радиоустановки ГМССБ должны быть проверены и испытаны:
- .1 категории вызовов с использованием как телефонии, так и цифрового избирательного вызова, а также обеспечение радиосвязи в режиме радиотелефонии и УБПЧ для целей:

бедствия, срочности и безопасности;

передачи информации, необходимой для эксплуатации судна;

общественной корреспонденции;

.2 наличие:

передатчика/приемника с антенной;

встроенного или выносного(ых) пульта(ов) управления с микротелефонной трубкой и встроенным или выносным громкоговорителем;

встроенного или выносного устройства узкополосного буквопечатания;

встроенного или выносного устройства ЦИВ;

специального приемника, обеспечивающего непрерывное наблюдение за вызовами ЦИВ на частотах 2187,5; 8414,5 кГц и, по крайней мере, на одной из частот бедствия и обеспечения безопасности в системе ЦИВ: 4207,5; 6312; 12577 или 16804,5 кГц;

.3 работа передатчика в диапазоне частот 1605 кГц — 27,5 МГц. Наличие не менее 18 рабочих частот:

для радиотелефонии — 2182; 4125; 6215; 8291; 12290; 16420 к Γ ц;

для УБПЧ — 2174,5; 4177,5; 6268; 8376,5; 12520; 16695 кГц;

для ЦИВ — 2187,5; 4207,5; 6312; 8414,5; 12577; 16804,5 кГц;

.4 работа передатчика с классами излучения J3E, H3E и J2B или F1B;

- .5 наличие средств, автоматически предотвращающих перемодуляцию;
- **.6** стабильность частоты в пределах 10 Гц от заданной после прогрева передатчика;
- .7 пиковая мощность огибающей при нормальной модуляции и классах излучений J3E и H3E или средней мощности при классах излучений J2B или F1B, которая должна быть не менее 60 Вт;
- .8 возможность уменьшения выходной мощности до 400 Вт или менее при превышении 400 Вт средней выходной мощности;
- .9 работоспособность на частотах 2182 и 2187,5 кГц не позднее одной минуты после включения радиоустановки;
- .10 непрерывная работа передатчика на номинальной мощности;
- .11 дискретная или плавная настройка приемника в диапазоне частот 1605 кГц 27,5 МГц, или сочетание этих способов, или использование приемника с настройкой на фиксированные частоты, которых должно быть не менее 18;
- .12 работа приемника с классами излучений ЈЗЕ, НЗН, Ј2В и F1В;
- .13 стабильность частоты в пределах 10 Гц от заданной после прогрева приемника;
- .14 чувствительность приемника для классов излучений J3E и F1B, которая должна быть не менее 6 мкВ при отношении сигнал/шум на входе приемника 20 дБ;
- .15 мощность приемника, которая должна быть не менее 2 Вт на громкоговоритель и не менее 1 мВт на микротелефонную трубку;
- .16 наличие дополнительного выхода для сигналов ЦИВ и УБПЧ, если устройства ЦИВ и УБПЧ не являются встроенными;
- .17 избирательность приемника по соседнему каналу, которая должна быть не менее 60 дБ при отстройке помехи на ± 6 к Γ ц;

избирательность по побочным каналам, которая должна быть не менее 80 дБ;

интермодуляционная избирательность относительно 1 мкВ, которая должна быть не менее 70 дБ; коэффициент нелинейных искажений, который должен быть не более 7 %;

- .18 наличие автоматической регулировки усиления;
- **.19** декодирование и кодирование форматов ЦИВ и их набор;
- .20 достаточность объема памяти, обеспечивающей хранение в устройстве ЦИВ, по крайней мере, 20 полученных сообщений о бедствии в случае, если полученные сообщения не выводятся сразу на печать:
- .21 сканирование всех выбранных каналов бедствия ЦИВ в течение не более 2 с со временем наблюдения на каждом достаточном для обеспечения обнаружения последовательности точек, которые

предшествуют каждому ЦИВ. Прекращение сканирования при определении точек, передаваемых со скоростью 100 Бод;

- .22 обеспечение устройством узкополосного буквопечатания работы в режимах циркулярного и избирательного вызовов на одночастотных каналах бедствия, предназначенных для УБПЧ;
 - .23 наличие в устройстве УБПЧ:

средства декодирования и кодирования сообщений; средства составления и проверки сообщений, предназначенных для передачи;

средства обеспечения записи полученных сообщений;

- .24 наличие данных самоидентификации в устройстве УБПЧ и защита их от легкого изменения;
- .25 возможность управления радиоустановкой с встроенного или выносного(ых) пульта(ов) управления;
- .26 приоритет пульта управления, расположенного в месте, откуда обычно осуществляется управление судном;
- .27 возможность подготовки и подачи вызовов бедствия и безопасности и осуществления с места, откуда обычно осуществляется управление судном;
- .28 защита от непреднамеренного использования средств подачи вызова бедствия;
- .29 работа системы управления радиоустановкой: включение вызова бедствия ЦИВ. Подача вызова бедствия ЦИВ с приоритетом перед другими видами работ;

подтверждение приема вызова бедствия ЦИВ; включение частот 2182 и 2187,5 кГц;

автоматический выбор класса излучений ЈЗЕ (НЗЕ) при переключении на частоту 2182 кГц;

ретрансляция вызова бедствия ЦИВ;

автоматический выбор классов излучений J2B или F1B при переключении на частоты бедствия и безопасности ЦИВ и УБПЧ;

переключение классов излучения не более чем одним органом управления;

возможность независимой настройки частот приемника и передатчика;

ручной ввод координат судна и времени их определения;

- **.30** отсутствие нежелательных излучений при работе органов управления;
- .31 наличие индикации в доступной для понимания форме вводимых и принятых форматов ЦИВ;
- .32 наличие звуковой и световой сигнализаций, срабатывающих после приема вызова бедствия или срочности, или вызова, имеющего категорию бедствия; возможность квитирования сигнализаций вручную:
 - .33 индикация частот передачи и приема;
- **.34** хранение в памяти устройства ЦИВ данных самоидентификации, отсутствие возможности их легкой замены;

- **.35** средства, обеспечивающие периодическую проверку устройств ЦИВ без излучения сигналов;
- .36 наличие защиты от случайного выключения выключателя цепей подогрева, если таковой требуется для нормальной работы радиоустановки;
- .37 наличие автоматической задержки подачи питания на любую часть передатчика, если таковая требуется.
- **15.5.11** При освидетельствовании судовой земной станции ИНМАРСАТ ГМССБ должны быть проверены и испытаны:
- .1 категории вызовов (в режиме буквопечатающей телеграфии);
- .2 передача и прием вызовов с приоритетом бедствия;
- .3 наблюдение за оповещениями при бедствии в направлении «берег — судно», включая те, которые адресованы в определенные географические районы;
- .4 передача и прием радиосообщения общего назначения (в режиме буквопечатающей телеграфии или телефонии);
- .5 отсутствие каких-либо внешних органов управления, с помощью которых можно изменить идентификационный номер;
- .6 возможность подачи вызова бедствия с места, откуда обычно осуществляется управление судном, а также с любого другого места, выделенного для передачи оповещения о бедствии, защита от непреднамеренного использования средств подачи вызова бедствия;
- .7 отсутствие необходимости повторного ввода вручную оборудования в рабочий режим, потери полученных сообщений, хранящихся в памяти, в случае перехода с одного источника питания на другой или любого перерыва подачи электрической энергии в течение до 60 с;
- **.8** соответствие характеристик устройства расширенного группового вызова требованиям, предъявляемым к оборудованию РГВ, если судовая земная станция включает его;
- .9 наличие системы самоконтроля и обеспечение автоматического включения звукового и/или светового извещающих сигналов при:

потере слежения антенны за спутником;

нарушении работоспособности радиостанции;

отсутствии питания или включении резервного источника.

- **15.5.12** При освидетельствовании приемника службы HABTEKC должны быть проверены и испытаны:
- **.1** наличие радиоприемника, устройства обработки сигнала и печатающего устройства;
- **.2** возможность получения информации о районах обслуживания и видах сообщений, исключенных оператором из приема;

- .3 работоспособность на частоте 518 кГц, дополнительных частотах национальной службы НАВТЕКС, если последние предусмотрены;
- **.4** работоспособность приемника, устройства обработки сигнала и печатающего устройства;
- .5 хранение не менее 30 идентификаторов сообщений. Автоматическое стирание из памяти устройства идентификатора сообщения по истечении срока между 60 и 72 ч. Автоматическое стирание самого старого сообщения, если число принятых сообщений превышает емкость памяти;
- **.6** хранение только правильно принятых сообщений (т.е. коэффициент ошибки на знак ниже 4 %);
- .7 срабатывание сигнализации при приеме сообщений по поиску и спасанию;
- .8 сохранение информации о районах обслуживания и видах сообщений, находящихся в памяти оборудования, в течение 6 ч после исчезновения питающего напряжения;
- **.9** наличие не менее 32 знаков в строке при печатании печатающего устройства;
- .10 отражение в отпечатанном тексте деления слова в случае автоматического перевода строки;
- подача бумаги после полностью отпечатанного сообщения;
- **.12** печатание звездочки, если принятый знак получен в искаженном виде.
- **15.5.13** При освидетельствовании спутникового аварийного радиобуя системы КОСПАС-САРСАТ должны быть проверены и испытаны:
- .1 работа АРБ на частоте 406,025 МГц с классом излучения 01В без использования спутниковой системы;
 - .2 работа спутникового АРБ в течение не менее 48 ч;
- **.3** наличие устройства для хранения неизменяемой части сообщения о бедствии с использованием энергонезависимой памяти;
- **.4** наличие в сообщении АРБ идентификатора судовой станции;
- .5 работа APБ на частоте 121,5 МГц (для привода), если она предусмотрена;
 - .6 работа светового маяка;
- .7 наличие документов, подтверждающих проведение проверки устройства отделения.
- **15.5.14** При освидетельствовании спутникового аварийного радиобуя системы ИНМАРСАТ должны быть проверены и испытаны:
 - .1 работа АРБ в полосе частот ИНМАРСАТ;
- .2 обеспечение АРБ данными о местоположении судна для автоматического ввода в сообщение о бедствии;
- .3 встроенный радиолокационный ответчик для поиска и спасания, если не предусмотрены встроенные устройства автоматического обновления данных о местоположении после включения;

- .4 проверка APБ без использования спутниковой системы;
- .5 защита от случайного отсоединения любого соединения с APБ (например, с целью ввода данных или подачи питания);
- .6 передача сигнала тревоги при бедствии в течение 4 ч или не менее 48 ч, если предусмотрены встроенные устройства для автоматического обновления данных о местоположении;
- .7 работа любых других устройств (например, радиолокационного ответчика для поиска и спасания и проблескового огня) в течение не менее 48 ч;
- **.8** наличие в сообщении APБ идентификатора судовой станции;
- **.9** наличие документов, подтверждающих проведение проверки устройства отделения.
- **15.5.15** При освидетельствовании УКВ-аварийного радиобуя должны быть проверены и испытаны:
- **.1** передача УКВ-оповещения о бедствии и сигнала наведения с помощью радиолокационного ответчика, работающего на частоте 9 ГГц;
- .2 работа на борту судна без излучения сигнала оповешения:
- .3 продолжительность работы УКВ АРБ от встроенного источника питания, которая должна быть не менее 48 ч;
 - .4 работа на частоте ЦИВ 156,525 МГц;
 - .5 класс излучения G2B;
- **.6** допуск по частоте, который должен быть не хуже 10×10^{-6} ;
- .7 выходная мощность, которая должна быть не менее 100 MBт;
- **.8** наличие документов, подтверждающих проведение проверки устройства отделения.
- **15.5.16** При освидетельствовании радиолокационного ответчика должны быть проверены и испытаны:
 - .1 работа радиолокационного ответчика;
- .2 возможность приведения в действие необученным персоналом;
- .3 наличие средств защиты от непреднамеренного включения;
- .4 наличие визуального и/или звукового средства для определения нормальной работы, запуска радиолокационной станцией;
 - .5 ручное включение и выключение;
 - .6 индикация режима готовности;
- .7 сбрасывание в воду без повреждения с высоты 20 м: водонепроницаемость на глубине 10 м в течение 5 мин;

водонепроницаемость при резком изменении температуры на 45 °C при погружении;

плавучесть, если он не является составной частью плавучего спасательного средства;

наличие плавучего линя, пригодного для использования в качестве буксира;

наличие гладкой наружной поверхности для предотвращения повреждения плавучего спасательного средства;

- **.8** работа в режиме готовности в течение 96 ч, излучения в течение 8 ч при постоянном запросе импульсами РЛС;
- .9 работоспособность при температуре от -20 до +55 °C (хранение при температуре от -30 до +65 °C);
- .10 работа радиолокационного ответчика на расстоянии не менее 5 морских миль при запросе РЛС, антенна которой установлена на высоте 15 м, и на расстоянии не менее 30 морских миль при запросе авиационной РЛС с мощностью импульса не менее 10 кВт, находящейся на высоте 1000 м;
- .11 наличие инструкции по эксплуатации, даты истечения срока службы элементов питания;
- .12 окраска желтого/оранжевого цвета по всей поверхности.
- **15.5.17** При освидетельствовании УКВ-аппаратуры двусторонней радиотелефонной связи должны быть проверены и испытаны:
- 1 возможность приведения в действие необученным персоналом, одетым в перчатки, и возможность работы с помощью одной руки (за исключением переключения каналов);
- .2 выдерживание ударов о твердую поверхность при падении с высоты 1 м;
- .3 водонепроницаемость на глубине 1 м в течение 5 мин;
- .4 водонепроницаемость при резком изменении температуры на 45 °C при погружении;
 - .5 приспособление для крепления к одежде;
- .6 работа на частоте 156,800 МГц (16-й канал) и, по крайней мере, на одном дополнительном канале;
 - .7 класс излучения G3E;
- **.8** наличие двухпозиционного выключателя с визуальной индикацией о включении;
- **.9** регулятор громкости, шумоподавитель и переключатель каналов;
- **.10** определение выбранного 16-го канала при всех условиях освещения;
- .11 минимальная выходная мощность передатчика 0.25 Вт:
- .12 устройство для снижения мощности до 1 Вт или менее, если излучаемая мощность передатчика превышает 1 Вт;
- .13 чувствительность приемника, которая должна быть не хуже 2 мкВ ЭДС при отношении сигнал/шум 12 лБ:
- **.14** работоспособность при температуре от -20 до + 55 °C и хранение при температуре от -30 до + 65 °C;
- **.15** работа в течение 8 ч при наивысшем значении номинальной мощности с рабочим циклом 1:9;
- .16 наличие краткой инструкции по эксплуатации и даты истечения срока службы первичной батареи элементов;

- .17 готовность к работе через 5 с после включения.
- **15.5.18** При освидетельствовании оборудования средств спутниковой радиосвязи должны быть проверены:
- .1 соответствие технических параметров (диапазона частот и изотропной мощности, отклонения несущей частоты передатчика, а также чувствительности, температуры шумов приемного канала);
- .2 приоритет передач при бедствии и безопасности;
- **.3** работа от аварийного переходного источника электрической энергии;
- **.4** работа в режиме буквопечатающей телеграфии или телефонии.
- 15.5.19 Дополнительные проверки и испытания радиооборудования других видов, кроме перечисленных в 15.5.2 15.5.18, определяются при рассмотрении технической документации, в том числе программы испытаний. Во всех случаях их объем должен быть достаточным для оценки пригодности использования его по назначению.
- **15.5.20** После проведения всех проверок и испытаний, предусмотренных в 15.3.4 и 15.5, на изделие выдается документ Регистра, определяемый формой наблюдения.

15.6 ОБЪЕМ ОСВИДЕТЕЛЬСТВОВАНИЙ ГОЛОВНЫХ И/ИЛИ ОПЫТНЫХ ОБРАЗНОВ

- **15.6.1** Техническое наблюдение за разработкой, изготовлением и испытаниями головных и/или опытных образцов изделий радиооборудования должно осуществляться путем освидетельствования, предусматривающего:
- .1 рассмотрение и одобрение технического проекта изделия, представляемого в составе документов, указанных в 1.3.4 части IV «Радиооборудование» Правил по оборудованию морских судов;
- **.2** рассмотрение и одобрение технических условий (на головной образец);
- .3 рассмотрение и одобрение программ и методик стендовых и судовых испытаний;
- **.4** проведение наружного и внутреннего технических осмотров головных образцов;
 - .5 проведение стендовых и судовых испытаний;
- .6 корректировку технической документации для изделий при установившемся производстве по результатам испытаний головного образца.
- **15.6.2** При освидетельствовании головного образца должны быть представлены следующие технические документы:
 - .1 одобренный технический проект;
 - .2 одобренная программа стендовых испытаний;

- .3 техническое описание и инструкция по эксплуатации;
- **.4** документы, подтверждающие готовность образцов к освидетельствованию;
- .5 документы, подтверждающие проведение периодических проверок компетентными органами измерительного и испытательного оборудования;
- .6 документов, подтверждающих положительные результаты специальных испытаний (например, искробезопасности), проведенных компетентными органами.

15.7 ОБЩИЕ УКАЗАНИЯ ПО ОСВИДЕТЕЛЬСТВОВАНИЮ ГОЛОВНЫХ И/ИЛИ ОПЫТНЫХ ОБРАЗЦОВ

- 15.7.1 Для оценки эксплуатационной надежности головных и/или опытных образцов при непрерывной работе в течение времени, оговоренного в Правилах по оборудованию морских судов, должны быть проверены:
- **.1** выбор элементов, обеспечивающих установление режима работы;
- **.2** наличие устройств для проведения контрольных измерений и диагностики неисправностей;
- .3 наличие необходимого резервирования (избыточности) времени непрерывной работы, а также наличие запчастей.
- **15.7.2** Проверка комплектности головного образца изделия должна проводиться в соответствии с 15.4.6.
- **15.7.3** При наружном и внутреннем осмотрах в дополнение к проверкам, указанным в 15.4.7 и 15.4.8, должны быть проверены следующие характеристики и параметры изделия:
 - .1 обеспечение ремонтопригодности:

доступность элементов узлов и блоков для осмотра и измерений;

наличие автоматизации процесса обнаружения отказов и неисправностей;

возможность замены сменных элементов, деталей или блоков простым и удобным способом без применения специальных приспособлений и инструментов;

восстанавливаемость параметров изделия после замены элементов, деталей или блоков;

- .2 наличие устройств надежного крепления изделия: приваренных к изделию скоб, кронштейнов или болтов с применением в необходимых случаях амортизаторов;
- **.3** обеспечение доступа ко всем частям, находящимся под напряжением (за исключением вводов антенн и проводов заземлений), только после вскрытия корпуса, а также:

отсутствие высокого напряжения на изолированных монтажных проводах по отношению их к другим проводам или к корпусу изделия; наличие устройства автоматической разрядки конденсаторов в цепях высокого напряжения при вскрытии корпуса;

.4 обеспечение возможности испытания радиоаппаратуры в действии при вскрытом состоянии корпуса:

наличие зашиты от высокого напряжения;

возможность закрытия корпуса только после выключения высокого напряжения;

- .5 расположение плат, блоков и устройств с элементами, обладающими значительным тепловыделением, отсутствие их отрицательного взаимодействия или отсутствие их вредного воздействия на другое радиооборудование в пульте или комплекте. Температура корпусов радиоаппаратуры во время работы при нормальных климатических условиях не должна превышать 50 °C;
- .6 экранирование высокочастотных устройств, элементов и трактов в целях устранения или ослабления нежелательных влияний одних цепей схемы на работу других цепей и уменьшения диэлектрических потерь, а также:

прочность электрического соединения экранирующих металлических оболочек кабелей с корпусом аппаратуры;

надежность механического закрепления металлических кожухов и кабелей на корпусе аппаратуры;

- .7 наличие зажимов для заземления на всех корпусах радиоаппаратуры, при этом необходимо убедиться в том, что число зажимов и место их расположения обеспечат снятие с корпусов высокочастотных напряжений;
- **.8** наличие предохранительных стопоров, действующих в обоих направлениях, для предотвращения выпадения незакрепленных откидных и выдвижных каркасов изделия;
- .9 наличие на изделии четких надписей, цветных отметок частот бедствия, общепринятых символов, указывающих их назначение и действие органов управления и контроля, которые должны быть видны на расстоянии 700 мм при нормальной остроте зрения и нормальной освещенности;
- .10 расположение органов управления изделием, правильность и надежность их установки:

расположение органов управления на лицевой панели корпуса и пульта дистанционного управления;

обеспечение максимально удобного пользования ими в соответствии с условиями эксплуатации;

надежность и простота конструкции;

преобладание основных органов управления перед дополнительными (неоперативные органы управления эксплуатационных средств радиосвязи допускается помещать на внутренних панелях аппаратуры);

защита органов управления от механических повреждений при установке панели на плоскость;

положения рукояток органов управления «вверх», «от себя» или «вправо», поворот ручек по часовой стрелке и нажатие верхних или правых кнопок на соответствие положениям «включено», «пуск», «увеличение» и т. п.;

положения рукояток органов управления «вниз», «к себе» или «влево», поворот ручек против часовой стрелки и нажатие нижних или левых кнопок на соответствие положениям «выключено», «остановка», «уменьшение» и т. п.;

надежность конструкции всех органов управления (переключателей кнопок, потенциометров, регулирующих элементов), не допускающей самопроизвольного изменения установленного положения:

обеспечение легкого доступа к контрольным клеммам и предохранителям;

.11 обеспечение достаточной защиты внутренних частей от механических повреждений, попадания воды или пыли в зависимости от места установки радиооборудования, а также:

надежность корпуса изделия, который должен быть штампованной, литой, сварной или клепаной конструкции. Крепление стенок (панелей) винтами или болтами допускается только по специальному согласованию с Регистром;

защищенность корпуса воздушными пылезащитными фильтрами;

плотность прилегания панелей, дверей, соединений, прокладок и т. п. к корпусу;

.12 обеспечение вскрытия аппаратуры, откидных и выдвижных каркасов, съемных панелей и дверей, крепящихся к ее корпусу, без использования инструментов, а также:

работа поворотных замков, стопорных защелок и т. п., предотвращающих возможность выпадения блоков или каркасов из корпусов радиооборудования;

устройства крепления съемных или откидных панелей и каркасов изделия, обеспечивающих их надежное соединение, четкую фиксацию с предохранением разъемов от повреждения при переустановке блоков;

обеспечение резьбовых соединений узлов крепления проводов (жгутов) внутреннего монтажа специальными средствами против самоотвинчивания, допускающими многократную отдачу гаек и винтов;

.13 обеспечение съема электронных блоков, плат, разъемов штепсельных вилок, правильного их соединения или включения, при этом также проверяются:

конструктивные меры, предотвращающие возможность ошибочного соединения или включения;

отсутствие напряжения на выступающих контактах разъемных соединений в отсоединенном состоянии;

- .14 обеспечение мер, исключающих возможность возникновения в схеме и конструкции радиооборудования повреждений в результате неправильной последовательности пользования органами управления или изменения полярности источника питания, при этом не должно наблюдаться сгорания предохранителей или срабатывания автоматической защиты;
- .15 обеспечение условий, исключающих заземление (соединение с корпусом) судовой сети и аккумуляторных батарей в схеме радиооборудования;
- **.16** снабжение эквивалентом антенны ПВ и ПВ/КВ радиопередатчиков.

15.8 ОСВИДЕТЕЛЬСТВОВАНИЕ ГОЛОВНЫХ И/ИЛИ ОПЫТНЫХ ОБРАЗЦОВ ОТДЕЛЬНЫХ ВИДОВ ИЗДЕЛИЙ

- 15.8.1 Головной и/или опытный образец отдельного вида изделия радиооборудования должен быть освидетельствован в полном соответствии с требованиями, изложенными в 15.3 15.7, и дополнительно в соответствии с требованиями настоящей главы.
- **15.8.2** Головные образцы передатчиков, предусмотренных в 15.5.2, должны быть проверены и испытаны:
- .1 на допустимое отклонение частоты в любой точке каждого диапазона передатчика, предназначенного для работы на одной боковой или на двух боковых полосах;
- .2 на величину мощности любого побочного излучения, подаваемую в фидер антенны передатчика, работающего в диапазоне частот менее 30 МГц;
- .3 на степень подавления несущей для классов излучений Н3E, R3E и J3E, которая должна быть меньше пиковой мощности передатчика на 6, 18 ± 2 и 40 дБ, соответственно;
- .4 на мощность нежелательных излучений, подводимую к передающей антенне на любой дискретной частоте во время работы передатчика при полной пиковой мощности в случае применения излучений классов НЗЕ, R3E и J3E;
- .5 на частоту модуляции передатчика, работающего излучением класса H2A, которая должна быть от 450 до 1350 Γ ц;
- .6 на полосу пропускания звуковых частот передатчиков, работающих излучениями классов НЗЕ, R3E, J3E, которая должна быть от 350 до 2700 Гц с допустимым изменением амплитуды не более 6 дБ;
 - .7 на глубину модуляции передатчиков;
- **.8** на работу на стандартные эквиваленты антенн передатчиков;
- .9 на уровень радиопомех, создаваемых передатчиком при разомкнутой тангенте. Уровень не должен превышать установленных норм;

- .10 на другие характеристики и параметры, важные для нормальной работы передатчика, в зависимости от его типа и назначения, как это предусмотрено Правилами по оборудованию морских судов.
- **15.8.3** При освидетельствовании головных и/или опытных образцов приемников, предусмотренных в 15.5.3, должны быть проверены и испытаны:
- **.1** наличие электрического освещения (подсветки);
 - .2 защиты от механических повреждений;
 - .3 величина напряжения обратного излучения;
- .4 допустимое отклонение частоты при нормальных климатических условиях (допустимое отклонение частоты при воздействии всех дестабилизирующих факторов определяется в период проведения механических и климатических испытаний);
- .5 защита от наводимых высокочастотных напряжений и грозозащита;
- .6 уровень фона низкой частоты на выходе приемника;
 - .7 эффективность экранировки и фильтрации;
 - .8 уход частоты от изменения напряжения сети;
- .9 мощность, потребляемая от судовой сети или другого источника;
- .10 другие характеристики и параметры, важные для нормальной работы приемника, в зависимости от его типа и назначения, как это предусмотрено Правилами по оборудованию морских судов.
- **15.8.4** При освидетельствовании носимой УКВ-аппаратуры двусторонней радиотелефонной связи должны быть проверены и испытаны:

удобство пользования радиостанцией одной рукой, приспособление для крепления ее к одежде;

прочность корпуса, его водонепроницаемость и противостояние морской воде;

возможность быстрого переключения каналов и различимость выбранного канала;

возможность определения 16-го канала при всех условиях освещенности;

работоспособность радиостанции в течение 8 ч.

- **15.8.5** При освидетельствовании головных и/или опытных образцов радиостанций, предусмотренных в 15.5.6, должны быть проверены и испытаны:
- .1 соответствие диапазонов приемников и передатчиков, наличие необходимых каналов на фиксированных частотах для дуплексной и симплексной связей требованиям Правил по оборудованию морских судов и выделенным частотам;
- **.2** соответствие следующих электрических характеристик тракта передачи требованиям Правил по оборудованию морских судов:

выходная пиковая мощность на требуемый эквивалент антенны на частотах бедствия и вызова;

выходная пиковая мощность на нестандартные эквиваленты на различных участках используемого диапазона;

неравномерность частотно-модуляционной характеристики;

режим пониженной мощности;

отклонение частоты в нормальных климатических условиях и при воздействии дестабилизирующих факторов;

наличие устройств для периодической коррекции частоты;

ослабление несущей, нижней боковой полосы, нежелательных излучений относительно пиковой мощности;

ширина полосы излучения при различных типах излучений.

15.9 ОТДЕЛЬНЫЕ ВИДЫ ИСПЫТАНИЙ ГОЛОВНЫХ И/ИЛИ ОПЫТНЫХ ОБРАЗЦОВ

- 15.9.1 Головные и/или опытные образцы изделия, в дополнение к указанным в 15.7 и 15.8, должны быть испытаны на устойчивость изделия к воздействиям механических и климатических факторов в объеме и по методам, приведенным в приложении 1.
- 15.9.2 Стендовые испытания должны проводиться по одобренной Регистром программе, в которой должны быть учтены требования к испытаниям и их методике, изложенные в приложении 1, или требования и методики испытаний, предусмотренные другими одобренными Регистром техническими нормативными документами при условии, что уровень таких испытаний не ниже указанного в приложении 1.
- **15.9.3** Стендовые испытания должны подтвердить, что изделие обладает достаточной устойчивостью к влияниям:
- **.1** вибраций, ударов, наклонений, ветровых нагрузок:
- .2 повышенной и пониженной температур, повышенной влажности, капель, брызг и струй воды, инея и росы, грибковой плесени и других воздействий, определенных нормами испытаний.
- 15.9.4 Опытные образцы радиооборудования по требованию Регистра могут быть подвергнуты судовым эксплуатационным испытаниям, если, согласно определению опытного образца, приведенному в разд. 1 части І «Общие положения по техническому наблюдению», они имеют принципиально новую конструкцию и ранее в судовых условиях не применялись или по условиям стенда не могут быть достаточно проверены, как это указано в 15.9.7. При этом такие образцы, как правило, не должны применяться в качестве штатных изделий, требуемых Правилами по оборудованию морских судов.
- **15.9.5** На судовых испытаниях должны быть проверены:

- .1 работа передатчиков с реальными судовыми антеннами — на дальность связи с судовыми и береговыми радиостанциями на частотах всех диапазонов и всеми типами излучений;
- .2 качество приема приемников на всех диапазонах при симплексном и дуплексном обменах всеми типами излучений, отсутствие индустриальных помех от электрического и другого судового оборудования и радиопомех от работы собственных судовых передатчиков, радиолокационных станций и радиостанций;
- .3 радиостанции всех назначений на работу согласно 15.9.5.1, 15.9.5.2, а также на работу от комплектных устройств питания, в том числе аварийных и резервных (если они предусмотрены);
- .4 радиобуй на герметичность, а также на срок действия источника питания;
- .5 командное трансляционное устройство при полной нагрузке и при минимальном уровне громкости в пространствах судна, коридорах, палубах. Размещение главных трансляционных линий (палубной, служебной и пассажирской);
- .6 оборудование средств спутниковой радиосвязи на работоспособность системы самоконтроля и обеспечение автоматического включения звукового и/или светового извещающих сигналов при потере слежения антенны за спутником, сигнализацию об отсутствии питания или включение аварийного источника электрической энергии.
- 15.9.6 Головные образцы по требованию Регистра могут быть подвергнуты судовым испытаниям по тем характеристикам и параметрам, проверки которых на стендовых испытаниях не могли быть полностью или в достаточной степени подтверждены.
- 15.9.7 По усмотрению инспектора головные образцы изделий радиооборудования, поступившие под техническое наблюдение Регистра на стадии установившегося производства, допускается не подвергать судовым испытаниям, если конструкция и электрические характеристики головного образца не имеют принципиальных особенностей и соответствуют известным прототипам, успешно применявшимся на судах.

15.10 ДОКУМЕНТАЦИЯ РЕГИСТРА

15.10.1 В случае положительных результатов освидетельствований изделий радиооборудования при установившемся производстве, предусмотренных в 15.3 — 15.5, на каждое изделие (или партию) оформляются документы в соответствии с разд. 3 части I «Общие положения по техническому наблюдению».

15.10.2 После освидетельствований головного и/или опытного образцов, предусмотренных в 15.6 —15.9, составляется акт по установленной форме, в котором изложены результаты произведенных проверок и испытаний и дано заключение о возможности проведения судовых испытаний, предусмотренных в 15.9.5, и рекомендации о дальнейшем изготовлении изделий.

15.10.3 В случае положительных результатов освидетельствований головных образцов изделий радиооборудования, предусмотренных в 15.6—15.9, и проведенных судовых испытаний (если они назначены) должно выдаваться СТО на изделия в соответствии с разд. 6 части I «Общие положения по техническому наблюдению».

ПРИЛОЖЕНИЕ 1

НОРМЫ И МЕТОДЫ ИСПЫТАНИЯ РАДИООБОРУДОВАНИЯ

1. Общие положения.

- **1.1** Настоящее приложение содержит минимальные требования, предъявляемые к стендовым испытаниям радиооборудования морских судов.
- **1.2** Оборудование, испытанное по настоящим требованиям, считается выдержавшим испытание, если оно удовлетворяет условиям, указанным в данном приложении. Объем стендовых испытаний на различных этапах производства приведен в табл. 1.2.

2. Определения и пояснения.

- **2.1** В и броустойчивость оборудования выполнять свои функции в условиях вибрации, сохраняя параметры в заданных пределах.
- 2.2 Ударопрочность оборудования свойство оборудования противостоять разрушающему действию ударов, сохраняя параметры в заданных пределах после их воздействия.
- 2.3 В етропрочность оборудования свойство оборудования противостоять разрушающему действию ветра наибольшей силы, который может возникнуть в условиях эксплуатации, сохраняя свои параметры после его воздействия.
- 2.4 Теплоустойчивость оборудования выполнять свои функции при наиболее высокой температуре окружающего воздуха, которая может возникнуть в условиях эксплуатации, сохраняя параметры в заданных пределах и не подвергаясь повреждениям.
- 2.5 Холодоустойчивость оборудования свойство оборудования выполнять свои функции при наиболее низкой температуре окружающего воздуха, которая может возникнуть в условиях эксплуатации, сохраняя параметры в заданных пределах и не подвергаясь поврежлениям.
- 2.6 В лагоустойчивость оборудования выполнять свои функции, находясь в среде с наиболее высокой относительной влажностью, которая может возникнуть в условиях эксплуатации, сохраняя параметры в заданных пределах и не подвергаясь повреждениям и коррозии.
- **2.7** Коррозионная стойкость свойство металлических изделий противостоять образованию коррозии при воздействии раствора солей.
- **2.8** Плеснеустойчивость свойство изделия противостоять развитию грибковой плесени в среде, зараженной плесневыми грибами.

Таблица 1.2

№ п\п	Свойства оборудования, подлежащие проверке во	Оборудование, предназначенно для установки на судах		
	время испытаний	во внут- ренних помеще- ниях	на откры- той палубе	носимое (пере- носное)
1	Защищенность	++	++	++
2	Виброустойчивость и	++	++	++
	резонанс			
3	Виброустойчивость на	+++	+++	+++
	одной частоте			
4	Ударопрочность ¹	+	+	+
5	Устойчивость к качке ¹	+	+	+
6	Ветропрочность 1	_	+	+
7	Теплоустойчивость	++	++	++
8	Холодоустойчивость	++	++	++
9	Устойчивость к воздей-	_	+	+
	ствию инея и росы ^{1,2}			
10	Влагоустойчивость	++	++	++
11	Коррозионная стойкость 1	+	+	+
12	Плеснеустойчивость ¹	_	+	+
13	Устойчивость к смене	_	_	++
l	температур			
14	Устойчивость к сол-	_	_	+
l l	нечной радиации ¹			
15	Устойчивость к воз-	_	_	+
l	действию масла (нефти)1			
16	Электромагнитная	++	++	++
١	совместимость (ЭМС)			
17	Безопасная дистанция	++	++	++
	до магнитного компаса			
18	Уровень электромаг-	++	++	++
	нитного излучения			
	радиочастотного диапа-			
10	зона			
19	Уровень излучения от	++	++	++
	устройств визуального			
	отображения инфор-			
20	мации		++	++
20	Уровень рентгеновского излучения ¹	++	++	++
21		++		++
41	Уровень акустического	TT		
	шума			

Условные обозначения:

+ — испытания опытного образца;

^{++ —} испытания опытного образца, испытания головного образца;

^{+++ —} испытания опытного, головного образцов изделий установившегося производства.

 $^{^1}$ В зависимости от вида оборудования, места его установки и морского района плавания судна испытания могут являться предметом специального рассмотрения Регистром.

² Если все входящие в оборудование типы и виды комплектующих изделий, элементов и материалов выдержали испытания на плеснеустойчивость, то испытания на плеснеустойчивость оборудования в сборе могут не проводиться.

2.9 Нормальные климатические условия — условия, характеризующиеся сочетанием следующих параметров атмосферы:

температуры — 25 \pm 10 °C;

относительной влажности — от 20 до 75 %.

2.10 Стандартные климатические условия — условия, характеризующиеся сочетанием следующих параметров атмосферы:

температуры — $(20 \pm 1 \text{ °C})$; относительной влажности — $65 \pm 2 \%$.

- 2.11 Защищенность оборудования степень защиты персонала от соприкосновения с токоведущими частями, находящимися внутри оболочки, степень защиты встроенного в оболочку оборудования от попадания твердых посторонних тел, а также степень защиты оборудования, расположенного внутри оболочки, от проникновения воды.
- **2.12** Излучаемые помехи помехи, излучаемые корпусом оборудования (кроме непосредственного излучения антенных устройств оборудования).
- **2.13** Кондуктивные помехи помехи, создаваемые оборудованием на клеммах подключения сети электропитания.

Примечание. В случае невозможности поддержания стандартных климатических условий в начале и конце испытаний теплоустойчивости, колодоустойчивости, влагоустойчивости и плеснеустойчивости допускается проводить измерение параметров оборудования в нормальных климатических условиях. Однако различие между параметрами атмосферы в начале и конце испытаний, по возможности, не должно превышать допусков, предусмотренных для стандартных климатических условий. Отклонения от стандартных значений температуры и влажности, определяемые условиями испытаний, должны быть указаны в протоколе испытаний.

3. Механические испытания оборудования.

3.1 Испытания оборудования на виброустойчивость и резонанс. Оборудование морских судов должно обладать виброустойчивостью и выдерживать испытания по следующей методике:

Таблица 3.1

№ π\π	Последовательность, условия и нормы испытаний	Числовое значение
1	Установка оборудования на вибрационный стенд, включение и измерение параметров	_
2	Выдержка оборудования в состоянии вибрации в заданном диапазоне частот в трех взаимно перпендикулярных направлениях по отношении к изделию:	
	диапазон частот колебаний платформы вибрационного стенда, Гц амплитуда для частот от 2 Гц до 13,2 Гц, мм	2 — 100 ±1
١,	ускорение для частот от 13,2 Γ ц до 100 Γ ц, м/с ²	/
3	Измерение параметров во время испытаний	_
4	Снятие оборудования со стенда, измерение	_
	параметров, выключение и осмотр	

Оборудование должно быть установлено на стенд в нормальном эксплуатационном положении на штатных амортизаторах, если таковые имеются. Во время испытаний оборудование должно находиться в рабочем состоянии в нормальных климатических условиях.

Скорость изменения частоты должна быть достаточной, чтобы обеспечить обнаружение резонансов в отдельных частях оборудования, а также проверку и регистрацию необходимых параметров, но не более, чем две октавы в минуту. Прохождение полного диапазона частот должно занимать не менее 30 мин.

Во время вибрационных испытаний должен проводиться поиск резонансных частот, на которых ухудшаются параметры изделия. При обнаружении резонансов, амплитуда которых в два и более раз превышает номинальную амплитуду колебаний платформы стенда, должно быть выполнено продолжительное испытание на каждой резонансной частоте в течение 2 ч.

Если резонансов не обнаружено, то продолжительное испытание должно быть выполнено на частоте 30 Гц в соответствии с 3.2. Оборудование считается выдержавшим испытания, если в процессе испытаний и после их окончания оно сохраняет свои параметры и не получает повреждений.

3.2 Испытания виброустойчивости и оборудования на одной частоте.

Испытания виброустойчивости оборудования на одной частоте проводятся с целью выявления грубых технологических дефектов, которые могут быть допущены в процессе производства. Испытания должны проводиться по следующей методике:

Таблица 3.2

	•	гаолица 3.2
№ п\п	Последовательность, условия и нормы испытаний	Числовое значение
2	Установка оборудования на вибрационный стенд, включение и измерение параметров Выдержка оборудования в состоянии вибрации на одной частоте в трех взаимно перпендикулярных положениях:	-
3	частота колебаний платформы вибрационного стенда, Гц ускорение, м/с ² продолжительность, ч Измерение параметров во время испытаний	30 7 2 ¹
4	Снятие оборудования со стенда, измерение параметров, выключение и осмотр	

¹ При установившемся производстве время испытаний серийных образцов может быть сокращено до 30 мин, а испытание может быть проведено в одном нормальном эксплуатационном положении.

Оборудование считается выдержавшим испытания, если в процессе испытаний и после их окончания оно сохраняет свои параметры и не получает повреждений.

Примечание. Оборудование должно быть установлено на стенд без амортизаторов. Во время испытаний оборудование должно находиться в рабочем состоянии в нормальных климатических условиях.

3.3 Испытания оборудования на ударопрочность. Оборудование морских судов должно обладать ударопрочностью и выдерживать испытания по следующей методике:

Таблица 3.3

№ п\п	Последовательность, условия и нормы испытаний	Числовое значение
1	Установка оборудования на ударный стенд,	_
	включение, измерение параметров и	
	выключение	
2	Выдержка оборудования в состоянии	
	ударной тряски последовательно в трех	
	взаимно перпендикулярных положениях	
	на ударном стенде:	
	частота ударов платформы ударного	40 — 80
	стенда, уд/мин	
	ускорение, м/с2	100
	длительность ударного импульса, мс	10 — 15
	общее количество ударов	не менее 1000
3	Снятие оборудования со стенда, вклю-	_
	чение, измерение параметров,	
	выключение и осмотр	
4	Испытания ударопрочности путем сбрасы-	
	вания (падения):	
	на твердую поверхность с высоты ¹ , м	1
	общее количество падений 2	6
	в воду с высоты ² , м	20
_	общее количество падений	3
5	Включение оборудования после испы-	_
	таний, измерение параметров,	
1	выключение и осмотр	I

¹ Испытания проводятся только для УКВ-аппаратуры двусторонней радиотелефонной связи.

Во время испытаний оборудование должно находиться в нерабочем состоянии. В зависимости от типа ударного стенда испытания оборудования должны проводиться по одному из следующих способов:

поочередно в трех взаимно перпендикулярных положениях на однокомпонентном стенде;

в двух взаимно перпендикулярных положениях на двухкомпонентном стенде;

в нормальном эксплуатационном положении на трехкомпонентном стенде. Минимальное число ударов может быть сокращено при использовании двухкомпонентного стенда на 1/3, а при использовании трехкомпонентного стенда — на 2/3.

Как правило, испытания на ударном стенде должны проводиться на штатных амортизаторах, если таковые имеются. Однако при испытаниях оборудования в наклонных положениях вместо штатных амортизаторов допускается применение резины или других средств, подобранных таким образом, чтобы они давали тот же статический прогиб, что и штатные амортизаторы.

УКВ-аппаратура двусторонней радиотелефонной связи должна выдерживать дополнительные испытания ударопрочности, проводимые путем сбрасывания ее на твердую поверхность с высоты 1 м.

При этих испытаниях имитируется воздействие свободного падения оборудования на палубу судна.

Испытательная поверхность должна состоять из участка сплошной твердой древесины толщиной не менее 150 мм и массой не менее 30 кг. Высота самой нижней точки оборудования относительно испытательной поверхности в момент сбрасывания должна быть 1000 ± 10 мм.

При испытаниях должно быть обеспечено шесть падений — по одному падению на каждую сторону оборудования. После испытаний должно быть проведено измерение параметров и осмотр оборудования на наличие внешних повреждений.

Аварийные радиобуи и радиолокационные ответчики должны выдерживать дополнительные испытания ударопрочности, проводимые путем сбрасывания их в воду с высоты 20 м.

При этих испытаниях имитируется воздействие свободного падения оборудования в море с палубы судна.

Высота самой нижней точки оборудования относительно поверхности воды в момент сбрасывания должна быть 20 ± 1 м.

При испытаниях должны быть обеспечены три падения. Каждое падение должно совершаться из различных исходных положений оборудования. После испытаний должно быть проведено измерение параметров и осмотр оборудования на наличие внешних повреждений и нарушение герметичности.

Оборудование считается выдержавшим испытания, если после их окончания оно сохраняет свои параметры, прочность и герметичность.

3.4 Испытания оборудования на устойчивость к качке и длительным наклонам.

Оборудование морских судов должно обладать устойчивостью к качке и длительным наклонам и выдерживать испытания по следующей методике:

	•	
	Ţ	аблица 3.4
№	Последовательность, условия и нормы	Числовое
Π/Π	испытаний	значение
1	Установка оборудования на стенд,	_
	включение и измерение параметров	
2	Выдержка оборудования в состоянии качки	
	последовательно в двух взаимно	
	перпендикулярных положениях и измере-	
	ние параметров при каждом положении:	
	предельный угол наклона от вертикали, град	45
	период качки, с	
	продолжительность испытаний в каждом	79
	положении, мин	не менее 5
3	Выдержка оборудования последовательно	
	в двух взаимно перпендикулярных	
	наклонных положениях и измерение	
	параметров в каждом положении:	4.5
	угол наклона к горизонтали, град	45
	продолжительность испытаний в каждом	не менее 3
	положении, мин	
4	Снятие оборудования со стенда, измерение	_
	параметров, выключение и осмотр	

² Испытания проводятся только для УКВ и спутниковых аварийных радиобуев, радиолокационных ответчиков.

Во время испытаний оборудование должно находиться в рабочем состоянии в нормальных климатических условиях. Оборудование должно устанавливаться на специальный стенд на штатных амортизаторах и испытываться в двух взаимно перпендикулярных нормальных эксплуатационных положениях.

Оборудование считается выдержавшим испытания, если в процессе испытаний и после их окончания оно сохраняет свои параметры и не получает повреждений.

Испытания устойчивости оборудования к качке и длительным наклонам могут не проводиться, если оборудование выдержало испытания ударопрочности на однокомпонентном стенде в трех взаимно перпендикулярных положениях.

3.5 Испытания оборудования на ветропрочность. Оборудование и все антенные устройства, рассчитанные для работы на открытых палубах

рассчитанные для работы на открытых палубах судна, должны обладать ветропрочностью и выдерживать испытания по следующей методике:

Таблица 3.5

№ п\п	Последовательность, условия и нормы испытаний	Числовое значение
1	Установка оборудования на стенд в	_
2	нормальном эксплуатационном положении, включение, измерение параметров и выключение Обдувание оборудования воздушным потоком поочередно с восьми горизонтальных направлений через каждые 45 с	
	определенной скоростью: скорость воздушного потока, м/с	60^{1}
3	продолжительность испытаний при каждом из восьми направлений воздушного потока Прекращение подачи воздуха, включение, измерение параметров, выключение и осмотр	5 мин

 $^{^{1}}$ Скорость воздушного потока для антенн УКВ-аппаратуры двусторонней радиотелефонной связи — 29 м/с, для аварийных радиобуев — 51 м/с (100 уз.).

Во время испытаний оборудование должно находиться в нерабочем состоянии.

Оборудование считается выдержавшим испытания, если после их окончания оно сохраняет свои параметры и не получает повреждений.

4. Климатические испытания оборудования.

4.1 Испытания оборудования на теплоустойчивость.

Оборудование морских судов должно обладать теплоустойчивостью и выдерживать испытания по следующей методике:

Таблица 4.1

$\overline{}$					
№ π\π	Последовательность, условия и нормы	Числовое зн ния, предназ			
	испытаний	испытании во внут- ренних помеще- ниях		носимое (пере- носное)	
1	Установка оборудования	0.2 - 2	0.2 - 2	0,2 — 2	
2	в камеру тепла, включение и выдержка при стандартных клима- тических условиях, ч Измерение параметров при стандартных климатических условиях	_	_	_	
3	Повышение температуры в камере до рабочей: скорость повышения				
	температуры, °С/мин; рабочая температура, °С относительная влажность, %	0,5 — 3 55±3 не более 20	$0.5 - 3$ 55 ± 3	$0.5 - 3$ 55 ± 3	
4	Выдержка оборудования при рабочей температуре, ч	10 — 16	10 — 16	10 — 16	
5	Измерение параметров при рабочей температуре	_	_	_	
6	и выключение Повышение температу- ры в камере до пре- дельной:				
	скорость повышения температуры, °С/мин; рабочая температура, °С;	$0.5 - 3$ 70 ± 3	$0.5 - 3$ 70 ± 3	$0.5 - 3$ 70 ± 3	
7	относительная влажность, % Выдержка оборудования при предельной	не более 20 10 — 16	не более 20 10 — 16	не более 20 10 — 16	
8	температуре, ч Скорость понижения температуры в камере до стандартной, °С/мин	0,5 — 3	0,5 — 3	0,5 — 3	
9	Выдержка оборудования при стандартных кли-	2 — 6	2 — 6	2 — 6	
10	матических условиях, ч Включение и выдержка оборудования при стан- дартных климатических	0,2 — 2	0,2 — 2	0,2 — 2	
11	условиях, ч Измерение параметров при стандартных клима-	_	_	_	
	тических условиях, вык- лючение оборудования и				
	осмотр				
	осмотр				

Оборудование считается выдержавшим испытания, если в процессе испытаний и после их окончания оно сохраняет свои параметры и не получает повреждений.

4.2 Испытания оборудования на холодоустойчивость.

Оборудование морских судов должно обладать холодоустойчивостью и выдерживать испытания по следующей методике:

Таблица 4.2

№	Последовательность,	Числовое з	начение для	оборудо-
п/п	условия и нормы	вания, предна	азначенного	для работы
	испытаний	во внут- ренних помеще- ниях	на открытой палубе	носимое (пере- носное)
1	Установка оборудования	0,2 — 2	0,2 — 2	0,2 — 2
2	в камеру холода, включение и выдержка при стандартных клима- тических условиях, ч Измерение параметров	_	_	
	при стандартных климатических условиях и выключение			
3	Понижение температуры в камере до рабочей; скорость понижения температуры, °С/мин;	1 — 2	1 — 2	1 — 2
4	рабочая температура, °C; Выдержка оборудования	-15 ± 3 $10 - 16$	-40 ± 3 $10 - 16$	-20 ± 3 $10-16$
5	при рабочей температуре, ч			
6	Включение, измерение параметров при рабочей температуре и выклю- чение Понижение темпера-	_	_	
	туры в камере до предельной: скорость понижения температуры, °С/мин;	1 — 2	1 — 2	1 — 2
7	предельная температура, °С; Выдержка оборудования при предельной темпе- ратуре, ч	-60 ± 3 2	-60 ± 3 2	-30 ± 3 $10 - 16$
8	Скорость повышения температуры в камере до стандартной, °С/мин	0,5 — 3	0,5 — 3	0,5 — 3
9	Выдержка оборудования при стандартных климатических условиях, ч	3 — 4	3 — 4	3 — 4
10	Включение и выдержка оборудования при стандартных климати-	0,2 — 2	0,2 — 2	0,2 — 2
11	ческих условиях, ч Измерение параметров при стандартных клима- тических условиях, вык- лючение оборудования и	_	_	-
$ldsymbol{ld}}}}}}}}}$	осмотр			

Оборудование считается выдержавшим испытания, если в процессе испытаний и после их окончания оно сохраняет свои параметры и не получает повреждений.

4.3 Испытания устойчивости оборудования к воздействию инея и росы.

Все оборудование, предназначенное для установки на открытых палубах морских судов, должно выдерживать испытания на устойчивость к воздействию инея и росы по следующей методике:

Таблица 4.3

№ π\π	Последовательность, условия и нормы испытаний	Числовое значение
2	Установка оборудования в камеру холода и выдержка в выключенном состоянии: температура, °С продолжительность, ч Извлечение оборудования из камеры, включение и выдержка в нормальных климатических условиях, при этом сразу после включения и через каждые 30 — 60 мин производится измерение параметров оборудования: продолжи-	-20 ± 5 2
3	тельность выдержки, ч Выключение и осмотр	<u>3</u>

Оборудование считается выдержавшим испытания, если оно сохраняет свои параметры в заданных пределах и не получает повреждений.

4.4 Испытания оборудования на влагоустойчивость.

Оборудование морских судов должно обладать влагоустойчивостью и выдерживать испытания по следующей методике:

Таблица 4.4

		Таблица 4.4
№ π\π	Последовательность, условия и нормы испытаний	Числовое значение для оборудования, предназначенного для работы во внутренних помещениях и на открытой палубе
1	Установка оборудования в камеру влажности, включение и выдержка при стандартных климатических условиях, ч	0,2 — 2
2	Измерение параметров при стан- дартных климатических условиях и выключение	_
3	Повышение относительной влажности в камере до рабочей:	
4	рабочая относительная влажность, % Повышение температуры в камере до рабочей:	95±3
	рабочая температура, °С	40 + 2
5	Выдержка оборудования при рабочих значениях температуры и относительной влажности, ч	10 — 16
6	Включение, измерение параметров при рабочих значениях температу-	2
7	ры и относительной влажности, ч Понижение температуры и влаж- ности в камере до достижения стан-	1
8	дартных климатических условий, ч Измерение параметров при стандартных климатических условиях, выключение оборудования и	_
	осмотр	

Оборудование считается выдержавшим испытания, если в процессе испытаний и после их окончания оно сохраняет свои параметры и не получает повреждений.

4.5 Испытания на коррозионную стойкость.

Металлические части оборудования морских судов должны обладать коррозионной стойкостью и выдерживать испытания по следующей методике:

Таблица 4.5 Последовательность, условия и Числовое $\Pi \Pi$ параметры испытаний значение 1 Осмотр оборудования и установка в Выдержка оборудования в камере при циклическом распылении раствора солей (морской туман) Температура в камере, °С 25 ± 10 Состав раствора, частей по весу: 5 ± 1 NaC1 95 дистиллированная вода 2 продолжительность распыления раствора, ч Выдержка оборудования в камере: температура в камере, °С 40 ± 2 относительная влажность в камере, % продолжительность выдержки, сут 4 Повторение операций 2 и 3, общее количество Извлечение оборудования из камеры и осмотр

Во время испытаний оборудование должно находиться в нерабочем состоянии. Оборудование считается выдержавшим испытания, если после их окончания оно сохраняет свои параметры и не получает повреждений.

4.6 Испытания оборудования на плеснеустойчивость.

Оборудование морских судов должно обладать плеснеустойчивостью и выдерживать испытания по следующей методике.

Перед началом испытаний оборудование должно быть выдержано при температуре 60 ± 2 °C в течение 6 ч, а затем помещено на 1-6 ч в стандартные климатические условия для осмотра и измерения параметров. Испытания оборудования должны проводиться в среде, зараженной грибковой плесенью, при отсутствии света и движения воздуха. Плесень должна представлять собой водную суспензию из смеси спор плесневых грибков, названия которых приведены в табл. 4.6. В качестве питательной среды для выращивания плесневых грибков рекомендуется использование пивного сусла или синтетической среды Чапек-Докса.

Стерилизованная питательная среда в чашках Петри вместе с отключенным от источников питания оборудованием устанавливается в испытательную камеру и опрыскивается из пульверизатора с диаметром выходного отверстия не менее 1 мм водной суспензией спор плесневых грибков из расчета 50 мл суспензии на 1 м³ полез-

ного объема камеры. После опрыскивания в испытательной камере устанавливается температура 20 + 5 °C и относительная влажность 95 - 98 %.

Оборудование выдерживается в этих условиях в течение 48 ч. Если после такой выдержки в контрольных чашках Петри не наблюдается роста плесени, следует провести повторное опрыскивание чашек и оборудования жизнеспособной суспензией спор плесневых грибков и произвести повторную выдержку в течение 48 ч. По обнаружении в контрольных чашках роста плесени температуру в камере повышают до $29 \pm 1^{\circ}$ С при относительной влажности 95 - 98% и оборудование выдерживают в таких условиях 28 сут. По истечении этого срока оборудование помещается в стандартные климатические условия на 24 ч, а затем проводится осмотр и измерение его параметров.

Оборудование считается плеснеустойчивым, если при наблюдении через лупу с 50-кратным увеличением на нем не обнаруживается очагов грибковой плесени или видны лишь единичные проросшие споры.

Таблица 4.6

				таолица 4.0
№ π\π	Спора	Штамм	Типичные культуры	Свойства
1	Aspergillus niger	v. Tieghem	ATCC. 6275	Обильно растет на многих материалах, стойка к солям меди
2	Aspergillus terreus	Thom	PQMD. 82j	Воздействует на пластмассы
3	Aureobasidium pullulans	(DE Barry) Arnaud	ATCC. 9348	Воздействует на краски и лаки
4	Paecilomyces varioti	Bainier	JAM. 5001	Воздействует на пластмассы и кожу
5	Penicillium funicu-losum	Thom	JAM. 7013	Воздействует на многие материалы, особенно текстильные
6	Penicillium ochrochloron	Biourge	ATCC. 9112	Стойка к солям меди
7	Scopulariopsis brevicaulis	(Sacc) Bain Var. Glabra	JAM. 5146	Воздействует на резину
8	Trichoderma viride	Thom Pers. Ex Fr.	JAM. 5061	Воздействует на целлюлозу, текстиль, пластмассы

4.7 Испытания оборудования на устойчивость к смене температур.

Испытания на воздействие смены температур определяют способность носимого (переносного) оборудования исправно работать, оказавшись внезапно в воде после нахождения при высокой температуре. Оборудование должно выдерживать испытания по приводимой ниже методике.

Испытуемое оборудование должно быть помещено в камеру с температурой 70 \pm 3 °C на 1 ч. Затем оно погружается в воду с температурой 25 \pm 3 °C на глубину 100 \pm 5 мм на 1 ч. В конце испытания

оборудование должно быть подвергнуто проверке на наличие влаги и повреждений, после чего проводится измерение параметров при нормальных климатических условиях в соответствии с инструкцией производителя.

4.8 Испытания оборудования на устойчивость к солнечной радиации.

Испытаниям подвергается носимое (переносное) оборудование, которое предназначено для работы на открытой палубе и которое полностью или частично во время эксплуатации будет подвергаться воздействию солнечной радиации. Данный вид испытаний проводится по следующей методике.

Оборудование подвергается постоянному облучению в течение 80 ч от источника, имитирующего солнечную радиацию. Интенсивность облучения должна обеспечивать суммарную плотность теплового потока (1120 ± 10 %) Вт/м² с распределением (плотностью) спектральной мощности как указано в табл. 4.8.

Т	a	б	π	и	П	а	4.8

Область спектра	Ультра- фиоле- товый В	Ультра- фиоле- товый А	Вид	цимый сп	ектр	Инфра- красный
Ширина диапа- зона, мкм	0,28 — 0,32	0,32 — 0,4	0,4 —0,52	0,52 — 0,64	0,64 —0,78	0,78 — 3,0
Интен- сивность радиации, Вт/м ²	5	63	200	186	174	492
Допусти- мое от- клоне- ние, %	±35	±25	±10	±10	±10	±20

В конце испытания проводится измерение параметров оборудования, выключение и осмотр. Не должно быть признаков повреждения оборудования (включая и шильдики).

4.9 Испытание оборудования на устойчивость к воздействию масла (нефти).

Данному испытанию подвергается только носимое (переносное) оборудование. Испытание проводится по следующей методике.

Испытуемое оборудование погружается в минеральное масло с температурой 19 ± 5 °C на 3 ч.

Характеристика масла:

анилиновая точка — 120 ± 5 °C;

точка вспышки — минимум 240 °C;

вязкость — 10 - 25 сСт при t = 99 °C.

Для этой цели могут быть использованы следующие типы масел:

А5ТМ масло № 1;

А5ТМ масло № 5;

ISO масло № 1.

По окончании испытания оборудование очищается от масла и подвергается измерению параметров, затем выключается и осматривается. Результаты считаются удовлетворительными, если технические характеристики соответствуют заводским, а на самом оборудовании не обнаружено признаков механических повреждений, растрескиваний, разбуханий и растворений.

5. Испытания защищенности оборудования.

Испытания защищенности оборудования определяются степенью защиты оболочки оборудования. Степень защиты оборудования обозначается буквами IP и двумя характеристическими цифрами:

первая характеристическая цифра определяет степень защищенности оборудования от доступа к опасным частям, находящимся внутри оболочки оборудования, а также от проникновения внутрь посторонних твердых предметов;

вторая характеристическая цифра определяет степень защищенности оборудования от проникновения воды.

Оборудованию может быть присвоена определенная степень защиты, обозначаемая первой характеристической цифрой, только если она соответствует одновременно всем более низким степеням защиты. При этом не обязательно проводить испытания на установление соответствия какой-либо из более низких степеней защиты, если очевидно, что результаты таких испытаний будут заведомо удовлетворительными.

5.1 Защита от доступа к опасным частям оборудования и от проникновения посторонних твердых предметов.

Описание степеней защиты от доступа к опасным частям оборудования, проникновения посторонних твердых предметов и методы проведения испытаний для них приведены в табл. 5.1.

Таблица 5.1

Первая характе- ристи-	Степень защиты от доступа к опасным частям оборудования		Степень защиты от проникновения посторонних твердых предметов		
ческая цифра	Краткое описание	Испытания	Краткое описание	Испытания	
0	Нет защиты Защищено от доступа к опасным частям тыльной стороной руки	* * * *	Нет защиты Защищено от внешних твер- дых предметов диаметром, больше или равным 50 мм	Испытания не требуются Жесткий шар диаметром $50~\text{mm}^1$ с усилием $50~\text{H}~\pm10~\%$ не должен проникать полностью	

Первая характе- ристи-	Степень защиты от доступа к опасным частям оборудования		Степень защиты от проникновения посторонних твердых предметов		
ческая цифра	Краткое описание	Испытания	Краткое описание	Испытания	
2	Защищено от доступа к опасным частям пальцем	Испытательный шарнирный палец (см. рис. 5.1.1-1) диаметром 12 мм и длиной 80 мм не должен прикасаться к опасным частям оборудования	Защищено от внешних твердых предметов диаметром, больше или равным 12,5 мм	Жесткий шар диаметром 12,5 мм 2 с усилием 30 Н \pm 10 % не должен проникать полностью	
3	Защищено от доступа к опасным частям инструментом	Жесткий стальной стержень диаметром 2,5 мм 1 с усилием 3 H ± 10 % не должен проникать внутрь оболочки оборудования	Защищено от внешних твердых предметов диаметром, больше или равным 2,5 мм	Жесткий стальной стержень диаметром 2,5 мм 1 с усилием 3 H \pm 10 % не должен проникать ни полностью, ни частично	
4	Защищено от доступа к опасным частям проволокой	Жесткая стальная проволока диаметром $1,0\mathrm{mm}^1$ с усилием $1\mathrm{H}\pm10\%$ не должна проникать внутрь оболочки оборудования	Защищено от внешних твердых предметов диаметром, больше или равным 1,0 мм	Жесткая стальная проволока диаметром $1,0$ мм 1 с усилием 1 $H\pm 10$ % не должна проникать ни полностью, ни частично	
5	Защищено от доступа к опасным частям проволокой	Жесткая стальная проволока диаметром $1,0\mathrm{mm}^1$ с усилием $1\mathrm{H}\pm 10\%$ не должна проникать внутрь оболочки оборудования	Защищено от пыли	Проникновение пыли исключено не полностью, однако пыль не должна проникать в количестве, достаточном для нарушения нормальной работы оборудования или снижения его безопасности	
6	Защищено от доступа к опасным частям проволокой	Жесткая стальная проволока диаметром $1,0$ мм 1 с усилием 1 H \pm 10 % не должна проникать внутрь оболочки оборудования	Пыленепроницаемо	Пыль не проникает в оболочку	

Условия испытаний.

Испытательный предмет прижимают, либо вставляют в каждое отверстие в оболочке оборудования.

Испытание на воздействие пыли проводят с помощью специальной камеры пыли, основные конструктивные и принципиальные особенности которой приведены на рисунке 5.1-2, при этом насос циркуляции пыли в камере может быть заменен любым другим устройством, позволяющим поддерживать порошок талька во взвешенном состоянии в закрытой испытательной камере. Используемый порошок талька должен проходить через сито с размерами квадратной ячейки 75 мкм и толщиной проволоки 50 мкм.

Количество порошка талька составляет 2 кг на 1 м³ объема испытательной камеры. При испытатини через оболочку необходимо прокачать объем воздуха, равный 80 объемам оболочки, при скорости обновления воздуха не более 60 объемов оболочки в час. При этом значение вакуума не должно превышать 2 кПа (20 мбар) по манометру (рис. 5.1-2). Испытание длится 2 ч со скоростью обмена воздуха от 40 до 60 объемов в час.

Защиту для первой характеристической цифры 5 считают удовлетворительной, если в результате проверки обнаруживают, что порошок талька не накапливается в таком количестве либо в таком месте, что нормальная работа оборудования или

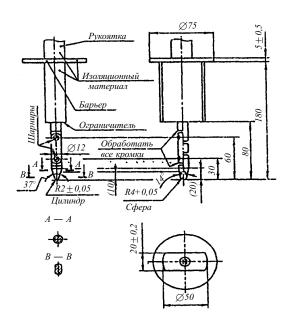


Рис. 5.1-1 Испытательный шарнирный палец

Примечание. Линейные размеры даны в миллиметрах. Допуски на размеры, где не указаны допуски на рисунке — на углы: от 0 до 10 мин; на линейные размеры до 25 мм: от 0 до 0,05 мм; на линейные размеры свыше 25 мм: \pm 0,2 мм.

Два шарнира должны обеспечивать подвижность в одной и той же плоскости и направлении под углом 90° с допуском от 0 до $+\ 10^{\circ}$

требования безопасности могли бы быть нарушены при попадании на эти места пыли любого другого вида. За исключением специальных случаев, точно указанных в стандартах на конкретный вид изделия, пыль не должна накапливаться в местах, где она может вызвать трекинг (образование токопроводящих следов) на путях утечки.

Защита для первой характеристической цифры 6 считается удовлетворительной, если по завершении испытания внутри оболочки не наблюдается отложений пыли.

5.2 Защита от проникновения воды.

Описание степеней защиты от проникновения воды и методы проведения испытаний для них приведены в таблице 5.2-1.

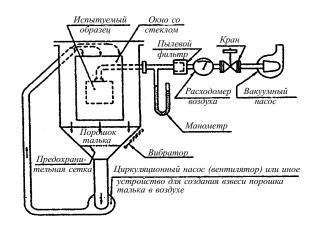


Рис. 5.1-2 Устройство для проверки защиты от пыли (камера пыли)

Таблица 5.2-1

Вторая харак-		Степень зашиты от проникновения воды		
теристи- ческая цифра	Краткое описание	Испытания		
0	Нет защиты	Испытания не требуются		
1	Защищено от вертикально падающих капель воды	Оборудование в нормальном рабочем положении подвергается воздействию вертикально падающих капель из емкости с водой через отверстия в днище, расположенные на пересечении воображаемой сетки со стороной ячейки 20 мм. Площадь днища должна быть больше чем площадь испытываемого оборудования. Интенсивность дождя должна быть 1 мм/мин ¹ в течение 10 мин		
2	Защищено от вертикально падающих капель воды, когда оборудование отклонено на угол до 15°	Испытания проводятся аналогично испытаниям для характеристической цифры 1, с отклонением изделия от вертикального положения на 150° поочередно в любые стороны. Интенсивность дождя составляет 3 мм/мин в течение 2,5 мин в каждом из наклоненных положений		
3	Защищено от воды, падающей в виде дождя	Оборудование в нормальном рабочем положении обливается водой из: качающейся трубы, отклоняющейся от вертикали на углы \pm 60° (рис. 5.2-1). Расход воды: 0,07 л/мин \pm 5 % через одно отверстие, умноженное на число отверстий в трубе. Длительность полного колебания $(2 \times 120^\circ)$ должна составлять приблизительно 4 с. Через 5 мин испытаний оборудование поворачивается на 90° в горизонтальной плоскости, и испытания продолжают еще в течение 5 мин; или: разбрызгивателя под углом \pm 60° к вертикали (рис.5.2-2). Расход воды 10 л/мин \pm 5 %. Длительность испытания рассчитывается исходя из 1 мин на 1 м² поверхности испытываемого оборудования, но не менее 5 мин		
4	Защищено от сплошного обрызгивания	Испытания проводятся аналогично испытаниям для характеристической цифры 3, но с обрызгиванием оборудования со всех сторон		
5	Защищено от водяных струй	Оборудование с расстояния 2,5 — 3,0 м обливается со всех сторон водой из брандспойта с диаметром сопла 6,3 мм и интенсивностью 12,5 л/мин ± 5 %. Длительность испытания рассчитывается исходя из 1 мин на 1 м² поверхности испытываемого оборудования, но не менее 3 мин		
6	Защищено от сильных водяных струй	Оборудование с расстояния $2,5-3,0$ м обливается со всех сторон водой из брандспойта с диаметром сопла $12,5$ мм и интенсивностью 100 л/мин ± 5 %. Длительность испытания рассчитывается исходя из 1 мин на 1 м 2 поверхности испытываемого оборудования, но не менее 3 мин		
7	Защищено от воздействия при временном (непродолжительном) погружении в воду	Оборудование погружается в резервуар с водой. Если высота оборудования менее 850 мм, то самая нижняя точка оболочки оборудования должна находиться на глубине 1000 мм от уровня воды. Если высота оборудования более или равна 850 мм, то самая верхняя точка оболочки оборудования должна находиться на глубине 150 мм от уровня воды. Продолжительность испытания — 30 мин		
8	Защищено от воздействия при длительном погружении в воду	Оборудование погружается в резервуар с водой. Уровень воды и продолжительность испытания определяются по договоренности с производителем оборудования. При этом условия испытаний должны быть не ниже условий испытаний для характеристической цифры 7		

Условия испытаний.

При испытаниях используется пресная вода.

При проведении испытаний на характеристические цифры от 1 до 7 температура воды не должна отличаться более чем на 5 °C от температуры испытуемого образца. Если температура воды ниже температуры образца более чем на 5 °C, следует предусмотреть возможность выравнивания давления в оболочке.

Во время испытаний может частично конденсироваться влага, содержащаяся внутри оболочки. Накапливающийся конденсат не следует путать с водой, просачивающейся внутрь оболочки извне во время испытаний.

После испытаний оборудование должно быть проверено на проникновение внутрь него воды.

Допустимое количество воды, которое может проникнуть внутрь оболочки, зависит от типа оборудования. При этом, в общем случае, если определенное количество воды проникает внутрь оболочки, не должно быть:

нарушения нормальной работы оборудования или его безопасности;

накопления воды на электроизоляционных частях, где вода может вызвать трекинг (образование токопроводящих следов) на путях утечки;

попадания воды на части, находящиеся под напряжением, или на обмотки, не рассчитанные на работу в увлажненном состоянии;

накопления воды вблизи кабельных вводов либо проникновения внутрь кабелей.

При наличии в оболочке сливных отверстий следует убедиться путем осмотра, что проникающая вода не накапливается в оболочке и может свободно выходить через указанные отверстия без повреждения оборудования.

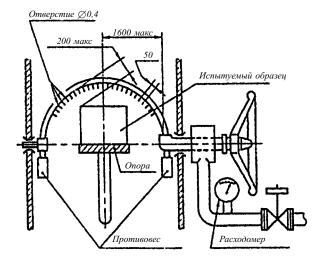


Рис. 5.2-1 Устройство для проверки защиты от дождя и обрызгивания водой (качающаяся труба), размеры даны в мм

В качающейся трубе должны быть предусмотрены отверстия по дуге 60° с каждой стороны от центра. Стол для установки оболочки не должен быть решетчатым.

Количество отверстий и расход воды указаны в таблице 5.2-2.

Таблица 5.2-2

200 400 600	Число ерстий <i>N</i> ¹	(л/мин)	Число отверстий N^1	Полный расход воды (л/мин)
400 600	8			
800 1000 1200 1400	16 25 33 41 50 58	0.56 1,1 1,8 2,3 2,9 3,5 4,1	12 25 37 50 62 75 87	0,84 1,8 2,6 3,5 4,3 5,3 6,1

¹ В зависимости от фактического расположения центров отверстий число отверстий может быть увеличено на 1.

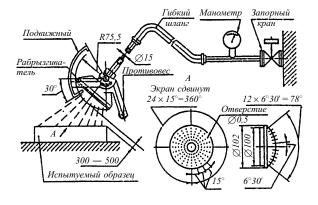


Рис. 5.2-2 Переносное устройство для проверки защиты от дождя и обрызгивания водой (разбрызгиватель), размеры даны в мм

Примечание. 121 отверстие диаметром 0,5 мм, одно отверстие в центре; на двух внутренних окружностях по 12 отверстий под углом 30° , на четырех внешних окружностях по 24 отверстия под углом 15° . Материал экрана — алюминий. Материал разбрызгивателя — латунь.

6. Испытания на электромагнитную совместимость (ЭМС).

6.1 Испытания на уровень помех, создаваемых другому оборудованию.

Объем испытаний на уровень электромагнитных помех, создаваемых другому оборудованию, приведен в табл. 6.1.

Таблица 6.1

№ п\п	Свойства оборудования,	Оборудование, предназначенное для установки на судах		
	подлежащие проверке во время испытаний	Во внутренних помещениях	на открытой палубе	носимое (перенос- ное)
1	Уровень напря- жения кондуктивных помех	+	+	_
2	Уровень напря- женности поля излу- чаемых помех	+	+	+

Во время испытаний оборудование должно работать в нормальных условиях, а положение органов управления, влияющих на уровень помех, должно быть таким, чтобы установить максимальный уровень помех, создаваемых испытываемым оборудованием. Если оборудование имеет несколько энергетических режимов, например, «работа», «готовность» и пр., то должен быть определен режим, создающий максимальный уровень помех, и именно для этого режима должны выполняться все измерения. Антенные клеммы оборудования должны быть подключены на неизлучающий эквивалент антенны. Оборудование, включая передатчик, должно находиться в рабочем состоянии, но не в режиме излучения.

6.1.1 Испытания на уровень напряжения кондуктивных помех.

При испытаниях на уровень напряжения кондуктивных помех измеряются любые сигналы, генерируемые оборудованием, которые появляются на его зажимах (клеммах) подключения электропитания, и поэтому могут попасть в судовую сеть и нарушить нормальную работу другого оборудования.

Уровень напряжения кондуктивных помех, создаваемых радиооборудованием на зажимах (клеммах)

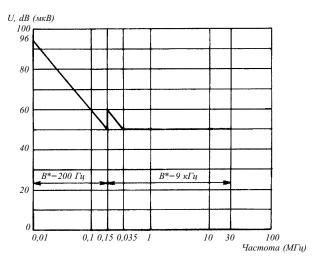
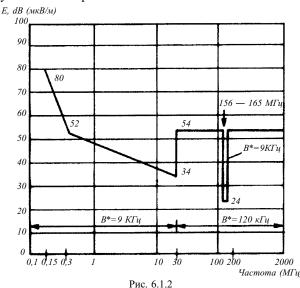


Рис. 6.1.1

Кривая уровня допустимого напряжения кондуктивных помех U, измеренных на зажимах (клеммах) электропитагиях оборудования: B^* — ширина полосы пропускания измерительного приемника

электропитания, не должен превышать предельных значений, приведенных на рис. 6.1.1.

Для измерения уровня напряжения помех должен использоваться квазипиковый измерительный приемник. Ширина полосы пропускания приемника при измерениях в частотном диапазоне от 10 кГц до 150 кГц должна быть 200 Гц, а в частотном диапазоне от 150 кГц до 30 МГц — 9 кГц.


Соединительные кабели между клеммами электропитания испытываемого оборудования и эквивалентом сети питания должны быть экранированными и не превышать по длине 0,8 м. Если испытываемое оборудование состоит из нескольких приборов с индивидуальными клеммами для постоянного и переменного тока, то клеммы питания с одинаковым номиналом напряжения могут быть подключены параллельно.

При выполнении измерений все измерительные приборы и испытываемое оборудование должны быть установлены на заземленной плоскости и подсоединены к ней. При отсутствии возможности использования заземленной плоскости должно быть выполнено эквивалентное заземление на металлическую раму или корпус испытываемого оборудования.

6.1.2 Испытание на уровень напряженности поля излучаемых помех.

При этих испытаниях измеряются любые сигналы, излучаемые оборудованием (кроме излучений антенны), которые могут потенциально нарушить нормальную работу другого судового оборудования, например, радиоприемных устройств.

Уровень напряженности поля излучаемых помех, создаваемых радиооборудованием на расстоянии 3 м от его корпуса, не должен превышать значений, указанных на рис. 6.1.2.

Кривая уровня допустимой напряженности поля излучаемых помех E, измеренной на расстоянии 3 м от корпуса оборудования: B^* — ширина полосы пропускания измерительного приемника

Для измерений должен использоваться квазипиковый измерительный приемник. Ширина полосы пропускания приемника в диапазоне частот от 150 к Γ ц до 30 М Γ ц и от 156 М Γ ц до 165 М Γ ц должна быть 9 к Γ ц, а в диапазоне частот от 30 М Γ ц до 156 М Γ ц и от 165 М Γ ц до 2 Γ Гц — 120 к Γ ц.

На частотах от 150 кГц до 30 МГц должна измеряться напряженность магнитной составляющей электромагнитного поля. В качестве измерительной антенны должна использоваться рамочная антенна. Размеры такой антенны должны вписываться в квадрат со стороной 60 см. В качестве альтернативы может использоваться ферритовая стержневая антенна.

При пересчете напряженности магнитного поля в эквивалентную напряженность электрического поля должен учитываться поправочный коэффициент + 51,5 дБ.

Для частот более 30 МГц должно выполняться измерение напряженности электрической составляющей электромагнитного поля. Измерительная антенна должна представлять собой симметричный диполь, укороченный диполь или другую антенну с высоким коэффициентом направленного действия.

Размеры измерительной антенны в направлении на испытываемое оборудование не должны превышать 20 % расстояния до него. На частотах более 80 МГц должна обеспечиваться возможность изменения высоты расположения центра антенны относительно земли в пределах от 1 м до 4 м.

Помещение для проведения испытаний должно иметь металлическую заземленную плоскость. Испытываемое оборудование должно быть представлено в полной комплектации со всеми соединительными межприборными кабелями и установлено в нормальном рабочем положении.

Если испытываемое оборудование состоит из нескольких блоков, то соединительные кабели (исключая микроволновые) между основным и всеми другими блоками должны иметь максимальную длину, указанную в спецификации предприятия (изготовителя). Имеющиеся входные и выходные разъемы испытываемого оборудования должны быть подключены к эквивалентам обычно используемого вспомогательного оборудования с использованием кабелей с максимальной длиной, указанной предприятием (изготовителем).

Избыточная длина кабелей должна быть собрана в бухты, уложенные на расстоянии 30 — 40 см (по горизонтали) от разъемов, к которым они подключены. Если это практически невозможно сделать, то следует выполнить размещение избыточной длины кабелей как можно ближе к изложенным требованиям.

Измерительная антенна должна быть размещена на расстоянии 3 м от испытываемого оборудования.

Центр антенны должен быть выше заземленной плоскости, по крайней мере, на 1,5 м. Для определения максимального уровня помех антенна, измеряющая напряженность электрического поля, должна регулироваться только по высоте и иметь возможность вращения для получения горизонтальной и вертикальной поляризации. Сама антенна должна оставаться параллельной полу. С целью определения максимального уровня помех должна быть обеспечена возможность перемещения антенны вокруг испытываемого оборудования или вращения самого оборудования, размещаемого в ортогональной плоскости измерительной антенны на уровне ее средней точки.

6.2 Устойчивость к воздействию внешних электромагнитных помех. Методы и требуемые результаты испытаний.

При проведении этих испытаний испытываемое оборудование должно быть представлено в своей нормальной рабочей комплектации, работать при нормальных условиях.

При испытании устойчивости к воздействию внешних электромагнитных помех результаты оцениваются по критериям работоспособности, отнесенным к рабочим условиям и функциональному назначению испытываемого оборудования. Эти критерии определяются следующим образом:

критерий работоспособности А. Испытываемое оборудование должно продолжать работать в соответствии с назначением во время и после проведения испытаний. Не допускается ухудшение работоспособности или потеря функций, определенных в соответствующем стандарте на оборудование и технической документации производителя;

критерий работоспособности В. Испытываемое оборудование должно продолжать работать в соответствии с назначением во время и после проведения испытаний. Не допускается ухудшение работоспособности или потеря функций, определенных в соответствующем стандарте на оборудование и технической документации производителя. При этом во время испытаний допускается ухудшение или потеря функций или работоспособности, которые могут самовосстанавливаться, но не допускается изменение установленного режима или оперативных данных;

критерий работоспособности С. Во время испытаний допускается временное ухудшение или потеря функции или работоспособности. При этом обеспечивается функция самовосстановления или может быть обеспечено восстановление нарушений в конце испытаний путем использования регулировок в соответствии со стандартом на оборудование и технической документацией предприятия (изготовителя).

Объем испытаний на устойчивость к электромагнитным помехам приведен в табл. 6.2.

Таблица 62

№ Свойства оборудования, подлежащие проверке Оборудование, предназначенное для ус			гановки на судах	
п/п	во время испытаний	во внутренних помещениях	на открытой палубе	носимое (переносное)
1	Устойчивость к кондуктивным низкочастотным помехам	+ критерий работо	+ оспособности А	_
2	Устойчивость к кондуктивным радиочастотным помехам	+ критерий работо	+ оспособности А	_
3	Устойчивость к излучаемым радиочастотным помехам	+ крит	+ ерий работоспособнос	+
4	Устойчивость к наносекундным импульсным помехам от быстрых переходных процессов в цепях источников питания переменного тока, сигнальных и управляющих цепях	+ критерий работо	+ оспособности В	_
5	Устойчивость к микросекундным импульсным помехам от медленных переходных процессов в сетях питания переменного тока	+ критерий работо	+ оспособности В	_
6	Устойчивость к кратковременным изменениям параметров в сети питания	+ критерий работо	+ оспособности В	_
7	Устойчивость к неисправностям источника питания	+ критерий работ	оспособности С +	_
8	Устойчивость к электростатическим разрядам	+ крит	+ ерий работоспособнос	+

Если оборудование содержит радиоприемник, то из испытаний на устойчивость к кондуктивным и излучаемым помехам исключаются заданные рабочие частоты оборудования вместе с любыми известными ложными откликами.

6.2.1 Устойчивость к кондуктивным низкочастотным помехам.

Эти испытания имитируют воздействие гармонических составляющих в сетях питания переменного тока или пульсаций напряжения в сетях постоянного тока. Эти испытания не применяются к оборудованию с питанием исключительно от аккумуляторов.

Оборудование должно оставаться работоспособным (критерий работоспособности А) при наложении на его напряжение питания дополнительных тестовых напряжений в диапазоне частот от 50 Гц до 10 кГц:

для оборудования с электропитанием от постоянного тока:

синусоидального напряжения, действующее значение которого составляет 10 % от номинального напряжения питания;

для оборудования с электропитанием от переменного тока:

синусоидального напряжения, действующее значение напряжения которого изменяется в зависимости от частоты в соответствии с рис. 6.2.1.

В отдельных случаях максимум мощности дополнительного прикладываемого напряжения может быть ограничен до 2 Вт.

6.2.2 Устойчивость к кондуктивным радиочастотным помехам.

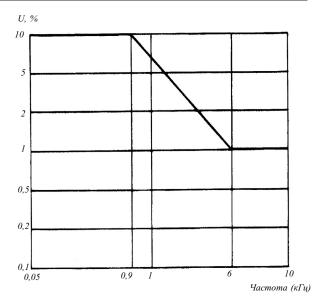


Рис. 6.2.1 Кривая испытательного напряжения при проверке оборудования на устойчивость к низкочастотным кондуктивным помехам

При испытании имитируется эффект возмущений, индуктируемых в цепях питания, управления и прохождения сигналов от включения источника питания, системы зажигания двигателей, работающих эхолотов и судовых радиопередатчиков на частотах ниже 80 МГц.

Испытываемое оборудование должно быть размещено на изолированной подставке, расположенной на высоте 0,1 м над заземленной поверхностью. Кабели, подключаемые к испытываемому оборудованию, должны быть обеспечены соответствующими устройствами связи и развязки, расположенными на

расстоянии 0,1 м — 0,3 м от испытываемого оборулования.

Испытания должны выполняться с использованием генератора, последовательно подключаемого к каждому устройству связи и развязки. При этом незадействованные входные клеммы устройства связи и развязки, используемые для подключения испытательного генератора, должны быть нагружены эквивалентом с безиндукционным сопротивлением, равным волновому сопротивлению кабеля. Испытательный генератор должен настраиваться для каждой схемы связи и развязки; при этом дополнительное и испытываемое оборудование отключаются и заменяются безындукционными сопротивлениями соответствующих номиналов (при сопротивлении кабеля 50 Ом дополнительные сопротивления должны составлять 150 Ом). Испытательный генератор должен быть настроен таким образом, чтобы обеспечить немодулированную э.д.с. требуемого уровня на входных клеммах испытываемого оборудования.

Испытания должны выполняться при следующих уровнях испытательного сигнала:

действующее значение напряжения 3 В при изменяющейся частоте в диапазоне от 10 кГц до 80 МГц;

действующее значение напряжения 10~B в точках с частотами: $2~M\Gamma$ ц; $3~M\Gamma$ ц; $4~M\Gamma$ ц; $6,2~M\Gamma$ ц; $8,2~M\Gamma$ ц; $12,6~M\Gamma$ ц; $16,5~M\Gamma$ ц; $18,8~M\Gamma$ ц; $22~M\Gamma$ ц и $25~M\Gamma$ ц.

Частота модуляции должна быть 400 Γ ц ± 10 % при глубине модуляции 80 % ± 10 %.

Скорость изменения частоты не должна превышать $1,5 \times 10^{-3}$ декада/с, чтобы иметь возможность обнаружить любую неисправность испытываемого оборудования.

6.2.3 Устойчивость к излучаемым радиочастотным помехам.

При этих испытаниях имитируется эффект воздействия радиопередатчиков, работающих на частотах свыше 80 МГц, например, судовых стационарных и носимых УКВ-радиостанций, находящихся рядом с оборудованием.

Испытываемое оборудование должно устанавливаться в подходящем экранированном помещении или в безэховой камере, размеры которой соизмеримы с оборудованием. Испытываемое оборудование должно быть установлено в зоне равномерного (однородного) поля и быть изолировано от пола диэлектрической подставкой. Испытания должны выполняться при всех ориентациях (со всех сторон) оборудования.

Если кабели для испытываемого оборудования не указаны, то должны использоваться неэкранированные параллельные проводники. Эти проводники подвергаются воздействию электромагнитного

поля с расстояния 1 м от испытываемого обору-

Скорость изменения частоты должна составлять 1.5×10^{-3} декада/с и быть достаточной для обнаружения любых неисправностей испытываемого оборудования. Отдельно при испытаниях должны быть проанализированы любые частоты, при которых оборудование особенно чувствительно к помехам.

Оборудование должно оставаться работоспособным (критерий работоспособности А) при размещении его в модулированном электрическом поле с напряженностью 10~B/m и при изменении частоты в диапазоне от 80~MГц до 2~ГГц. Частота модуляции должна быть $400~\text{Гц} \pm 10~\%$ при глубине модуляции $80~\% \pm 10~\%$.

6.2.4 Устойчивость к наносекундным импульсным помехам от быстрых переходных процессов в цепях источников питания переменного тока, сигнальных и управляющих цепях.

При этих испытаниях имитируются быстрые низкоэнергетические переходные процессы, создаваемые оборудованием, включение которого сопровождается искрением на контактах.

Оборудование должно оставаться работоспособным (критерий работоспособности В), если к его входам источников питания, сигнальных и управляющих цепей прикладывается импульсное напряжение со следующими параметрами:

время нарастания — 5 нс (на уровне 10 % — 90 % амплитуды);

длительность — 50 нс (на уровне 50 % амплитуды);

амплитуда — 2 кВ на дифференциальных входах источников питания переменного тока (вводится в цепи силового питания относительно корпуса) и 1 кВ на входах сигнальных и управляющих цепей по отношению к общему заземленному входу (вводится в сигнальные цепи и цепи управления с помощью стандартных емкостных клещей);

частота повторения — 5 кГц (1 кВ), 2,5 кГц (2 кВ); характер воздействия — периодические короткие последовательности длительностью 15 мс, повторяющиеся каждые 300 мс;

продолжительность — от 3 до 5 минут для каждой положительной и отрицательной полярности импульсов.

6.2.5 Устойчивость к микросекундным импульсным помехам от медленных переходных процессов в сетях питания переменного тока.

Эти испытания имитируют воздействие импульсных напряжений большой энергии, создаваемых тиристорными переключателями в сетях питания переменного тока.

Оборудование должно оставаться работоспособным (критерий работоспособности В), если к

его цепям питания прикладывается импульсное напряжение со следующими параметрами:

время нарастания — 1,2 мкс (на уровне 10 % — 90 % амплитуды);

длительность — 50 мкс (на уровне 50 % амплитулы):

амплитуда — 2 кВ — линия/земля, 1 кВ линия/линия;

частота повторения — 1 имп./мин;

продолжительность — 5 мин для каждой положительной и отрицательной полярности импульсов.

6.2.6 Устойчивость к кратковременным изменениям параметров в сети питания.

Эти испытания имитируют изменения напряжения и частоты в цепях питания из-за больших изменений нагрузки. Испытания не применяются для оборудования с питанием от постоянного тока.

Изменения параметров питающей сети должны осуществляться с использованием программируемого источника питания.

Оборудование должно оставаться работоспособным (критерий работоспособности В) при следующих изменениях параметров питающей сети относительно номинальных значений в течение 10 мин:

- .1 напряжение: номинальное значение + (20 ± 1) %, длительностью 1,5 с \pm 0,2 с;
- .2 частота: номинальное значение $+ (10 \pm 0.5)$ %, длительностью 5 с \pm 0.5 с, с наложением друг на друга указанных изменений параметров;
- б) напряжение: номинальное значение (20 ± 1) %, длительностью 1,5 с + 0,2 с;

частота: номинальное значение — (10 ± 0.5) % длительностью 5 с \pm 0.5 с, с наложением друг на друга указанных изменений параметров.

Время нарастания и спада напряжения и частоты должно быть 0,2 с \pm 0,1 с (на уровне 10 % — 90 % амплитуды).

6.2.7 Устойчивость к неисправностям источника питания.

Эти испытания имитируют короткие перерывы судового электропитания из-за перехода с одного источника питания на другой или при срабатывании защиты по току. Данные испытания не применяются к оборудованию с электропитанием исключительно от аккумуляторных батарей.

Оборудование должно оставаться работоспособным (критерий работоспособности С) после каждого из трех перерывов в напряжении питания длительностью 60 с. При этом не должно разрушаться программное обеспечение и не должны теряться оперативные данные, хранимые в цифровой памяти системы.

6.2.8 Устойчивость к электростатическим разрядам.

При этих испытаниях имитируются воздействия электростатических разрядов, возникающих при

работе персонала из-за возможных зарядов, вызываемых контактами с ковриками из искусственного волокна или виниловыми покрытиями.

Испытания должны выполняться с использованием генератора электростатических разрядов (накопительной емкости номиналом в 150 пФ и разрядного сопротивления 330 Ом, подключаемых к разрядному наконечнику). Испытываемое оборудование должно быть установлено на металлическую заземленную плоскость, но с изоляцией от нее. При этом заземленная плоскость должна выступать за габариты оборудования, по крайней мере, на 0,5 м для всех его сторон. Разряды от генератора должны прикладываться к тем точкам и поверхностям оборудования, которые доступны персоналу при нормальной работе. При испытаниях генератор должен располагаться перпендикулярно поверхности, а места приложения разрядов могут выбираться исходя из того, чтобы обеспечивалось 20 разрядов в секунду. Каждое положение должно подвергаться испытаниям на 10 положительных и 10 отрицательных разрядов с интервалом, как минимум, 1 с между разрядами, чтобы обеспечить выявление любых неисправностей в работе оборудования. При испытаниях предпочтительным методом является контактный разряд. Если нельзя использовать контактный метод (при наличии покрашенных поверхностей), то должен использоваться воздушный разряд.

Для имитации разрядов на объектах, расположенных или установленных около испытываемого оборудования, должны быть выполнены 10 положительных и 10 отрицательных контактных разрядов, приложенных с каждой стороны оборудования к заземленной плоскости. Места приложения разрядов должны отстоять на расстоянии 0,1 м от испытываемого оборудования.

Следующие 10 разрядов должны быть приложены к центру заземленной плоскости, размер которой $0.5 \,\mathrm{m} \times 0.5 \,\mathrm{m}$. Эти испытания должны быть проделаны для всех четырех сторон оборудования. При этом вертикальная плоскость должна размещаться таким образом, чтобы все четыре лицевых стороны оборудования были полностью охвачены.

Оборудование должно оставаться работоспособным (критерий работоспособности В) при тестовых уровнях напряжения разряда 6 кВ для контактного разряда и 8 кВ для воздушного разряда.

7. Определение безопасной дистанции до магнитного компаса.

На каждом блоке оборудования, обычно размещаемом вблизи главного или путевого магнитного компаса, должно быть четко указано минимальное безопасное расстояние, на котором он может устанавливаться от компасов. Альтернативно, сведения о минимальном безопасном расстоянии до

магнитного компаса могут указываться в технической документации на радиооборудование, за исключением носимого (переносного) оборудования.

Безопасная дистанция определяется как минимальное расстояние между ближайшей точкой испытываемого оборудования и центром компаса или магнитометра, при котором девиация компаса составляет менее $5,4^{\circ}/B$ для главного компаса, и $18^{\circ}/B$ — для путевого компаса, где B, мкТл — горизонтальная составляющей индукции магнитного поля Земли в месте проведения испытаний оборудования.

Для определения безопасной дистанции до магнитного компаса должен использоваться магнитный компас с ценой деления картушки 0.1° .

При испытаниях выключенное оборудование приближают к магнитному компасу до тех пор, пока девиация не станет равной $5.4^{\circ}/B$ ($18^{\circ}/B$).

Аналогичные измерения проводятся при включенном состоянии оборудования.

Далее осуществляется проверка безопасной дистанции до магнитного компаса после намагничивания оборудования, находящегося в выключенном состоянии. Для намагничивания используется поле постоянного тока напряженностью 120 А/м с наложением поля переменного тока частотой 50 Гц и действующим значением напряженности 1430 А/м. Если в результате подобного воздействия испытываемое оборудование может быть повреждено, действие поля переменного тока исключается. Направление поля должно быть таким, чтобы результирующее намагничивание было наибольшим. Намагниченное выключенное оборудование приближают к магнитному компасу до тех пор, пока девиация не станет равной $5,4^{\circ}/B$. Измеряется расстояние между ближайшей точкой оборудования и центром компаса.

При каждом испытании оборудование должно поворачиваться для определения направления, при котором проявляется максимальная девиация.

Наибольшее значение расстояния, полученного в результате всех вышеуказанных проверок, является безопасной дистанцией. Все полученные оценки дистанции округляются до ближайших 5 или 10 см.

8. Определение уровня электромагнитного излучения радиочастотного диапазона.

Радиооборудование, предназначенное для излучения электромагнитной энергии радиочастотного диапазона на частотах свыше 30 МГц, не должно создавать на рабочих местах опасного для людей уровня электромагнитного поля.

Плотность потока мощности или соответствующая ему напряженность электромагнитного поля измеряется на расстоянии 0,2 м от блоков радиопередатчиков, элементов фидерных линий и коммутирующих устройств.

Измерения следует производить на уровнях: 0,5; 1; 1,7 м от пола. В зависимости от конкретных

условий размещения оборудования измерения могут проводиться и на других уровнях.

Оборудование должно работать в режиме излучения максимальной мощности.

В случае, если измеренное значение плотности потока мощности электромагнитного поля превышает 10 и 100 Вт/м², необходимо повторить измерения на большем расстоянии от оборудования. Число точек измерения должно быть достаточным для определения границ зоны, соответствующей указанным уровням. Максимальные дистанции, на которых достигается плотность потока мощности 10 и 100 Вт/м², должны быть указаны в технической документации на радиооборудование.

Измерение интенсивности электромагнитных полей в диапазоне частот до 300 МГц должно проводиться средствами измерения, предназначенными для определения среднеквадратического значения напряженности электромагнитного поля, а в диапазоне от 300 МГц до 2 ГГц — средствами измерения, предназначенными для определения средних значений плотности потока мощности.

9. Определение уровня излучения от устройств визуального отображения информации.

Устройства визуального отображения информации радиооборудования должны быть испытаны на уровень создаваемых электростатического, магнитного и электромагнитного полей (за исключением устройств визуального отображения информации, у которых число отображаемых строк текста не превышает четырех).

Излучения от устройства визуального отображения информации с размером диагонали экрана до 0,5 м не должны превышать уровней, приведенных в табл. 9.

Таблица 9

Измеряемый параметр	Диапазон частот	Максимально допустимые значения
поля на расстоянии 30 см от	5 Гц — 2кГц 2 — 400 кГп	
лицевой стороны экрана устройства Напряженность электромагнитного поля на расстоянии 50 см от оборудования во всех направлениях	,	
	5 Гц — 2 кГц	200 нТл
1	5 Гц — 2 кГц	200 нТл
50 см от оборудования во всех направлениях	2 — 400 кГц	25 нТл
Напряженность электростатического поля на расстоянии 10 см от лицевой стороны экрана устройства	_	5±0,5 кВ/м

Измерения напряженности электростатического поля не проводятся для устройств, при работе

которых электростатический потенциал не превышает 500 В.

При проведении измерений излучения устройство размагничивания оборудования должно быть выключено. Плоскость экрана должна находиться в вертикальном положении, насколько это возможно. Оборудование и средства измерения должны быть заземлены. Расстояние от оборудования до корпусов средств измерения и других металлических или заземленных объектов должно быть не менее 50 см.

Измерения проводятся при включенном устройстве визуального отображения информации при положениях рабочих и сервисных органов управления, обеспечивающих максимальное излучение при сохранении нормальной работоспособности. Внутренние установочные регулировки, не предназначенные для подстройки при нормальной эксплуатации оборудования, не рассматриваются как сервисные. Устройства с переключением режимов работы должны быть проверены в режимах с минимальной и максимальной частотой развертки. Яркость изображения должна быть максимально возможной, но не более 100 кд/м². Регулировка контрастности должна обеспечивать слабую различимость растра фона изображения при нормальной освещенности в помещении. На экране устройства визуального отображения устанавливается типичное для данного вида работ изображение с максимальной плотностью информации. Характер изображения подробно фиксируется в протоколе испытаний.

Измерения напряженности электромагнитного поля и магнитной индукции проводятся перед центром экрана устройства визуального отображения на расстоянии 30 см по нормали от экрана, а также на высоте центра экрана вокруг оборудования на расстоянии, равном сумме максимальной глубины оборудования и 50 см. При последнем измерении датчик поля закрепляется неподвижно, а оборудование поворачивается вокруг вертикальной оси. При измерении напряженности электромагнитного поля поворот оборудования осуществляется ступенями по 90°. При измерении магнитной индукции поворот оборудования осуществляется ступенями по 45°, и изменяется высота датчика поля на ±30 см от высоты центра экрана.

Электростатическое поле должно быть измерено соответствующим датчиком, установленным в центре заземленной квадратной металлической пластины размерами 0.5×0.5 м. Пластина должна быть размещена параллельно плоскости экрана таким образом, чтобы датчик поля находился на расстоянии 10 см от центра экрана.

Для устройства отображения визуальной информации с диагональю дисплея более 0,5 м должны быть проведены измерения максимального расстояния, на котором:

магнитная индукция составляет не более 250 нТл в диапазоне частот 5 Γ ц — 2 к Γ ц и не более 150 нТл в диапазоне частот 2 — 400 к Γ ц;

напряженность электрического поля составляет не более 15 В/м в диапазоне частот 5 Γ ц — 2 к Γ ц и не более 10 В/м в диапазоне частот 2 — 400 к Γ ц;

напряженность электростатического поля составляет не более 5 ± 0.5 кВ/м.

Эти дистанции должны быть приведены в технической документации на оборудование.

Измерения должны осуществляться приборами с допустимой основной относительной погрешностью не более ± 20 %.

10. Определение уровня рентгеновского излучения.

Измерения уровня рентгеновского излучения проводятся для оборудования, которое может создавать рентгеновское излучение при своей работе (электроннолучевые трубки, элементы приемопередатчиков и т. п.).

Оборудование не должно создавать излучение, превышающее мощность дозы 5 мкДж/кгч (0,5 мбэр/ч) на расстоянии 50 мм от поверхности оборудования.

Измерения рентгеновского излучения проводятся соответствующим дозиметрическим прибором при всех типовых режимах работы оборудования. Органы управления оборудования, влияющие на уровень рентгеновского излучения, должны быть установлены в положения, обеспечивающие максимальное излучение. Проводится обследование всей поверхности источника рентгеновского излучения для выявления максимальной интенсивности излучения. Детектор прибора следует перемещать на расстоянии 50 мм от оборудования со скоростью, позволяющей регистрировать установившиеся показания прибора. Для контроля результатов проводятся также измерения мощности естественного радиационного фона в месте размещения контролируемого оборудования при отключенном источнике излучения. Измерения должны проводиться приборами с допустимой основной относительной погрешностью не более ± 20 %.

11. Измерение уровня акустического шума.

При испытаниях измеряется уровень звукового давления, создаваемого радиооборудованием во время работы.

Уровень акустического шума, создаваемого радиооборудованием во время работы (при выключенной звуковой сигнализации), не должен превышать 60 дБ (А) на расстоянии 1 м от любой части оборудования. Уровень акустического шума, создаваемого звуковой сигнализацией на расстоянии 1 м от источника излучения, должен быть в пределах от 75 до 85 дБ.

Измерения проводятся в испытательной лаборатории с помощью измерителя уровня звукового давления с функцией частотного анализатора, соответствующего требованиям МЭК 60651 и МЭК 60804, 1-го класса точности, с кривой частотной характеристики, взвешенной по типу «А».

ПРИЛОЖЕНИЕ 2

СТАНДАРТНЫЕ УСЛОВИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ОТКЛОНЕНИЯ ЧАСТОТЫ ПЕРЕДАТЧИКА ИЛИ ПРИЕМНИКА

Отклонение частоты передатчика или приемника, в Гц, должно определяться по формуле

$$\Delta f_{\text{max}} = \Delta f_1 + \sqrt{\Delta f_2^2 + f_3^2} ,$$

где Δf_1 — наибольшее абсолютное числовое значение отклонения частоты от номинальной частоты в процессе и после воздействия одного из дестабилизирующих факторов: повышенной температуры, пониженной температуры, повышенной влажности. Измерения отклонения частоты от номинальной частоты в процессе и после воздействия вышеуказанных факторов должны производиться при пониженном и повышенном напряжениях первичного источника питания для каждого дестабилизирующего фактора отдельно;

 Δf_2 — наибольшее числовое значение отклонения частоты в процессе и после воздействия вибраций от частоты, измеренной перед началом воздействия вибраций;

 Δf_3 — наибольшее числовое значение отклонения частоты в процессе и после воздействия ударов от частоты, измеренной перед началом воздействия ударов.

Отклонение частоты передатчика или приемника в миллионных частях должно определяться по формуле

$$(\Delta f/f)_{\text{max}} = (\Delta f_1/f_1) + \sqrt{(\Delta f_2/f_2)^2 + (\Delta f_3/f_3)^2}$$

где Δf_1 — наибольшее абсолютное числовое значение отклонения частоты от номинальной частоты в процессе и после воздействия одного из дестабилизирующих факторов: повышенной температуры, пониженной температуры, повышенной влажности. Измерения отклонения частоты от номинальной частоты в процессе и после воздействия вышеуказанных факторов должны проводиться при повышенном и пониженном напряжениях первичного источника питания для каждого дестабилизирующего фактора отдельно;

 f_1 — номинальная частота;

 Δf_2 — наибольшее числовое значений отклонения частоты в процессе и после воздействия вибраций от частоты f_2 , измеренной перед началом воздействия вибраций;

 Δf_1 — наибольшее числовое значение отклонения частоты в процессе и после воздействия ударов от частоты f_3 , измеренной перед началом воздействия ударов.

Примечания: 1. Все измерения частоты следует проводить после окончания предварительного прогрева термостата возбудителя.

2. Подстройка частоты в процессе испытаний не допускается.

16 НАВИГАЦИОННОЕ ОБОРУДОВАНИЕ

16.1 ОБЩИЕ ПОЛОЖЕНИЯ

16.1.1 Положения настоящего раздела применяются при техническом наблюдении за навигационным оборудованием, перечисленным в Номенклатуре РС.

16.1.2 Раздел содержит требования технического наблюдения Регистра за разработкой и изготовлением навигационного оборудования на предприятии (изготовителе).

16.1.3 Общие положения по организации технического наблюдения за изготовлением навигационного оборудования изложены в части І «Общие положения по техническому наблюдению», по технической документации — в части ІІ «Техническая документация».

Навигационное оборудование, устанавливаемое на судах, должно быть одобренного типа. Свидетельства по форме 6.5.30 (6.5.31) должны выдаваться на основании действующего СТО или, в исключительных случаях

(разовая поставка, нестандартное судно и т. д.), по согласованию с ГУР на основании проведенного освидетельствования.

- **16.1.4** Техническое наблюдение за разработкой и изготовлением навигационного оборудования подразделяется на следующие этапы:
- .1 рассмотрение и одобрение технической документации оборудования в объеме, предусмотренном 1.3 части V «Навигационное оборудование» Правил по оборудованию морских судов;
- **.2** рассмотрение и одобрение программ и методик стендовых и эксплуатационных испытаний;
- .3 участие в стендовых и эксплуатационных испытаниях опытного образца оборудования по одобренным Регистром программам;
- **.4** рассмотрение и одобрение технической документации навигационного оборудования, откорректированной по результатам испытаний;
- .5 освидетельствование и испытание головного образца оборудования по программе, одобренной Регистром;

.6 освидетельствование и испытание оборудования на предприятии (изготовителе) при установившемся производстве по программе, одобренной Регистром.

16.2 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

16.2.1 При рассмотрении технической документации на навигационное оборудование определяется соответствие конструкции и эксплуатационных характеристик изделий требованиям разд. 1, 3 и 4 части V «Навигационное оборудование» Правил по оборудованию морских судов.

16.3 ОБЪЕМ ИСПЫТАНИЙ И ПОРЯДОК ПРОВЕДЕНИЯ ОСВИДЕТЕЛЬСТВОВАНИЯ НАВИГАЦИОННОГО ОБОРУДОВАНИЯ

16.3.1 Объем и порядок освидетельствований и испытаний навигационного оборудования.

- **16.3.1.1** Объем стендовых испытаний навигационного оборудования на различных этапах разработки и производства должен соответствовать табл. 1.2 приложения 1.
- 16.3.1.2 При установившемся производстве объем испытаний и порядок освидетельствования навигационного оборудования указываются в перечне объектов технического наблюдения в соответствии с 11.2 части I «Общие положения по техническому наблюдению».

Перечень разрабатывается на основании требований 16.3.4, 16.4 и табл. 1.2 приложения 1. Освидетельствования на промежуточных стадиях изготовления навигационного оборудования, как правило, должны включаться в перечень.

По согласованию с Регистром перечень корректируется предприятием (изготовителем) по результатам наблюдения Регистра при монтаже, швартовных, ходовых испытаниях и эксплуатации навигационного оборудования на судах.

16.3.2 Освидетельствование опытных образцов.

- **16.3.2.1** До испытаний опытного образца (образцов) навигационного оборудования должно быть проверено наличие:
 - .1 одобренной технической документации;
 - .2 одобренной программы испытаний;
- **.3** технического описания и инструкции по эксплуатации;
- .4 полного комплекта испытательного оборудования с необходимыми документами, подтверждающими их характеристики;
- .5 полного комплекта измерительных приборов с документами компетентных органов, подтверждающих их метрологические паспортные характеристики;

- .6 документов компетентных органов, подтверждающих положительные результаты специальных видов испытаний, если они предусматриваются программой испытаний (на искробезопасность, на устойчивость к солнечной радиации, помехозащищенность и др.).
- 16.3.2.2 При освидетельствовании и испытаниях опытного образца изделия определяется соответствие предъявляемого образца требованиям Правил по оборудованию морских судов и одобренному проекту, при этом должны быть проведены проверки, указанные в 16.3.3, 16.3.4 и 16.4, и проведены стендовые испытания в объеме не менее указанного в табл. 1.2 приложения 1.

Результаты стендовых испытаний оформляются актом Регистра, и по их результатам определяется возможность допуска изделия к эксплуатационным испытаниям.

Испытания опытного образца (стендовые и эксплуатационные) проводятся в присутствии представителя Регистра (см. также разд. 1).

16.3.3 Освидетельствование головных образцов.

- 16.3.3.1 Освидетельствования и испытания головного образца проводятся по программе, одобренной Регистром, как правило, на предприятии (изготовителе) в объеме не менее указанного в табл. 1.2 приложения 1, при этом в дополнение к проверкам, указанным в 16.3.4.3, проверяются:
- .1 работоспособность и функционирование оборудования во время и после механических, климатических воздействий и электромагнитной совместимости (ЭМС) (проверка соответствия судовым условиям);
- **.2** электрическая прочность изоляции цепей питания оборудования от судовой сети;
- **.3** работоспособность при колебаниях напряжения и частоты сети питания;
 - .4 защитное исполнение оборудования;
- .5 электрическая защита по цепи питания от судовой сети (если она предусмотрена);
 - .6 испытания на непрерывную работу.

Испытания проводятся в присутствии представителя Регистра.

Результаты испытаний оформляются актом Регистра, в котором делается заключение о соответствии образца требованиям правил РС и возможности выдачи СТО Регистра. При решении о выдаче СТО оно оформляется в установленном порядке (см. разд. 6 части I «Общие положения по техническому наблюдению»).

- **16.3.3.2** Периодические испытания оборудования проводятся в объеме требований для головного образца (см. 16.3.3.1).
- **16.3.4** Освидетельствования изделий при установившемся производстве.

16.3.4.1 Освидетельствования навигационного оборудования при установившемся производстве проводятся в соответствии с перечнем (см. 16.3.1.2) и могут быть совмещены со стендовыми испытаниями оборудования, проводимыми предприятием (изготовителем).

Программа испытаний должна быть одобрена Регистром. До введения технического наблюдения Регистра предприятие (изготовитель) подлежит освидетельствованию в соответствии с разд. 10 части I «Общие положения по техническому наблюдению».

- **16.3.4.2** Для освидетельствования предъявляются полностью укомплектованные изделия, имеющие документы органа технического контроля предприятия (изготовителя).
- **16.3.4.3** Стендовые испытания каждого изделия на предприятии (изготовителе) должны включать следующие проверки:
- **.1** проверку документов на комплектующие материалы и изделия (согласно Номенклатуре РС), подтверждающих техническое наблюдение Регистра;
- .2 проверку комплектности аппаратуры и технической документации;
- **.3** проверку соответствия конструкций технической документации;
- **.4** внешний осмотр изделия и органов управления и контроля;
 - .5 осмотр внутреннего монтажа и маркировки;
- **.6** проверку качества стопорящих, фиксирующих устройств и сочленения разъемов;
- .7 проверку наличия клемм защитного заземления:
- **.8** проверку блокировки и защиты обслуживающего персонала от высокого напряжения;
- .9 проверку работы цепей защиты от перегрузок и короткого замыкания;
 - .10 проверку сопротивления изоляции;
- .11 проверку наличия регулировки подсветки (где требуется) приборов и органов управления;
- .12 проверку функционирования и работоспособности;
- .13 проверку системы встроенного контроля (при наличии);
- .14 проверку комплектности запасных частей и взаимозаменяемости основных запасных блоков со штатными в изделии;
- .15 проверку виброустойчивости на одной частоте (проводится при необходимости);
- .16 проверку наличия таблички с указанием минимального безопасного расстояния до магнитного компаса (для приборов, предназначенных для установки в рулевой рубке, если такая информация не указана в технической документации на изделие);
- **.17** проверку маркировки (тип, серийный номер изделия, дата изготовления).

16.4 ДОПОЛНИТЕЛЬНЫЕ УКАЗАНИЯ ПО ОСВИДЕТЕЛЬСТВОВАНИЮ ОТДЕЛЬНЫХ ВИДОВ НАВИГАЦИОННЫХ ПРИБОРОВ

Кроме указанных выше освидетельствований и испытаний, общих для всех видов навигационных приборов, осуществляются проверки отдельных приведенных ниже приборов и систем.

16.4.1 Радиолокационные станции и средства радиолокационной прокладки (СЭП, САС или САРП).

При освидетельствовании радиолокационных станций, а также средств радиолокационной прокладки (СЭП, САС или САРП) на стенде предприятия (изготовителя) должны быть проверены и испытаны:

- .1 время, необходимое для приведения станции в рабочее состояние с момента включения питания;
 - .2 работа органов управления и контроля;
- .3 определение импульсной мощности передатчика для принятых шкал дальности;
 - .4 определение чувствительности приемника;
 - .5 определение характеристик:

временной регулировки усиления;

длительности зондирующих импульсов на различных шкалах дальности;

частоты следования зондирующих импульсов;

- .6 соответствие шкал дальности требованиям документов;
- .7 соответствие нулевого показания цифрового счетчика дальности нулевому радиусу кольца лальности:
- .8 время, необходимое для определения направлений и дальности с помощью электронного визира направлений и подвижного маркера дальности;
- **.9** четкость отображения отметки курса, колец дальности и возможность регулировки яркости;
- **.10** выдача радиолокационной информации в другие навигационные приборы и системы;
- .11 определение максимальной и минимальной дальности обнаружения цели;
- **.12** разрешающая способность РЛС по дальности и направлению;
- **.13** контроль работоспособности. Удобство технического обслуживания, ремонта и хранения;
- .14 работа устройств захвата и сброса целей (СЭП, САС или САРП);
- .15 работа визуальной и звуковой сигнализации (СЭП, САС или САРП);
- .16 время восстановления всей информации после переключения шкал дальности и режимов работы (СЭП, САС или САРП);

.17 тестовая проверка работоспособности изделий (СЭП, САС или САРП) с использованием имитаторов сигналов РЛС и всех необходимых датчиков, включая оценку точностных характеристик параметров движения целей по тестовым сценариям.

Проверка по пунктам 16.4.1.10 — 16.4.1.12 должна проводиться в процессе эксплуатационных испытаний на специальном полигоне или на судне.

16.4.2 Приемоиндикаторы систем радионавигации.

При освидетельствовании приемников наземных систем радионавигации, работающих на принципах измерения разности времени и фаз, должны быть проверены и испытаны:

- .1 чувствительность устройства;
- .2 работа устройства на предусмотренных частотах следования;
 - .3 общая регулировка усиления;
- .4 определение средней квадратической погрешности измерения временного интервала по сигналам системы;
- .5 предельная чувствительность в различных режимах;
- .6 инструментальная точность измерения разности фаз;
- .7 допустимая ошибка запаздывания отсчетных устройств;
- **.8** средняя квадратическая погрешность соответствия поворота шкал грубого индикатора;
 - .9 достаточность освещения шкал указателей.

При освидетельствовании приемоиндикаторов глобальных навигационных спутниковых систем (ГНСС) должны быть проведены проверки и испытания на соответствие следующим требованиям и документам:

- .10 документ предприятия (изготовителя), подтверждающий возможность работы приемоиндикатора на новых литерных частотах, определенных планом поэтапного изменения частотного диапазона ГНСС (для приемоиндикаторов системы ГЛОНАСС);
- **.11** удобство технического обслуживания, ремонта и хранения;
- .12 встроенная система контроля работоспособности аппаратуры;
- .13 чувствительность радиоприемного устройства:
- **.14** характеристики частотной избирательности радиоприемного устройства;
 - .15 динамический диапазон;
- .16 используемые системы координат и возможность преобразования координат, рассчитанных в WGS-84 в другую опорную систему координат;
- .17 выходная информация для передачи данных в другие радио- и навигационные устройства;

- **.18** уровень восприимчивости приемного устройства по побочным каналам приема;
- .19 помехозащищенность радиоприемного устройства на воздействие помех в полосе пропускания;
- .20 помехозащищенность радиоприемного устройства от импульсной помехи при уровне пиковой мощности;
- **.21** программно-математическое и информационное обеспечение;
 - .22 время получения навигационных параметров;
- .23 точность определения навигационных параметров.

16.4.3 Компасы магнитные основные и запасные, устройства дистанционной передачи магнитного курса.

Проверяется следующее:

- **.1** точность курсоуказания на неподвижном основании и при качке во всех направлениях;
- .2 дискретность градуировки и оцифровка шкалы картушки;
- .3 суммарная погрешность установки картушки на любом из направлений (курсе) за счет неточности градуировки шкалы, эксцентриситета картушки на шпильке и неточности ориентации относительно магнитной системы;
- .4 расстояние, на котором легко считываются невооруженным глазом показания картушки;
- .5 величина сектора наблюдения картушки, передаваемого на пост управления судном с места установки основного компаса с помощью геометрической или световолоконной оптики;
 - .6 застой картушки (погрешность от трения);
- .7 отклонение картушки от магнитного меридиана при вращении компаса в горизонтальной плоскости;
- **.8** полупериод колебаний и время прихода картушки в зону магнитного меридиана при принудительном начальном отклонении;
- .9 угол наклона котелка, при котором картушка сохраняет горизонтальное положение;
- .10 угол свободного наклона котелка в кардановом подвесе;
- .11 предельные значения и точность компенсации полукруговой, четвертной, широтной и креновой девиации;
- .12 прозрачность жидкости и отсутствие воздуха в котелке;
- .13 наличие на видном месте предупреждающей надписи о составе и потенциальной опасности для здоровья экипажа заливаемой в котелок жидкости;
- .14 точность снятия отсчетов с пеленгаторного устройства;
- .15 согласованность показаний репитеров и основного чувствительного элемента компаса при дистанционной электрической передаче данных;

- .16 погрешность устройства дистанционной передачи курса при преобразовании магнитного курса в истинный курс судна и трансляции его в другое навигационное оборудование (при наличии);
- .17 работоспособность сигнализации о рассогласовании системы дистанционной электрической передачи курса (при наличии);
- .18 конструктивное или программное обеспечение защиты устройства для компенсации девиации от несанкционированного доступа;
- .19 основное освещение и аварийное (от аккумуляторной батареи) автономное освещение картушки, достаточное для четкой видимости делений картушки;
- .20 обеспечение аварийно-предупредительной сигнализации в случае прекращения электропитания системы компаса и устройства дистанционной передачи курса.

16.4.4 Компасы гироскопические.

Проводятся следующие специальные проверки и испытания:

- **.1** время прихода гирокомпаса в меридиан в широте до 60° : нормально и ускоренно;
- **.2** установившаяся погрешность показаний на любом курсе;
 - .3 погрешность показаний от пуска к пуску;
- .4 погрешность показаний при бортовой качке до 20° с периодом 10 ± 1 с, килевой качке до 10° с периодом 6 ± 1 с и рыскании до 5° с периодом 15 ± 1 с, при максимальном горизонтальном ускорении не более 1 M/c^2 ;
 - .5 скорость отработки следящей системы;
- **.6** расхождение в показаниях основного прибора и репитеров;
- .7 возможность коррекции показаний гирокомпаса по скорости судна и широте места;
- .8 работоспособность сигнализации об основных неисправностях гирокомпаса;
- **.9** возможность передачи информации о курсе в другое навигационное оборудование;
 - .10 погрешность курсографа по времени.

16.4.5 Лаги относительные и абсолютные.

Проверяется следующее:

- .1 однозначность отображения режима работы и измеряемых параметров индикаторами приборов лага при установке нескольких первичных преобразователей на судне;
 - .2 минимальная глубина функционирования;
 - .3 диапазон измеряемых скоростей;
 - .4 начальная чувствительность;
 - .5 погрешность измерения скорости;
 - .6 погрешность измерения пройденного расстояния;
- .7 дискретность показаний цифровых индикаторов скорости и электромеханических счетчиков пройденного расстояния, градуировка шкал аналоговых индикаторов скорости (если предусмотрены);

- **.8** влияние бортовой и килевой качки на точностные характеристики лага;
- .9 функционирование автоматического и принудительного режимов измерения скорости относительно воды и относительно грунта (если предусмотрено);
- **.10** максимальная рабочая глубина (для абсолютных гидроакустических лагов);
- .11 конструктивное обеспечение герметичности донно-забортного оборудования и сигнализации о положении выдвигаемого за обводы судна первичного преобразователя лага;
- .12 наличие и работоспособность устройств сопряжения с другими судовыми приборами;
- .13 функционирование аварийно-предупредительной сигнализации и индикации о неисправностях и статусе работы лага (достоверности показаний);
- **.14** возможность и удобство калибровки лага и введения поправок;
- .15 дополнительные сервисные возможности (например, сигнализация о пройденном заданном расстоянии, средняя скорость за установленный интервал времени; таймер и др.).

16.4.6 Эхолоты.

Проверяется следующее:

- **.1** наименьшая измеряемая глубина эхолотом (в акустическом бассейне);
- .2 соответствие основных технических параметров эхолота требованию измерения максимальной глубины (производится количественная интегральная оценка в лабораторных условиях системного показателя назначения оборудования, удовлетворяющего требованию измерения максимальной глубины на максимальной скорости судна и условиях бортовой и килевой качки);
- .3 наличие графической и цифровой индикации глубины;
 - .4 диапазоны шкал;
- .5 масштаб отображения глубин при графической форме индикации (разрешение графического дисплея);
- .6 дискретность показаний цифрового указателя глубин и их соответствие графическому отображению;
- .7 представление сервисной информации (временные отметки и их дискретность, отметки разбивки шкалы глубин и их интервалы, предупреждение об окончании бумажной ленты при ее использовании);
 - .8 текущая и долговременная регистрация данных;
- .9 инструментальная погрешность измерения малых и больших глубин при цифровом и графическом методе представления информации;
- .10 точность срабатывания сигнализатора опасной/заданной глубины, пределы и дискретность его установки;
 - .11 частота повторения посылок;

- .12 безопасность оператора при разрешенном доступе к регистрируемой эхограмме на бумажной ленте без отключения эхолота (если предусмотрено);
- **.13** наличие и работоспособность устройств сопряжения с другим судовым оборудованием;
- **.14** конструктивное исполнение вибраторов эхолота по степеням защиты (IP);
 - .15 время пуска в работу.

16.4.7 Системы управления курсом судна/ системы управления траекторией судна.

Проверяется следующее:

- .1 стабильность удержания судна на заданном курсе и/или на линии заданного пути (на специальном стенде с имитаторами);
- **.2** регулировка чувствительности отработки системы по перекладке руля;
- .3 пределы перекладки руля и наличие ограничителей:
- .4 время перехода с режима «автомат» и/или «траектория» на «ручной» и обратно;
- .5 индикация об используемом режиме работы системы:
- .6 звуковая (с возможностью отключения после срабатывания) и визуальная аварийно-предупредительная сигнализация о превышении допустимого отклонения от заданного курса и/или линии заданного пути, отказе датчиков информации, а также снижении скорости хода судна, при которой не обеспечивается достаточная управляемость;
- .7 звуковая и визуальная сигнализация о перегрузке электродвигателей рулевого привода и снижении напряжения питания системы;
- **.8** визуальная сигнализация о наличии питания системы и нормальной работе электродвигателей рулевого привода;
- .9 определение величины рассогласования стрелок «заданный» «истинный» аксиометра в режимах «следящий» и «автомат»;
- .10 ручная настройка системы при отсутствии или отказе автоматической адаптации к условиям плавания;
- .11 работа выносных постов управления (если имеются);
- .12 выдача информации о режиме работы системы и ее работоспособности в систему автоматической регистрации.

Кроме того, при испытаниях систем управления траекторией судна проверяется:

- **.13** информация, отображаемая в аналоговом и цифровом виде на пульте управления системы;
- .14 контроль информации о координатах судна, поступающей в систему с помощью другой независимой системы местоопределения;
- .15 подача предупредительного сигнала при подходе судна к точке поворота и в момент начала поворота;

- .16 подача аварийно-предупредительного звукового и визуального сигналов при отсутствии подтверждения судоводителем приема сигнала поворота;
- .17 возможность смены путевой точки при изменении траектории или прокладке новой траектории;
- .18 возможность циркуляции от одной точки до другой при предварительно установленном радиусе циркуляции (поворота) и при расчетном радиусе на основе предварительно установленного режима циркуляции судна (если имеется).

16.4.8 Интегрированные навигационные системы (ИНС).

- В процессе стендовых испытаний проверяется следующее:
- .1 сопряжение модуля обработки информации ИНС и ее обобщенного дисплея с датчиками навигационной информации;
- **.2** наличие дублирующей аппаратуры, обеспечивающей безопасное управление судном;
- **.3** объем выполняемых функций согласно категориям системы A, Б или B;
- **.4** объем информации, отображаемой постоянно и по вызову;
- **.5** наличие защиты от ошибок оператора при вводе данных в систему;
- .6 непрерывный автоматический контроль за поступающей в систему информацией путем сравнения показаний двух разнородных независимых датчиков;
- .7 звуковая и визуальная аварийно-предупредительная сигнализация при отказе сопряженных датчиков информации и системы обработки данных;
- .8 отсутствие влияния на работу датчиков информации отказа модуля обработки данных системы;
- .9 возможность ручного ввода данных при отказе основных датчиков информации;
- .10 система регистрации срабатывания аварийнопредупредительной сигнализации и возможность квитирования ее вахтенным помощником капитана.

16.4.9 Пульты управления судном.

Проверяется следующее:

- **.1** соответствие основным эргономическим требованиям (высота, глубина, наклон панелей и т. п.);
- .2 размещение органов управления и средств отображения информации по функциональным группам и по степени важности с точки зрения обеспечения безопасности плавания судна и отсутствия помех судовождению;
- .3 условные обозначения и надписи о назначении и направлении действия органов управления;
- .4 доступ к внутреннему монтажу и устройствам защиты источников питания;
- .5 удобство использования и технического обслуживания;

- **.6** звуковая (с возможностью отключения) и визуальная аварийно-предупредительная сигнализация о неисправности приборов и механизмов;
- .7 воспроизведение навигационной информации индикаторными устройствами непрерывно (автоматически) и по вызову;
- **.8** соответствие окраски и подсветки шкал, знаков и надписей требованиям Правил РС;
- .9 возможность работы за пультом в положении стоя и сидя.

16.4.10 Компасы гиромагнитные, электромагнитные и гироазимуты.

Проверяется погрешность курсоуказания (на неподвижном основании и на качающейся платформе) и проводится проверка на непрерывную работу:

- **.1** при испытаниях компасов совместно с электронным транслятором курса проверяются:
 - .1.1 погрешность преобразования информации о курсе;
- статическая погрешность на неподвижном основании;
- динамическая погрешность в условиях качки и вибрации;
- **.2** при испытаниях гироазимута величина часового ухода;
- **.3** сигнализация о неисправности и прекращении подачи электропитания;
- **.4** возможность выдачи информации в другие навигационные приборы и системы.

16.4.11 Система судового единого времени.

Проверяется следующее:

- .1 суточная погрешность хода первичных часов;
- .2 вариации суточного хода;
- .3 возможность коррекции системы по сигналам международной службы времени, передаваемым по радиоканалам;
 - .4 возможность аварийного питания системы;
- **.5** возможность индикации времени не менее чем на 10 вторичных часах.

16.4.12 Электронная картографическая навигационно-информационная система (ЭКНИС).

- В процессе стендовых испытаниях проверяется следующее:
- .1 полнота и подробность описания приборов и правил по эксплуатации в технической документации предприятия (изготовителя);
- **.2** сопряжение с приемоиндикатором глобальной навигационной спутниковой системы, гирокомпасом, лагом, радиолокационной станцией и др.

Аппаратура ЭКНИС не должна ухудшать точность данных о координатах, курсе судна и его скорости, вырабатываемых перечисленными устройствами.

Параметры цифрового входного устройства должны соответствовать требованиям международного стандарта;

.3 возможность отображения информации, содержащейся в электронной навигационной карте,

- и всей корректуры к ней без какого-либо количественного и качественного ухудшения по сравнению со стандартной текстовой картой, изданной уполномоченной гидрографической службой;
- .4 возможность правильной загрузки дополнительных ячеек ЭНК. При этом должен обновляться список карт судовой коллекции;
- **.5** соответствие точности измерений и вычислений на дисплее при решении следующих задач:

определение дистанции и пеленга между двумя точками с известными координатами;

определение координат точки по пеленгу и дистанции от точки с известными координатами;

преобразование координат из местной системы в систему WGS-84 и обратно;

- .6 возможность увеличения и уменьшения масштаба изображения карты на дисплее. При этом размеры условных знаков и надписей должны оставаться неизменными:
- **.**7 возможность отображения места судна масштабными и внемасштабными условными знаками;
 - **.8** отображение:

координат в градусах, минутах и их долях; глубин в метрах и дециметрах;

высот в метрах;

дистанций в милях и их децимальных долях или метрах;

скорости в узлах и их долях;

времени в часах, минутах и секундах;

направления в градусах и их долях;

.9 объем информации об объектах карты, который должен включать в себя:

единицы измерения глубин;

единицы измерения высот;

масштаб изображения на дисплее;

ноль отсчета высот и глубин;

название системы географических координат;

значение опасной глубины;

значение опасной изобаты;

номер издания и дату выпуска электронной навигационной карты;

дату и номер последней выполненной корректуры карты;

- .10 цветность изображения карты;
- .11 разрешающая способность и размеры дисплея;
- .12 возможность отображения на дисплее заметок мореплавателя в текстовой и графической форме;
- .13 возможность изменения ориентации изображения и режимов истинного или относительного движения (изображение карты – неподвижно, отметка судна перемещается и наоборот);
- **.14** подача тревожно-предупредительного сигналов в случае:

наличия карты более крупного масштаба, чем масштаб карты, выведенной на дисплей;

отклонения от линии заданного маршрута, превышающего предел, заданный оператором;

входа в район с особыми условиями плавания; выхода из строя средств определения места; подхода к заданной точке;

разных систем координат карты и средства определения места;

выхода ЭКНИС из строя;

ситуации, когда планируемый маршрут пересекает выбранный контур безопасности;

- .15 возможность использования, по крайней мере, одного электронного визира направления и подвижного маркера дальности;
- .16 возможность и правильность получения координат от автоматического средства определения места;
- .17 возможность, если она предусмотрена, наложения радиолокационного изображения на электронную карту;
- **.18** прием материалов корректуры с дискеты или другого носителя информации.

Подтверждение достоверности корректуры и составление списка корректуры.

Возможность ввода корректуры вручную;

- .19 автоматическая проверка выполнения основных функций системы;
- .20 возможность воспроизведения информации, достаточной для восстановления действий оператора и проверки официальных баз данных за период предыдущих 12 часов. Исключение возможности внесения изменений в сохраненную информацию;
- **.21** регистрация данных рейса и невозможность ее изменения;
- **.22** сохранение работоспособности системы при перерыве подачи электропитания на 45 с.

16.4.13 Измерители скорости поворота.

При освидетельствовании измерителей скорости поворота должны быть проверены и испытаны:

- .1 работа независимо от гирокомпаса и РЛС с указанием направления и угловой скорости поворота судна;
- .2 точность определения скорости поворота с учетом влияния вращения Земли при скорости судна до 10 уз;
 - .3 время готовности прибора к работе;
- 4 возможность использования оборудования как при автоматическом, так и при ручном управлении движением судна;
- .5 возможность передачи информации о скорости поворота в другие навигационные приборы и системы.

16.4.14 Аппаратура автоматической идентификационной (информационной) системы (АИС).

На стендовых испытаниях аппаратуры АИС с сопрягаемыми приборами и системами или их имитаторами проверяется следующее:

- .1 комплектация АИС;
- .2 автоматическое включение аппаратуры при включении судового питания и готовность оборудования к работе через 2 мин после включения (данное требование не распространяется на время выхода на рабочий режим приемника ГНСС);
- .3 возможность работы в «автономном режиме» и обеспечение перехода в другие режимы работы («назначенный режим» и «режим опроса») и обратно в «автономный режим»;
 - .4 содержание информации, передаваемой АИС:
 - .4.1 статической:

номер судна ИМО;

позывной сигнал и название судна;

длина и ширина судна;

тип судна;

расположение антенны приемоиндикатора системы радионавигации (нос-корма и правый-левый борт относительно диаметральной плоскости судна);

.4.2 динамической:

местоположение судна с указанием точности и целостности измерения;

всемирное скоординированное время;

путевой угол;

скорость относительно грунта;

истинный курс;

навигационное состояние судна: судно в движении, на якоре и т. д. – ручной ввод;

угловая скорость поворота судна (при наличии измерителя скорости поворота);

.4.3 информации о рейсе:

осадка судна;

наличие опасного груза и его тип (по требованию уполномоченных властей);

порт назначения и предполагаемое время прихода (по усмотрению капитана);

- .4.4 информации о безопасности;
- .5 обеспечение передачи информации с заданными интервалами времени:

статической — каждые 6 мин и по запросу;

динамической — в зависимости от навигационного статуса судна, изменения его скорости и курса;

информации о рейсе — каждые 6 мин, при изменении рейсовых данных и по запросу;

- .6 обеспечение передачи не менее 2000 сообщений в минуту;
 - .7 возможность работы в назначенном режиме;
 - .8 возможность работы в режиме опроса;
- **.9** передача ответного сообщения на том же канале, на котором было послано запросное;
- .10 автоматическое включение встроенного приемника ГНСС при отказе основного источника определения местоположения, а также выдача соответствующей индикации средств встроенного контроля работоспособности;

- .11 возможность приема дифференциальных поправок в формате сообщения N17;
- .12 наличие и исправная работа двух высокоскоростных портов ввода/вывода информации (для подключения систем графического отображения и дополнительного оборудования);
- .13 наличие и исправная работа портов сопряжения с датчиками динамической информации.
- .14 наличие и исправная работа порта сопряжения с аппаратурой дальней связи;
- .15 защита от несанкционированного изменения принимаемой и передаваемой информации;
- .16 работа устройства встроенного самоконтроля работоспособности, в том числе запись в энергонезависимую память периодов времени, когда оборудование не работало;
- .17 обеспечение срабатывания тревожной сигнализации и индикации при изменении состояния датчиков динамической информации;
- .18 обеспечение требуемой приоритетности в выборе источника определения местоположения и автоматическое переключение на источник, имеющий более высокий приоритет, в течение 30 с после его включения;
- .19 обеспечение отображения на «минимальном дисплее»:

пеленга, дистанции и названия судна;

информации тревожной сигнализации и средств встроенного самоконтроля работоспособности;

вводимых данных о рейсе и информации, связанной с безопасностью;

принимаемых сообщений, связанных с безопасностью;

принятых запросов от аппаратуры дальней связи. Если на стенде предприятия (изготовителя) не обеспечено подключение соответствующих сопрягаемых датчиков информации или их имитаторов, то должны быть проведены эксплуатационные испытания опытного образца аппаратуры АИС на судне с подключением к нему реальной аппаратуры.

16.4.15 Регистратор данных рейса (РДР).

На стендовых испытаниях с подключенными сопрягаемыми приборами и системами или их имитаторами проверяется следующее:

- .1 автоматическое включение регистратора при подаче судового питания, а также переход на питание от аварийного судового источника при отказе основного;
- **.2** работа регистратора от собственного резервного источника питания в течение 2 ч с автоматическим отключением;
- **.3** отключение регистратора вручную при длительной стоянке судна в порту и на ремонте;
- .4 возможность записи на конечный носитель информации исходных паспортных данных и перечня задействованных датчиков с указанием их типа для постоянного хранения;

- .5 проверка защиты контейнера с конечным носителем информации от несанкционированного доступа и возможности извлечения записанной информации без открывания защитного контейнера;
- .6 наличие документов, подтверждающих проведение специальных испытаний защитного контейнера на глубоководное погружение, высокую температуру и удар;
- .7 конструктивное оформление конечного носителя информации с защитным контейнером, обеспечивающее возможность регистрации данных во время аварии; наличие устройства, обеспечивающего поиск и обнаружение контейнера, а также механизма отделения контейнера при погружении судна (всплывающий вариант);
- .8 проверка возможности непрерывной регистрации и хранения в течение $12 \text{ ч} \pm 5$ мин показаний приборов и систем;
- .9 проверка соотношения различных событий по времени и возможность определения даты и времени по записям;
- **.10** проверка объема обязательной информации, подлежащей регистрации и хранению;
- .11 возможность расшифровки и документирования информации, записанной на конечном носителе, с помощью специальной береговой аппаратуры;
- .12 обеспечение автоматической регистрации попыток несанкционированного вмешательства в работу регистратора;
- .13 целостность записанных данных и подача аварийно-предупредительной сигнализации в случае обнаружения некорректируемой ошибки регистрируемых данных;
- .14 проверка записи речевых переговоров на ходовом мостике при отсутствии напряжения питания судовой сети в течение 2 ч с дальнейшим автоматическим отключением регистратора;
- .15 отсутствие влияния регистратора на работу датчиков информации при выходе его из строя или в случае отказов отдельных каналов связи.

Если на стенде предприятия (изготовителя) не обеспечено подключение соответствующих сопрягаемых датчиков информации или их имитаторов, то должны быть проведены эксплуатационные испытания опытного образца регистратора на судне с подключением к нему реальной аппаратуры.

16.4.16 Система приема внешних звуковых сигналов.

Проверяется следующее:

- .1 дальность и направление приема приходящих внешних звуковых сигналов (сравнением с восприятием оператора);
- .2 проверка частотного диапазона приема звуковых сигналов;

- **.3** наличие и возможность регулировки силы звука внешних звуковых сигналов, воспроизводимых в рулевой рубке;
- **.4** время определения направления приходящего звукового сигнала.

Если на предприятии (изготовителе) отсутствуют условия для определения дальности и направления приходящего звукового сигнала, то эти параметры подлежат проверке в процессе эксплуатационных испытаний на судне.

16.5 ДОКУМЕНТЫ РЕГИСТРА

- 16.5.1 При положительных результатах освидетельствования навигационного оборудования на предприятии (изготовителе) оформляются документы Регистра в соответствии с установленной формой технического наблюдения (см. разд. 3 части I «Общие положения по техническому наблюдению»).
- **16.5.2** О результатах испытаний опытного и головного образцов изделия, проведенных в присутствии инспектора, а также о результатах освидетельствования предприятия (изготовителя) составляется акт Регистра (см. разд. 1).

ПРИЛОЖЕНИЕ 1

НОРМЫ И МЕТОДЫ ИСПЫТАНИЯ НАВИГАЦИОННОГО ОБОРУДОВАНИЯ

1. Общие положения.

- **1.1** Настоящее приложение содержит минимальные требования, предъявляемые к стендовым испытаниям навигационного оборудования морских судов.
- **1.2** Оборудование, испытанное по настоящим требованиям, считается выдержавшим испытание, если оно удовлетворяет условиям, указанным в приложении 1. Объем стендовых испытаний на различных этапах производства, а также в зависимости от места установки на судне приведен в табл. 1.2.

2. Определения и пояснения.

- **2.1** В и броустойчивость оборудования выполнять свои функции в условиях вибрации, сохраняя параметры в заданных пределах.
- 2.2 Ударопрочность оборудования свойство оборудования противостоять разрушающему действию ударов, сохраняя параметры в заданных пределах после их воздействия.
- 2.3 В етропрочность оборудования свойство оборудования противостоять разрушающему действию ветра наибольшей силы, который может возникнуть в условиях эксплуатации, сохраняя свои параметры после его воздействия.
- 2.4 Теплоустойчивость оборудования выполнять свои функции при наиболее высокой температуре окружающего воздуха, которая может возникнуть в условиях эксплуатации, сохраняя параметры в заданных пределах и не подвергаясь повреждениям.
- 2.5 Холодоустойчивость оборудования выполнять свои функции при наиболее низкой температуре окружающего воздуха, которая может возникнуть в условиях эксплуатации, сохраняя параметры в заданных пределах и не подвергаясь повреждениям.
- 2.6 В лагоустой чивость оборудования выполнять свои функции, находясь в среде с наиболее высокой относительной влажностью, которая может возникнуть в условиях эксплуатации, сохраняя параметры в заданных пределах и не подвергаясь повреждениям и коррозии.
- **2.7** Коррозионная стойкость свойство металлических изделий противостоять образованию коррозии при воздействии раствора солей.
- **2.8** Плеснеустойчивость свойство изделия противостоять развитию грибковой плесени в среде, зараженной плесневыми грибами.

Таблица 1.2

№ п\п	Свойства оборудования, подлежащие проверке во	Оборудов ченное для	ание, пред установки	
	время испытаний	во внут- ренних помещен- иях	на откры- той палубе	погру- женное в воду ¹
1	Защищенность	++	++	++
2	Виброустойчивость и резо-	++	++	++
	нанс			
3	Виброустойчивость на од-	+++	+++	+++
	ной частоте			
4	Ударопрочность ²	+	+	+
5	Устойчивость к качке ²	+	+	+
6	Ветропрочность ²	_	+	_
7	Теплоустойчивость	++	++	++
8	Холодоустойчивость	++	++	++
9	Устойчивость к воздей-	_	+	_
1.	ствию инея и росы ²			
10	Влагоустойчивость	++	++	_
11	Коррозионная стойкость ²	+	+	+
12	Плеснеустойчивость 2,3	++	++	++
13	Электромагнитная совместимость (ЭМС)	++	++	++
14	Безопасная дистанция до магнитного компаса	++	++	_
15	Уровень электромагнитного	++	++	_
	излучения радиочастотного диапазона			
16	Уровень излучения от устройств визуального	++	++	_
	отображения информации			
17	Уровень рентгеновского	++	++	_
10	излучения ²			
18	Уровень акустического	++	_	_
	шума			

Условные обозначения:

^{+ —} испытания опытного образца;

^{++ —} испытания опытного образца, испытания головного образца;

^{+++ —} испытания опытного, головного образцов изделий установившегося производства.

¹ Первичные преобразователи скорости лага и вибраторы эхолота, находящиеся в воде.

² В зависимости от вида оборудования, места его установки и морского района плавания судна испытания могут являться предметом специального рассмотрения Регистром.

³ Если все входящие в оборудование типы и виды комплектующих изделий, элементов и материалов выдержали испытания на плеснеустойчивость, то испытания на плеснеустойчивость оборудования в сборе могут не проводиться.

2.9 Нормальные климатические условия — условия, характеризующиеся сочетанием следующих параметров атмосферы:

температуры — 25 ± 10 °C;

относительной влажности — от 20 до 75 %;

2.10 Стандартные климатические условия — условия, характеризующиеся сочетанием следующих параметров атмосферы:

температуры — $(20 \pm 1 \, ^{\circ}\text{C});$ относительной влажности — $65 \pm 2 \, \%;$

- 2.11 Защищенность оборудования степень защиты персонала от соприкосновения с токоведущими частями, находящимися внутри оболочки, степень защиты встроенного в оболочку оборудования от попадания твердых посторонних тел, а также степень защиты оборудования, расположенного внутри оболочки, от проникновения воды.
- **2.12** Излучаемые помехи помехи, излучаемые корпусом оборудования (кроме непосредственного излучения антенных устройств оборудования).
- **2.13** Кондуктивные помехи помехи, создаваемые оборудованием на клеммах подключения сети электропитания.

Примечание. В случае невозможности поддержания стандартных климатических условий в начале и в конце испытаний теплоустойчивости, холодоустойчивости, влагоустойчивости и плеснеустойчивости допускается проводить измерение параметров оборудования в нормальных климатических условиях. Однако различие между параметрами атмосферы в начале и в конце испытаний, по возможности, не должно превышать допусков, предусмотренных для стандартных климатических условий. Отклонения от стандартных значений температуры и влажности, определяемые условиями испытаний, должны быть указаны в протоколе испытаний.

3. Механические испытания оборудования.

3.1 Испытания оборудования на виброустойчивость и резонанс.

Оборудование морских судов должно обладать виброустойчивостью и выдерживать испытания по нижеприведенной методике:

	T	аблица 3.
№	Последовательность, условия и нормы	Числовое
п\п	испытаний	значение
1	Установка оборудования на вибрационный	_
	стенд, включение и измерение параметров	
2	Выдержка оборудования в состоянии	
	вибрации в заданном диапазоне частот в трех	
	взаимно перпендикулярных направлениях по	
	отношению к изделию:	
	диапазон частот колебаний платформы	2 — 100
	вибрационного стенда, Гц	
	амплитуда для частот от 2 Гц до 13,2 Гц, мм	± 1
	ускорение для частот от 13,2 Γ ц до 100 Γ ц, м/ c^2	7
3	Измерение параметров во время испытаний	_
4	Снятие оборудования со стенда, измерение	_
	параметров, выключение и осмотр	

Оборудование должно быть установлено на стенд в нормальном эксплуатационном положении на

штатных амортизаторах, если таковые имеются. Во время испытаний оборудование должно находиться в рабочем состоянии в нормальных климатических условиях.

Скорость изменения частоты должна быть достаточной, чтобы обеспечить обнаружение резонансов в отдельных частях оборудования, а также проверку и регистрацию необходимых параметров, но не более чем две октавы в минуту. Прохождение полного диапазона частот должно занимать не менее 30 мин.

Во время вибрационных испытаний должен проводиться поиск резонансных частот, на которых ухудшаются параметры изделия. При обнаружении резонансов, амплитуда которых в два и более раз превышает номинальную амплитуду колебаний платформы стенда, должно быть выполнено продолжительное испытание на каждой резонансной частоте в течение 2 ч.

Если резонансов не обнаружено, то продолжительное испытание должно быть выполнено на частоте 30 Гц в соответствии с 3.2. Оборудование считается выдержавшим испытания, если в процессе испытаний и после их окончания оно сохраняет свои параметры и не получает повреждений.

3.2 Испытания виброустойчивости и оборудования на одной частоте.

Испытания виброустойчивости оборудования на одной частоте проводятся с целью выявления грубых технологических дефектов, которые могут быть допущены в процессе производства. Испытания должны проводиться по следующей методике:

Таблица 3.2

№ π\π	Последовательность, условия и нормы испытаний	Числовое значение
1	Установка оборудования на вибрационный стенд, включение и измерение параметров	_
2	Выдержка оборудования в состоянии вибрации на одной частоте в трех взаимно перпен- дикулярных положениях:	
	частота колебаний платформы вибрационного стенда, Гц	30
	ускорение, m/c^2 продолжительность, ч	$\frac{7}{2^1}$
3	Измерение параметров во время испытаний	_
4	Снятие оборудования со стенда, измерение параметров, выключение и осмотр	_

¹ При установившемся производстве время испытаний серийных образцов может быть сокращено до 30 мин, а испытание может быть проведено в одном нормальном эксплуатационном положении.

Оборудование считается выдержавшим испытания, если в процессе испытаний и после их

Примечание. Оборудование должно быть установлено на стенд без амортизаторов. Во время испытаний оборудование должно находиться в рабочем состоянии в нормальных климатических условиях.

окончания оно сохраняет свои параметры и не получает повреждений.

3.3 Испытания оборудования на ударопрочность. Оборудование морских судов должно обладать ударопрочностью и выдерживать испытания по следующей методике:

Таблица 3.3

№ п\п	Последовательность, условия и нормы испытаний	Числовое значение
2	Установка оборудования на ударный стенд, включение, измерение параметров и выключение Выдержка оборудования в состоянии ударной тряски последовательно в трех взаимно перпендикулярных положениях на ударном	_
3	стенде: частота ударов платформы ударного стенда, уд/мин ускорение, м/с ² длительность ударного импульса, мс общее количество ударов Снятие оборудования со стенда, включение, измерение параметров, выключение и осмотр	100 10 — 15 не менее 1000 —

Во время испытаний оборудование должно находиться в нерабочем состоянии. В зависимости от типа ударного стенда испытания оборудования должны проводиться по одному из следующих способов:

поочередно в трех взаимно перпендикулярных положениях на однокомпонентном стенде;

в двух взаимно перпендикулярных положениях на двухкомпонентном стенде;

в нормальном эксплуатационном положении на трехкомпонентном стенде. Минимальное число ударов может быть сокращено при использовании двухкомпонентного стенда на 1/3, а при использовании трехкомпонентного стенда — на 2/3.

Как правило, испытания на ударном стенде должны проводиться на штатных амортизаторах, если таковые имеются. Однако при испытаниях оборудования в наклонных положениях вместо штатных амортизаторов допускается применение резины или других средств, подобранных таким образом, чтобы они давали тот же статический прогиб, что и штатные амортизаторы.

Оборудование считается выдержавшим испытания, если после их окончания оно сохраняет свои параметры, прочность и герметичность.

3.4 Испытания устойчивости оборудования к качке и длительным наклонам.

Оборудование морских судов должно обладать устойчивостью к качке и длительным наклонам и выдерживать испытания по следующей методике:

Таблица 3.4

No	Последовательность, условия и нормы	Числовое
Π/Γ	испытаний	значение
1	Установка оборудования на стенд, включение и	_
	измерение параметров	
2	Выдержка оборудования в состоянии качки	
	последовательно в двух взаимно перпенди-	
	кулярных положениях и измерение	
	параметров при каждом положении:	
	предельный угол наклона от вертикали, град	45
	период качки, с	7 — 9
	продолжительность испытаний в каждом	не менее 5
١.	положении, мин	
3	Выдержка оборудования последовательно в	
	двух взаимно перпендикулярных наклонных	
	положениях и измерение параметров в	
	каждом положении:	4.5
	угол наклона к горизонтали, град	45
	продолжительность испытаний в каждом положении, мин	не менее 3
4	Снятие оборудования со стенда, измерение	
	параметров, выключение и осмотр	
$ldsymbol{le}}}}}}$		

Во время испытаний оборудование должно находиться в рабочем состоянии в нормальных климатических условиях. Оборудование должно устанавливаться на специальный стенд на штатных амортизаторах и испытываться в двух взаимно перпендикулярных нормальных эксплуатационных положениях.

Оборудование считается выдержавшим испытания, если в процессе испытаний и после их окончания оно сохраняет свои параметры и не получает повреждений.

Испытания устойчивости оборудования к качке и длительным наклонам могут не проводиться, если оборудование выдержало испытания на ударопрочность на однокомпонентном стенде в трех взаимно перпендикулярных положениях.

3.5 Испытания оборудования на ветропрочность. Оборудование и все антенные устройства, предназначенные для работы на открытых палубах судна, должны обладать ветропрочностью и выдерживать испытания по следующей методике:

Таблица 3.5

№ π\π	Последовательность, условия и нормы испытаний	Числовое значение
2	Установка оборудования на стенд в нормальном эксплуатационном положении, включение, измерение параметров и выключение Обдувание оборудования воздушным потоком поочередно с восьми горизонтальных направлений через каждые 45 с определенной скоростью:	
3	скорость воздушного потока, м/с продолжительность испытаний при каждом из восьми направлений воздушного потока Прекращение подачи воздуха, включение, измерение параметров, выключение и осмотр	60 5 мин —

Во время испытаний оборудование должно находиться в нерабочем состоянии.

Оборудование считается выдержавшим испытания, если после их окончания оно сохраняет свои параметры и не получает повреждений.

4. Климатические испытания оборудования.

4.1 Испытания оборудования на теплоустойчивость.

Оборудование морских судов должно обладать теплоустойчивостью и выдерживать испытания по следующей методике:

Таблица 4.1

№ п\п	Последовательность, условия и нормы	Числовое значение для оборудования, предназначенного			
	испытаний	1	для работы		
		во внутренних помещениях	на открытой палубе	погру- женное в воду	
1	Установка оборудования в	0,2 — 2	0,2 — 2	0,2 — 2	
2	камеру тепла, включение и выдержка при стандартных климатических условиях, ч Измерение параметров при стандартных климатических условиях Повышение температуры	_	_	_	
	в камере до рабочей: скорость повышения тем-	0,5 — 3	0,5 — 3	0,5 — 3	
	пературы, °С/мин рабочая температура, °С	55±3	55±3	55 ± 3	
	относительная влажность, %			не более 20	
4	Выдержка оборудования	10 — 16	10 — 16	10 — 16	
_	при рабочей температуре, ч				
5	Измерение параметров при рабочей температуре и выключение	_	_	_	
6	Повышение температуры в камере до предельной:				
	скорость повышения тем- пературы, °С/мин	0,5 — 3	0,5 — 3	0,5 — 3	
	рабочая температура. °C	70 ± 3	70 ± 3	70 ± 3	
		не более 20	не более 20	не более 20	
7	ность, % Выдержка оборудования при предельной темпера-	10 — 16	10 — 16	10 — 16	
8	туре, ч Скорость понижения тем- пературы в камере до	0,5 — 3	0,5 — 3	0,5 — 3	
	пературы в камере до стандартной, °С/мин				
9	Выдержка оборудования при стандартных клима-	2 — 6	2 — 6	2 — 6	
10	тических условиях, ч Включение и выдержка оборудования при стан- дартных климатических	0,2 — 6	0,2 — 6	0,2 — 6	
11	условиях, ч	_	_	_	
	осмотр				

Оборудование считается выдержавшим испытания, если в процессе испытаний и после их окончания оно сохраняет свои параметры и не получает повреждений.

4.2 Испытания оборудования на холодоустойчивость.

Оборудование морских судов должно обладать холодоустойчивостью и выдерживать испытания по следующей методике:

Таблица 4.2

№	Последовательность, условия и нормы испытаний	Числовое значение для оборудования, предназначенного для работи		
		во внут- ренних поме- щениях	на открытой палубе	погру- женное в воду
1	Установка оборудования в	0,2 — 2	0,2 — 2	0,2-2
	камеру холода, включение и	ŕ	Í	ŕ
	выдержка при стандартных			
	климатических условиях, ч			
2	Измерение параметров при	_	_	_
	стандартных климатических			
3	условиях и выключение			
'	Понижение температуры в камере до рабочей;			
	скорость понижения	1 — 2	1 — 2	1 — 2
	температуры, °С/мин			
	рабочая температура, °С	-15 ± 3	-40 ± 3	-4
4	Выдержка оборудования при	10 — 16	10 — 16	10 — 16
	рабочей температуре, ч			
5	Включение, измерение па-	_	_	_
	раметров при рабочей тем-			
6	пературе и выключение			
"	Понижение температуры в камере до предельной:			
	скорость понижения	1 — 2	1 — 2	1 — 2
	температуры, °С/мин		_	_
	предельная температура, °C;	-60 ± 3	-60 ± 3	-60 ± 3
7	Выдержка оборудования при	2	2	2
	предельной температуре, ч			
8	Скорость повышения тем-	0,5 — 3	0,5 - 3	0,5 - 3
	пературы в камере до стан-			
9	дартной, °С/мин	3 — 4	3 — 4	3 — 4
"	Выдержка оборудования при стандартных клима-	3 — 4	3 — 4	3 — 4
	тических условиях, ч			
10	Включение и выдержка	0,2 — 2	0,2 — 2	0,2 — 2
	оборудования при стан-			
	дартных климатических			
	условиях, ч			
11	Измерение параметров при	_	_	_
	стандартных клима-			
	тических условиях, выклю-			
	чение оборудования и			
	осмотр			

Оборудование считается выдержавшим испытания, если в процессе испытаний и после их окончания оно сохраняет свои параметры и не получает повреждений.

4.3 Испытания оборудования на устойчивость к воздействию инея и росы.

Все оборудование, предназначенное для установки на открытых палубах морских судов, должно выдерживать испытания на устойчивость к воздействию инея и росы по следующей методике:

Таблица 4.3 No Числовое Последовательность, условия и нормы п\п испытаний значение 1 Установка оборудования в камеру холода и выдержка в выключенном состоянии: температура, °С 20 ± 5 2 продолжительность, ч Извлечение оборудования из камеры, включение и выдержка в нормальных климатических условиях, при этом сразу после включения и через каждые 30 — 60 мин производится измерение параметров оборудования: продолжительность выдержки, ч Выключение и осмотр

Оборудование считается выдержавшим испытания, если оно сохраняет свои параметры в заданных пределах и не получает повреждений.

4.4 Испытания оборудования на влагоустойчивость.

Оборудование морских судов должно обладать влагоустойчивостью и выдерживать испытания по следующей методике:

Таблица 4.4

	1 4	олица 4.4
№ π\π	Последовательность, условия и нормы испытаний	Числовое значение
1	Установка оборудования в камеру влажности, включение и выдержка при стандартных климатических условиях, ч	0,2 — 2
2	Измерение параметров при стандартных	_
	климатических условиях и выключение	
3	Повышение температуры и относительной	3 ± 0.5
	влажности в камере до рабочей, ч	
	Рабочая температура, °С	40 ± 2
	Рабочая относительная влажность, %	95 ± 3
4	Выдержка оборудования при рабочих зна-	10 —16
	чениях температуры и относительной влаж-	
	ности, ч	
5	Включение, измерение параметров при	2
	рабочих значениях температуры и относи-	
	тельной влажности, ч	
6	Понижение температуры и влажности в камере	1
	до достижения стандартных климатических	
	условий, ч	
7	Измерение параметров при стандартных	_
	климатических условиях, выключение обору-	
	дования и осмотр	

Оборудование считается выдержавшим испытания, если в процессе испытаний и после их окончания оно сохраняет свои параметры и не получает повреждений.

4.5 Испытания на коррозионную стойкость.

Металлические части оборудования морских судов должны обладать коррозионной стойкостью и выдерживать испытания по следующей методике:

Таблица 4.5

№ π\π	Последовательность, условия и нормы испытаний	Числовое значение
1 2	Осмотр оборудования и установка в камеру Выдержка оборудования в камере при циклическом распылении раствора солей (морской туман)	_
	температура в камере, °С состав раствора, частей по весу: NaCl дистиллированная вода продолжительность распыления раствора, ч	25 ± 10 5 ± 1 95 2
3 4 5	Выдержка оборудования в камере: температура в камере, °C относительная влажность в камере, % продолжительность выдержки, сут Повторение операций 2 и 3, общее количество Извлечение оборудования из камеры и осмотр	40±2 90 — 95 7 4

Во время испытаний оборудование должно находиться в нерабочем состоянии. Оборудование считается выдержавшим испытания, если после их окончания оно сохраняет свои параметры и не получает повреждений.

4.6 Испытания оборудования на плеснеустойчивость.

Оборудование морских судов должно обладать плеснеустойчивостью и выдерживать испытания по следующей методике.

Перед началом испытаний оборудование должно быть выдержано при температуре 60 ± 2 °C в течение 6 ч, а затем помещено на 1-6 ч в стандартные климатические условия для осмотра и измерения параметров. Испытания оборудования должны проводиться в среде, зараженной грибковой плесенью, при отсутствии света и движения воздуха. Плесень должна представлять собой водную суспензию из смеси спор плесневых грибков, названия которых приведены в табл. 4.6. В качестве питательной среды для выращивания плесневых грибков рекомендуется использование пивного сусла или синтетической среды Чапек-Докса.

Стерилизованная питательная среда в чашках Петри вместе с отключенным от источников питания оборудованием устанавливается в испытательную камеру и опрыскивается из пульверизатора с диаметром выходного отверстия не менее 1 мм водной суспензией спор плесневых грибков из расчета 50 мл суспензии на 1 м³ полезного объема камеры. После опрыскивания в испытательной камере устанавливается температура 20 ± 5 °C и относительная влажность 95 — 98 %.

Оборудование выдерживается в этих условиях в течение 48 ч. Если после такой выдержки в контрольных чашках Петри не наблюдается роста плесени, следует провести повторное опрыскивание чашек и оборудования жизнеспособной суспензией

спор плесневых грибков и произвести повторную выдержку в течение 48 ч. По обнаружении в контрольных чашках роста плесени температуру в камере повышают до 29 ± 1 °C при относительной влажности 95 — 98 % и оборудование выдерживают в таких условиях 28 сут. По истечении этого срока оборудование помещается в стандартные климатические условия на 24 ч, а затем проводится осмотр и измерение его параметров.

Оборудование считается плеснеустойчивым, если при наблюдении через лупу с 50-кратным

Таблица 4.6

№ п\п	Спора	Штамм	Типичные культуры	Свойства
1	Aspergillus niger	v. Tieghem	ATCC. 6275	Обильно растет на многих материалах и стойка к солям меди
2	Aspergillus terreus	Thom	PQMD. 82j	Воздействует на пласт-массы
3	Aureobasi- d i u m pullulans	(DE Barry) Arnaud	ATCC. 9348	Воздействует на краски и лаки
4	Paecilomy-	Bainier	JAM. 5001	
5	ces varioti Penicillium funiculosum	Thom	JAM. 7013	гие материалы, осо-
6	Penicillium ochrochloron	Biourge	ATCC. 9112	бенно на текстильные Стойка к солям меди
7	Scopulariopsis brevicaulis		JAM. 5146	Воздействует на резину
8	Trichoderma viride	GIabra Thom Pers. Ex Fr.	JAM. 5061	Воздействует на целлюлозу, текстиль, пластмассы

увеличением на нем не обнаруживается очагов грибковой плесени или видны лишь единичные проросшие споры.

5. Испытания защищенности оборудования.

Испытания защищенности оборудования определяются степенью защиты оболочки оборудования. Степень защиты оборудования обозначается буквами IP и двумя характеристическими цифрами:

первая характеристическая цифра определяет степень защищенности оборудования от доступа к опасным частям, находящимся внутри оболочки оборудования, а также от проникновения внутрь посторонних твердых предметов;

вторая характеристическая цифра определяет степень защищенности оборудования от проникновения воды.

Оборудованию может быть присвоена определенная степень защиты, обозначаемая первой характеристической цифрой, только если она соответствует одновременно всем более низким степеням защиты. При этом не обязательно проводить испытания на установление соответствия какой-либо из более низких степеней защиты, если очевидно, что результаты таких испытаний будут заведомо удовлетворительными.

5.1 Защита от доступа к опасным частям оборудования и от проникновения посторонних твердых предметов.

Описание степеней защиты от доступа к опасным частям оборудования, проникновения посторонних твердых предметов и методы проведения испытаний для них приведены в табл. 5.1.

Таблица 5.1

Первая характе- ристи- ческая цифра	Степень защиты от доступ	а к опасным частям оборудования	· · · · · · · · · · · · · · · · · · ·	новения посторонних твердых дметов
	Краткое описание	Испытания	Краткое описание	Испытания
0	Нет защиты	Испытания не требуются	Нет зашиты	Испытания не требуются
1	Защищено от доступа к	Жесткий шар диаметром 50 мм ¹	Защищено от внешних твер-	Жесткий шар диаметром 50 мм ¹ с
	опасным частям тыльной	с усилием 50 H ± 10 % не	дых предметов диаметром,	усилием 50 Н +10 % не должен
	стороной руки	должен прикасаться к опасным частям оборудования	больше или равным 50 мм	проникать полностью
2	Защищено от доступа к	Испытательный шарнирный палец	Защищено от внешних твер-	Жесткий шар диаметром 12,5 мм ²
	опасным частям пальцем	(см. рис. 5.1-1) диаметром 12 мм и	дых предметов диаметром,	с усилием 30 H ± 10 % не
		длиной 80 мм не должен прикасаться к опасным частям оборудования	больше или равным 12,5 мм	должен проникать полностью
3	Защищено от доступа к	Жесткий стальной стержень	Защищено от внешних твер-	Жесткий стальной стержень
	опасным частям инстру-	диаметром 2,5 мм ¹ с усилием	дых предметов диаметром,	диаметром 2,5 мм ¹ с усилием
	ментом	3 H ± 10 % не должен проникать внутрь оболочки оборудования	больше или равным 2,5 мм	3 H ± 10 % не должен проникать ни полностью, ни частично
4	Защищено от доступа к	Жесткая стальная проволока	Защищено от внешних твер-	Жесткая стальная проволока
	опасным частям прово-	диаметром 1,0 мм ¹ с усилием	дых предметов диаметром,	диаметром 1,0 мм1 с усилием
	локой	$1~{ m H}~\pm~10~\%$ не должна прони-	больше или равным 1,0 мм	$1~{ m H}\pm10\%$ не должна проникать
		кать внутрь оболочки обору-		ни полностью, ни частично
		дования		

Первая характе- ристи-	-		Степень защиты от проникновения посторонних твердых предметов		
ческая цифра	Краткое описание	Испытания	Краткое описание	Испытания	
5	Защищено от доступа к опасным частям проволокой	Жесткая стальная проволока диаметром $1,0$ мм 1 с усилием 1 H \pm 10 % не должна проникать внутрь оболочки оборудования	Защищено от пыли	Проникновение пыли исключено не полностью, однако пыль не должна проникать в количестве, достаточном для нарушения нормальной работы оборудования или снижения его безопасности	
6	Защищено от доступа к опасным частям проволокой	Жесткая стальная проволока диаметром 1.0 мм^{-1} с усилием $1 \text{ H} \pm 10 \text{ %}$ не должна проникать внутрь оболочки оборудования	•	Пыль не проникает в оболочку	

² Диаметр может отличаться только в большую сторону на величину, меньшую или равную 0,2 мм.

Условия испытаний.

Испытательный предмет прижимают, либо вставляют в каждое отверстие в оболочке оборудования.

Испытание на воздействие пыли проводят с помощью специальной камеры пыли, основные конструктивные и принципиальные особенности которой приведены на рис. 5.1-2, при этом насос циркуляции пыли в камере может быть заменен любым другим устройством, позволяющим

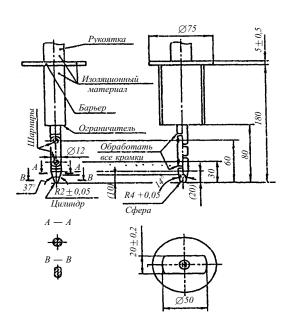


Рис. 5.1-1

Испытательный шарнирный палец

Примечание. Линейные размеры даны в миллиметрах. Допуски на размеры, где не указаны допуски на рисунке:

на углы: от 0 до 10 мин; на линейные размеры до 25 мм: от 0 до 0,05 мм; на линейные более 25 мм: \pm 0,2 мм.

Два шарнира должны обеспечивать подвижность в одной и той же плоскости и направлении под углом 90° с допуском от 0 до + 10°

поддерживать порошок талька во взвешенном состоянии в закрытой испытательной камере. Используемый порошок талька должен проходить через сито с размерами квадратной ячейки 75 мкм и толщиной проволоки 50 мкм.

Количество порошка талька составляет 2 кг на 1 м³ объема испытательной камеры. При испытании через оболочку необходимо прокачать объем воздуха, равный 80 объемам оболочки, при скорости обновления воздуха не более 60 объемов оболочки в час. При этом значение вакуума не должно превышать 2 кПа (20 мбар) по манометру (рис. 5.1-2). Испытание длится 2 ч. Скорость обмена воздуха составляет от 40 до 60 объемов в час.

Защиту для первой характеристической цифры 5 считают удовлетворительной, если в результате проверки обнаруживают, что порошок талька не накапливается в таком количестве либо в таком месте, что нормальная работа оборудования или

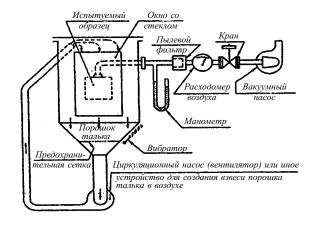


Рис. 5.1-2 Устройство для проверки защиты от пыли (камера пыли)

требования безопасности могли бы быть нарушены при попадании на эти места пыли любого другого вида. За исключением специальных случаев, точно указанных в стандартах на конкретный вид изделия, пыль не должна накапливаться в местах, где она может вызвать трекинг (образование токопроводящих следов) на путях утечки.

Защита для первой характеристической цифры 6 считается удовлетворительной, если по завершении испытания внутри оболочки не наблюдается отложений пыли.

5.2 Защита от проникновения воды.

Описание степеней защиты от проникновения воды и методы проведения испытаний для них приведены в табл. 5.2-1.

Условия испытаний.

При испытаниях используется пресная вода.

При проведении испытаний на характеристические цифры от 1 до 7 температура воды не должна отличаться более чем на 5 °C от температуры испытуемого образца. Если температура воды ниже температуры образца более чем на 5 °C, следует предусмотреть возможность выравнивания давления в оболочке.

Во время испытаний может частично конденсироваться влага, содержащаяся внутри оболочки. Накапливающийся конденсат не следует путать с водой, просачивающейся внутрь оболочки извне во время испытаний.

Таблица 5.2-1

		таолица 5.2-1
Вторая характерис-		Степень зашиты от проникновения воды
тическая цифра	Краткое описание	Испытания
0	Нет защиты	Испытания не требуются
1	Защищено от верти- кально падающих капель воды	Оборудование в нормальном рабочем положении подвергается воздействию вертикально падающих капель из емкости с водой через отверстия в днище, расположенные на пересечении воображаемой сетки со стороной ячейки 20 мм. Площадь днища должна быть большей, чем площадь испытываемого оборудования. Интенсивность дождя должна быть 1 мм/мин в течение 10 мин
2	Защищено от верти- кально падающих капель воды, когда оборудование откло- нено на угол до 15°	Испытания проводятся аналогично испытаниям для характеристической цифры 1 с отклонением изделия от вертикального положения на 15° поочередно в любые стороны. Интенсивность дождя составляет 3 мм/мин в течение 2,5 мин в каждом из наклоненных положений
3	Защищено от воды, падающей в виде дождя	Оборудование в нормальном рабочем положении обливается водой из: качающейся трубы, отклоняющейся от вертикали на углы $\pm 60^\circ$ (рис. 5.2-1). Расход воды: 0,07 л/мин \pm 5 % через одно отверстие, умноженное на число отверстий в трубе. Длительность полного колебания $(2\times 120^\circ)$ должна составлять около 4 с. Через 5 мин испытаний оборудование поворачивается на 90° в горизонтальной плоскости, и испытания продолжают еще в течение 5 мин. Или: разбрызгивателя под углом $\pm 60^\circ$ к вертикали (рис. 5.2-2). Расход воды: 10 л/мин \pm 5 %. Длительность испытания рассчитывается исходя из 1 мин на 1 м² поверхности испытываемого оборудования, но не менее 5 мин
4	Защищено от сплошного обрызгивания	Испытания проводятся аналогично испытаниям для характеристической цифры 3, но с обрызгиванием оборудования со всех сторон
5	Защищено от водяных струй	Оборудование с расстояния $2,5-3,0$ м обливается со всех сторон водой из брандспойта с диаметром сопла $6,3$ мм и интенсивностью $12,5$ л/мин ± 5 %. Длительность испытания рассчитывается, исходя из 1 мин на 1 м 2 поверхности испытываемого оборудования, но не менее 3 мин
6	Защищено от сильных водяных струй	Оборудование с расстояния 2,5 — 3,0 м обливается со всех сторон водой из брандспойта с диаметром сопла 12,5 мм и интенсивностью 100 л/мин ± 5 %. Длительность испытания рассчитывается исходя из 1 мин на 1 м² поверхности испытываемого оборудования, но не менее 3 мин
7	Защищено от воздействия при временном (непродолжительном) погружении в воду	Оборудование погружается в резервуар с водой. Если высота оборудования менее 850 мм, то самая нижняя точка оболочки оборудования должна находиться на глубине 1000 мм от уровня воды. Если высота оборудования более или равна 850 мм, то самая верхняя точка оболочки оборудования должна находиться на глубине 150 мм от уровня воды. Продолжительность испытания — 30 мин
8	Защищено от воздействия при длительном погружении в воду	Оборудование погружается в резервуар с водой. Уровень воды и продолжительность испытания определяются по договоренности с производителем оборудования. При этом условия испытаний должны быть не ниже условий испытаний для характеристической цифры 7
1 17		

1 Интенсивность дождя может отличаться только в большую сторону на величину, меньшую или равную 0,5 мм/мин.

После испытаний оборудование должно быть проверено на проникновение внутрь него воды.

Допустимое количество воды, которое может проникнуть внутрь оболочки, определяется типом оборудования. При этом, в общем случае, если определенное количество воды проникает внутрь оболочки, не должно быть:

нарушения нормальной работы оборудования или его безопасности;

накопления воды на электроизоляционных частях, где вода может вызвать трекинг (образование токопроводящих следов) на путях утечки;

попадания воды на части, находящиеся под напряжением, или на обмотки, не рассчитанные на работу в увлажненном состоянии;

накопления воды вблизи кабельных вводов либо проникновения внутрь кабелей.

При наличии в оболочке сливных отверстий следует убедиться путем осмотра, что проникающая

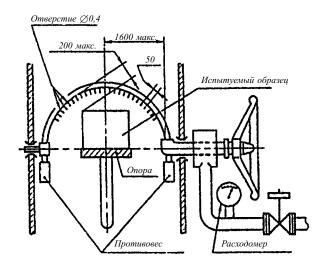


Рис. 5.2-1 Устройство для проверки защиты от дождя и обрызгивания водой (качающаяся труба), размеры даны в мм

Таблица 5.2-2

Радиус трубы	Степень за	щиты IPX3	Степень за	епень защиты IPX4		
<i>R</i> , мм	Число отверстий N^1	Полный расход воды (л/мин)	Число отверстий N^1	Полный расход воды (л/мин)		
200 400 600 800 1000 1200 1400 1600	8 16 25 33 41 50 58 67	0.56 1,1 1,8 2,3 2,9 3,5 4,1 4,7	12 25 37 50 62 75 87 100	0,84 1,8 2,6 3,5 4,3 5,3 6,1 7,0		

¹ В зависимости от фактического расположения центров отверстий число отверстий может быть увеличено на 1.

вода не накапливается в оболочке и может свободно выходить через указанные отверстия без повреждения оборудования.

В качающейся трубе должны быть предусмотрены отверстия по дуге 60° с каждой стороны от центра. Стол для установки оболочки не должен быть решетчатым.

Количество отверстий и расход воды указаны в табл. 5.2-2.

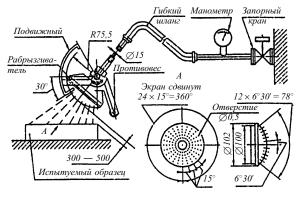


Рис. 5.2-2 Переносное устройство для проверки защиты от дождя и обрызгивания водой (разбрызгиватель), размеры даны в мм

Примечание. 121 отверстие диаметром 0,5 мм, одно отверстие в центре; на двух внутренних окружностях по 12 отверстий под углом 30° , на четырех внешних окружностях по 24 отверстия под углом 15° . Материал экрана — алюминий. Материал разбрызгивателя — латунь.

6. Испытания на электромагнитную совместимость (ЭМС).

6.1 Испытания на уровень помех, создаваемых другому оборудованию.

Объем испытаний на уровень электромагнитных помех, создаваемых другому оборудованию, приведен в табл. 6.1.

Таблица 6.1

№ п\п	Свойства оборудования,	Оборудование, предназначенное для установки на судах				
	подлежащие проверке во время испытаний	во внутренних помещениях	на открытой палубе	носимое (перенос- ное)		
1 2	Уровень напряжения кондуктивных помех Уровень напря-	+	+	+		
	женности поля излучаемых помех					

Во время испытаний оборудование должно работать в нормальных условиях, а положение органов управления, влияющих на уровень помех, должно быть таким, чтобы установить максимальный уровень помех, создаваемых испытываемым обору-

дованием. Если оборудование имеет несколько энергетических режимов, например, «работа», «готовность» и пр., то должен быть определен режим, создающий максимальный уровень помех, и именно для этого режима должны выполняться все измерения. Антенные клеммы оборудования должны быть подключены на неизлучающий эквивалент антенны. Оборудование, включая передатчик, должно находиться в рабочем состоянии, но не в режиме излучения.

6.1.1 Испытания на уровень напряжения кондуктивных помех.

При испытаниях на уровень напряжения кондуктивных помех измеряются любые сигналы, генерируемые оборудованием, которые появляются на его зажимах (клеммах) подключения электропитания и поэтому могут попасть в судовую сеть и нарушить нормальную работу другого оборудования.

Уровень напряжения кондуктивных помех, создаваемых радиооборудованием на зажимах (клеммах) электропитания, не должен превышать предельных значений, приведенных на рис. 6.1.1.

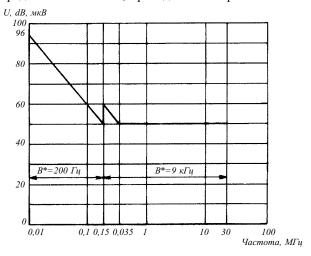
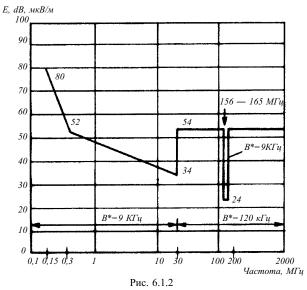


Рис. 6.1.1

Кривая уровня допустимого напряжения кондуктивных помех U, измеренных на зажимах (клеммах) электропитагиях оборудования: B^* — ширина полосы пропускания измерительного приемника

Для измерения уровня напряжения помех должен использоваться квазипиковый измерительный приемник. Ширина полосы пропускания приемника при измерениях в частотном диапазоне от 10 кГц до 150 кГц должна быть 200 Гц, а в частотном диапазоне от 150 кГц до 30 МГц — 9 кГц.

Соединительные кабели между клеммами электропитания испытываемого оборудования и эквивалентом сети питания должны быть экранированными и не превышать по длине 0,8 м. Если испытываемое оборудование состоит из нескольких приборов с индивидуальными клеммами


для постоянного и переменного тока, то клеммы питания с одинаковым номиналом напряжения могут быть подключены параллельно.

При выполнении измерений все измерительные приборы и испытываемое оборудование должны быть установлены на заземленной плоскости и подсоединены к ней. При отсутствии возможности использования заземленной плоскости должно быть выполнено эквивалентное заземление на металлическую раму или корпус испытываемого оборудования.

6.1.2 Испытание на уровень напряженности поля излучаемых помех.

При этих испытаниях измеряются любые сигналы, излучаемые оборудованием (кроме излучений антенны), которые могут потенциально нарушить нормальную работу другого судового оборудования, например, радиоприемных устройств.

Уровень напряженности поля излучаемых помех, создаваемых радиооборудованием на расстоянии 3 м от его корпуса, не должен превышать значений, указанных на рис. 6.1.2.

Кривая уровня допустимой напряженности поля излучаемых помех E, измеренной на расстоянии 3 м от корпуса оборудования: B^* — ширина полосы пропускания измерительного приемника

Для измерений должен использоваться квазипиковый измерительный приемник. Ширина полосы пропускания приемника в диапазоне частот от 150 к Γ ц до 30 М Γ ц и от 156 М Γ ц до 165 М Γ ц должна быть 9 к Γ ц, а в диапазоне частот от 30 М Γ ц до 156 М Γ ц и от 165 М Γ ц до 2 Γ Γ ц — 120 к Γ ц.

На частотах от 150 кГц до 30 МГц должна измеряться напряженность магнитной составляющей электромагнитного поля. В качестве измерительной антенны должна использоваться рамочная антенна. Размеры такой антенны должны вписываться в квадрат

со стороной 60 см. В качестве альтернативы может использоваться ферритовая стержневая антенна.

При пересчете напряженности магнитного поля в эквивалентную напряженность электрического поля должен учитываться поправочный коэффициент + 51,5 дБ.

Для частот более 30 МГц должно выполняться измерение напряженности электрической составляющей электромагнитного поля. Измерительная антенна должна представлять собой симметричный диполь, укороченный диполь или другую антенну с высоким коэффициентом направленного действия.

Размеры измерительной антенны в направлении на испытываемое оборудование не должны превышать 20 % расстояния до него. На частотах более 80 МГц должна обеспечиваться возможность изменения высоты расположения центра антенны относительно земли в пределах от 1 м до 4 м.

Помещение для проведения испытаний должно иметь металлическую заземленную плоскость. Испытываемое оборудование должно быть представлено в полной комплектации со всеми соединительными межприборными кабелями и установлено в нормальном рабочем положении.

Если испытываемое оборудование состоит из нескольких блоков, то соединительные кабели (исключая микроволновые) между основным и всеми другими блоками должны иметь максимальную длину, указанную в спецификации предприятия (изготовителя). Имеющиеся входные и выходные разъемы испытываемого оборудования должны быть подключены к эквивалентам обычно используемого вспомогательного оборудования с использованием кабелей с максимальной длиной, указанной предприятием (изготовителем).

Избыточная длина кабелей должна быть собрана в бухты, уложенные на расстоянии 30 — 40 см (по горизонтали) от разъемов, к которым они подключены. Если это практически невозможно сделать, то следует выполнить размещение избыточной длины кабелей как можно ближе к изложенным требованиям.

Измерительная антенна должна быть размещена на расстоянии 3 м от испытываемого оборудования. Центр антенны должен быть выше заземленной плоскости, по крайней мере, на 1,5 м. Для определения максимального уровня помех антенна, измеряющая напряженность электрического поля, должна регулироваться только по высоте и иметь возможность вращения для получения горизонтальной и вертикальной поляризации. Сама антенна должна оставаться параллельной полу. С целью определения максимального уровня помех должна быть обеспечена возможность перемещения антенны вокруг испытываемого оборудования или вращения самого оборудования, размещаемого в ортогональной

плоскости измерительной антенны на уровне ее средней точки.

6.2 Устойчивость к воздействию внешних электромагнитных помех. Методы и требуемые результаты испытаний.

При проведении этих испытаний испытываемое оборудование должно быть представлено в своей нормальной рабочей комплектации, работать при нормальных условиях.

При испытании устойчивости к воздействию внешних электромагнитных помех результаты оцениваются по критериям работоспособности, отнесенным к рабочим условиям и функциональному назначению испытываемого оборудования. Эти критерии определяются следующим образом:

критерий работоспособности А. Испытываемое оборудование должно продолжать работать в соответствии с назначением во время и после проведения испытаний. Не допускается ухудшение работоспособности или потеря функций, определенных в соответствующем стандарте на оборудование и технической документации производителя;

критерий работоспособности В. Испытываемое оборудование должно продолжать работать в соответствии с назначением во время и после проведения испытаний. Не допускается ухудшение работоспособности или потеря функций, определенных в соответствующем стандарте на оборудование и технической документации производителя. При этом во время испытаний допускается ухудшение или потеря функций или работоспособности, которые могут самовосстанавливаться, но не допускается изменение установленного режима или оперативных данных;

критерий работоспособности С. Во время испытаний допускается временное ухудшение или потеря функции или работоспособности. При этом обеспечивается функция самовосстановления или может быть обеспечено восстановление нарушений в конце испытаний путем использования регулировок в соответствии со стандартом на оборудование и технической документацией предприятия (изготовителя).

Объем испытаний на устойчивость к электромагнитным помехам приведен в табл. 6.2.

Если оборудование содержит радиоприемник, то из испытаний на устойчивость к кондуктивным и излучаемым помехам исключаются заданные рабочие частоты оборудования вместе с любыми известными ложными откликами.

6.2.1 Устойчивость к кондуктивным низкочастотным помехам.

Эти испытания имитируют воздействие гармонических составляющих в сетях питания переменного тока или пульсаций напряжения в сетях постоянного тока. Эти испытания не применяются к

Таблипа 62

№	Свойства оборудования, подлежащие проверке	Оборудование, п	редназначенное для уст	гановки на судах
п/п	во время испытаний	во внутренних помещениях	на открытой палубе	носимое (переносное)
1	Устойчивость к кондуктивным низкочастотным помехам	+ критерий работ	+ госпособности А	_
2	Устойчивость к кондуктивным радиочастотным помехам	+ критерий работ	+ госпособности А	_
3	Устойчивость к излучаемым радиочастотным помехам	+ + + критерий работоспособности		ти А
4	Устойчивость к наносекундным импульсным помехам от быстрых переходных процессов в цепях источников питания переменного тока, сигнальных и управляющих цепях	+ критерий работ	+ госпособности В	_
5	Устойчивость к микросекундным импульсным помехам от медленных переходных процессов в сетях питания переменного тока	+ критерий работ	+ госпособности В	_
6	Устойчивость к кратковременным изменениям параметров в сети питания	+ критерий работ	+ госпособности В	_
7	Устойчивость к неисправностям источника питания	+ критерий работ	оспособности С +	_
8	Устойчивость к электростатическим разрядам	+ крит	+ герий работоспособност	+

оборудованию с питанием исключительно от аккумуляторов.

Оборудование должно оставаться работоспособным (критерий работоспособности А) при наложении на его напряжение питания дополнительных тестовых напряжений в диапазоне частот от 50 Гц до 10 кГц:

для оборудования с электропитанием от постоянного тока:

синусоидального напряжения, действующее значение которого составляет 10 % от номинального напряжения питания;

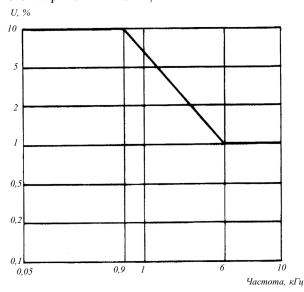


Рис. 6.2.1 Кривая испытательного напряжения при проверке оборудования на устойчивость к низкочастотным кондуктивным помехам

для оборудования с электропитанием от переменного тока:

синусоидального напряжения, действующее значение напряжения которого изменяется в зависимости от частоты в соответствии с рис. 6.2.1.

В отдельных случаях максимум мощности дополнительного прикладываемого напряжения может быть ограничен до 2 Вт.

6.2.2 Устойчивость к кондуктивным радиочастотным помехам.

При испытании имитируется эффект возмущений, индуктируемых в цепях питания, управления и прохождения сигналов от включения источника питания, системы зажигания двигателей, работающих эхолотов и судовых радиопередатчиков на частотах ниже 80 МГц.

Испытываемое оборудование должно быть размещено на изолированной подставке, расположенной на высоте 0,1 м над заземленной поверхностью. Кабели, подключаемые к испытываемому оборудованию, должны быть обеспечены соответствующими устройствами связи и развязки, располагаемыми на расстоянии 0,1 м — 0,3 м от испытываемого оборудования.

Испытания должны выполняться с использованием генератора, последовательно подключаемого к каждому устройству связи и развязки. При этом незадействованные входные клеммы устройства связи и развязки, используемые для подключения испытательного генератора, должны быть нагружены эквивалентом с безындукционным сопротивлением, равным волновому сопротивлению кабеля. Испытательный генератор должен настраи-

ваться для каждой схемы связи и развязки, при этом дополнительное и испытываемое оборудование отключаются и заменяются безындукционными сопротивлениями соответствующих номиналов (при сопротивлении кабеля 50 Ом дополнительные сопротивления должны составлять 150 Ом). Испытательный генератор должен быть настроен таким образом, чтобы обеспечить немодулированную э.д.с. требуемого уровня на входных клеммах испытываемого оборудования.

Испытания должны выполняться при следующих уровнях испытательного сигнала:

действующее значение напряжения 3 В при изменяющейся частоте в диапазоне от 10 к Γ ц до 80 М Γ ц;

действующее значение напряжения 10~B в точках с частотами: $2~M\Gamma$ ц; $3~M\Gamma$ ц; $4~M\Gamma$ ц; $6,2~M\Gamma$ ц; $8,2~M\Gamma$ ц; $12,6~M\Gamma$ ц; $16,5~M\Gamma$ ц; $18,8~M\Gamma$ ц; $22~M\Gamma$ ц и $25~M\Gamma$ ц.

Частота модуляции должна быть 400 Γ ц ± 10 % при глубине модуляции 80 % ± 10 %.

Скорость изменения частоты не должна превышать 1.5×10^{-3} декада/с, чтобы имелась возможность обнаружить любую неисправность испытываемого оборудования.

6.2.3 Устойчивость к излучаемым радиочастотным помехам.

При этих испытаниях имитируется эффект воздействия радиопередатчиков, работающих на частотах свыше 80 МГц, например, судовых стационарных и носимых УКВ-радиостанций, находящихся рядом с оборудованием.

Испытываемое оборудование должно устанавливаться в подходящем экранированном помещении или в безэховой камере, размеры которой соизмеримы с оборудованием. Испытываемое оборудование должно быть установлено в зоне равномерного (однородного) поля и быть изолировано от пола диэлектрической подставкой. Испытания должны выполняться при всех ориентациях (со всех сторон) оборудования.

Если кабели для испытываемого оборудования не указаны, то должны использоваться неэкранированные параллельные проводники. Эти проводники подвергаются воздействию электромагнитного поля с расстояния 1 м от испытываемого оборудования.

Скорость изменения частоты должна составлять 1.5×10^{-3} декада/с и быть достаточной для обнаружения любых неисправностей испытываемого оборудования. Отдельно при испытаниях должны быть проанализированы любые частоты, при которых оборудование особенно чувствительно к помехам.

Оборудование должно оставаться работоспособным (критерий работоспособности А) при размещении его в модулированном электрическом поле с напряженностью 10 В/м и при изменении частоты в диапазоне от 80 МГц до 2 ГГц. Частота модуляции должна быть 400 Гц \pm 10 % при глубине модуляции 80 % \times 10 %.

6.2.4 Устойчивость к наносекундным импульсным помехам от быстрых переходных процессов в цепях источников питания переменного тока, сигнальных и управляющих цепях.

При этих испытаниях имитируются быстрые низкоэнергетические переходные процессы, создаваемые оборудованием, включение которого сопровождается искрением на контактах.

Оборудование должно оставаться работоспособным (критерий работоспособности В), если к его входам источников питания, сигнальных и управляющих цепей прикладывается импульсное напряжение со следующими параметрами:

время нарастания — 5 нс (на уровне 10 % — 90 % амплитуды);

длительность — 50 нс (на уровне 50 % амплитуды);

амплитуда — 2 кВ на дифференциальных входах источников питания переменного тока (вводится в цепи силового питания относительно корпуса) и 1 кВ на входах сигнальных и управляющих цепей по отношению к общему заземленному входу (вводится в сигнальные цепи и цепи управления с помощью стандартных емкостных клещей);

частота повторения — 5 кГц (1 кВ); 2,5 кГц (2 кВ); характер воздействия — периодические короткие последовательности длительностью 15 мс, повторяющиеся каждые 300 мс;

продолжительность — от 3 до 5 минут для каждой положительной и отрицательной полярности импульсов.

6.2.5 Устойчивость к микросекундным импульсным помехам от медленных переходных процессов в сетях питания переменного тока.

Эти испытания имитируют воздействие импульсных напряжений большой энергии, создаваемых тиристорными переключателями в сетях питания переменного тока.

Оборудование должно оставаться работоспособным (критерий работоспособности В), если к его цепям питания прикладывается импульсное напряжение со следующими параметрами:

время нарастания — 1,2 мкс (на уровне 10 % — 90 % амплитуды);

длительность — 50 мкс (на уровне 50 % амплитуды);

амплитуда — 2 кВ — линия/земля, 1 кВ линия/линия;

частота повторения — 1 имп./мин;

продолжительность — 5 мин для каждой положительной и отрицательной полярности импульсов

6.2.6 Устойчивость к кратковременным изменениям параметров в сети питания.

Эти испытания имитируют изменения напряжения и частоты в цепях питания из-за больших изменений нагрузки. Испытания не применяются для оборудования с питанием от постоянного тока.

Изменения параметров питающей сети должны осуществляться с использованием программируемого источника питания.

Оборудование должно оставаться работоспособным (критерий работоспособности В) при следующих изменениях параметров питающей сети относительно номинальных значений в течение 10 мин:

напряжение: номинальное значение + (20 \pm 1) %, длительностью 1,5 с \pm 0,2 с;

частота: номинальное значение + (10 ± 0.5) %, длительностью 5 с ±0.5 с, с наложением друг на друга указанных изменений параметров;

напряжение: номинальное значение — (20 ± 1) %, длительностью 1,5 с + 0,2 с;

частота: номинальное значение — (10 ± 0.5) % длительностью 5 с \pm 0.5 с, с наложением друг на друга указанных изменений параметров.

Время нарастания и спада напряжения и частоты должно быть 0,2 с \pm 0,1 с (на уровне 10 % — 90 % амплитуды).

6.2.7 Устойчивость к неисправностям источника питания.

Эти испытания имитируют короткие перерывы судового электропитания из-за перехода с одного источника питания на другой или при срабатывании защиты по току. Данные испытания не применяются к оборудованию с электропитанием исключительно от аккумуляторных батарей.

Оборудование должно оставаться работоспособным (критерий работоспособности С) после каждого из трех перерывов в напряжении питания длительностью 60 с. При этом не должно разрушаться программное обеспечение и не должны теряться оперативные данные, хранимые в цифровой памяти системы.

6.2.8 Устойчивость к электростатическим разрядам.

При этих испытаниях имитируются воздействия электростатических разрядов, возникающих при работе персонала из-за возможных зарядов, вызываемых контактами с ковриками из искусственного волокна или виниловыми покрытиями.

Испытания должны выполняться с использованием генератора электростатических разрядов (накопительной емкости номиналом в 150 пФ и разрядного сопротивления 330 Ом, подключаемых к разрядному наконечнику). Испытываемое оборудование должно быть установлено на металлическую заземленную плоскость, но с изоляцией от нее. При

этом заземленная плоскость должна выступать за габариты оборудования, по крайней мере, на 0,5 м для всех его сторон. Разряды от генератора должны прикладываться к тем точкам и поверхностям оборудования, которые доступны персоналу при нормальной работе. При испытаниях генератор должен располагаться перпендикулярно поверхности, а места приложения разрядов могут выбираться исходя из того, чтобы обеспечивалось 20 разрядов в секунду. Каждое положение должно подвергаться испытаниям на 10 положительных и 10 отрицательных разрядов с интервалом, как минимум 1 с между разрядами, чтобы обеспечить выявление любых неисправностей в работе оборудования. При испытаниях предпочтительным методом является контактный разряд. Если нельзя использовать контактный метод (при наличии покрашенных поверхностей), то должен использоваться воздушный разряд.

Для имитации разрядов на объектах, расположенных или установленных около испытываемого оборудования, должны быть выполнены 10 положительных и 10 отрицательных контактных разрядов, приложенных с каждой стороны оборудования к заземленной плоскости. Места приложения разрядов должны отстоять на расстоянии 0,1 м от испытываемого оборудования.

Следующие 10 разрядов должны быть приложены к центру заземленной плоскости, размер которой составляет $0.5 \,\mathrm{m} \times 0.5 \,\mathrm{m}$. Эти испытания должны быть проделаны для всех четырех сторон оборудования. При этом вертикальная плоскость должна размещаться таким образом, чтобы все четыре лицевых стороны оборудования были полностью охвачены.

Оборудование должно оставаться работоспособным (критерий работоспособности В) при тестовых уровнях напряжения разряда 6 кВ для контактного разряда и 8 кВ для воздушного разряда.

7. Определение безопасной дистанции до магнитного компаса.

На каждом блоке оборудования, обычно размещаемом вблизи главного или путевого магнитного компаса, должно быть четко указано минимальное безопасное расстояние, на котором он может устанавливаться от компасов. Альтернативно, сведения о минимальном безопасном расстоянии до магнитного компаса могут указываться в технической документации на навигационное оборудование, за исключением носимого (переносного) оборудования.

Безопасная дистанция определяется как минимальное расстояние между ближайшей точкой испытываемого оборудования и центром компаса или магнитометра, при котором девиация компаса составляет менее $5.4^{\circ}/B$ для главного компаса, и

18°/В — для путевого компаса, где В, мкТл — горизонтальная составляющей индукции магнитного поля Земли в месте проведения испытаний оборудования.

Для определения безопасной дистанции до магнитного компаса должен использоваться магнитный компас с ценой деления картушки 0.1° .

При испытаниях выключенное оборудование приближают к магнитному компасу, пока девиация не станет равной $5.4^{\circ}/B$ ($18^{\circ}/B$).

Аналогичные измерения проводятся при включенном состоянии оборудования.

Далее проводится проверка безопасной дистанции до магнитного компаса после намагничивания оборудования, находящегося в выключенном состоянии. Для намагничивания используется поле постоянного тока напряженностью 120 А/м с наложением поля переменного тока частотой 50 Гц и действующим значением напряженности 1430 А/м. Если в результате подобного воздействия испытываемое оборудование может быть повреждено, действие поля переменного тока исключается. Направление поля должно быть таким, чтобы результирующее намагничивание было наибольшим. Намагниченное выключенное оборудование приближают к магнитному компасу до тех пор, пока девиация не станет равной 5,4°/В. Измеряется расстояние между ближайшей точкой оборудования и центром компаса.

При каждом испытании оборудование должно поворачиваться для определения направления, при котором проявляется максимальная девиация.

Наибольшее значение расстояния, полученного в результате всех вышеуказанных проверок, является безопасной дистанцией. Все полученные оценки дистанции округляются до ближайших 5 или 10 см.

8. Определение уровня электромагнитного излучения радиочастотного диапазона.

Оборудование, предназначенное для излучения электромагнитной энергии радиочастотного диапазона на частотах свыше 30 МГц, не должно создавать на рабочих местах опасного для людей уровня электромагнитного поля.

Плотность потока мощности или соответствующая ему напряженность электромагнитного

поля измеряется на расстоянии 0,2 м от блоков передатчиков, элементов фидерных линий и коммутирующих устройств.

Измерения следует производить на уровнях: 0,5; 1; 1,7 м от пола. В зависимости от конкретных условий размещения оборудования измерения могут проводиться и на других уровнях.

Оборудование должно работать в режиме излучения максимальной мощности.

В случае, если измеренное значение плотности потока мощности электромагнитного поля превышает 10 и 100 Вт/м², необходимо повторить измерения на большем расстоянии от оборудования. Число точек измерения должно быть достаточным для определения границ зоны, соответствующей указанным уровням. Максимальные дистанции, на которых достигается плотность потока мощности 10 и 100 Вт/м², должны быть указаны в технической документации на навигационное оборудование.

Измерение интенсивности электромагнитных полей в диапазоне частот до 300 МГц должно проводиться средствами измерения, предназначенными для определения среднеквадратического значения напряженности электромагнитного поля, а в диапазоне от 300 МГц до 2 ГГц — средствами измерения, предназначенными для определения средних значений плотности потока мощности.

9. Определение уровня излучения от устройств визуального отображения информации.

Устройства визуального отображения информации оборудования должны быть испытаны на уровень создаваемых электростатического, магнитного и электромагнитного полей (за исключением устройств визуального отображения информации, у которых число отображаемых строк текста не превышает четырех).

Излучения от устройства визуального отображения информации с размером диагонали экрана до 0,5 м не должны превышать уровней, приведенных в табл. 9.

Измерения напряженности электростатического поля не проводятся для устройств, при работе которых электростатический потенциал не превышает 500 В.

Таблица 9

Измеряемый параметр	Диапазон частот	Максимально допустимые значения
Напряженность электромагнитного поля на расстоянии 30 см от лицевой стороны экрана устройства	5 Гц – 2 кГц	10 В/м
	2 – 400 кГц	1 B/M
Напряженность электромагнитного поля на расстоянии 50 см от оборудования во всех направлениях	2 – 400 кГц	1 B/M
Магнитная индукция на расстоянии 30 см от лицевой стороны экрана устройства	5 Гц — 2 кГц	200 нТл
Магнитная индукция на расстоянии 50 см от оборудования во всех направлениях	5 Гц — 2 кГц	200 нТл
	2 – 400 кГц	25 нТл
Напряженность электростатического поля на расстоянии 10 см от лицевой стороны экрана устройства	_	5 ±0,5 кВ/м

При проведении измерений излучения устройство размагничивания оборудования должно быть выключено. Плоскость экрана должна находиться в вертикальном положении, насколько это возможно. Оборудование и средства измерения должны быть заземлены. Расстояние от оборудования до корпусов средств измерения и других металлических или заземленных объектов должно быть не менее 50 см.

Измерения проводятся при включенном устройстве визуального отображения информации при положениях рабочих и сервисных органов управления, обеспечивающих максимальное излучение при сохранении нормальной работоспособности. Внутренние установочные регулировки, не предназначенные для подстройки при нормальной эксплуатации оборудования, не рассматриваются как сервисные. Устройства с переключением режимов работы должны быть проверены в режимах с минимальной и максимальной частотой развертки. Яркость изображения должна быть максимально возможной, но не более 100 кд/м². Регулировка контрастности должна обеспечивать слабую различимость растра фона изображения при нормальной освещенности в помещении. На экране устройства визуального отображения устанавливается типичное для данного вида работ изображение с максимальной плотностью информации. Характер изображения подробно фиксируется в протоколе испытаний.

Измерения напряженности электромагнитного поля и магнитной индукции проводятся перед центром экрана устройства визуального отображения на расстоянии 30 см по нормали от экрана, а также на высоте центра экрана вокруг оборудования на расстоянии, равном сумме максимальной глубины оборудования и 50 см. При последнем измерении датчик поля закрепляется неподвижно, а оборудование поворачивается вокруг вертикальной оси. При измерении напряженности электромагнитного поля поворот оборудования осуществляется ступенями по 90°. При измерении магнитной индукции поворот оборудования осуществляется ступенями по 45°, и изменяется высота датчика поля на + 30 см от высоты центра экрана.

Электростатическое поле должно быть измерено соответствующим датчиком, установленным в центре заземленной квадратной металлической пластины размерами 0.5 ± 0.5 м. Пластина должна быть размещена параллельно плоскости экрана таким образом, чтобы датчик поля находился на расстоянии 10 см от центра экрана.

Для устройства отображения визуальной информации с диагональю дисплея более 0,5 м должны быть проведены измерения максимального расстояния, на котором:

магнитная индукция составляет не более 250 нТл в диапазоне частот 5 Γ ц — 2 к Γ ц и не более 150 нТл в диапазоне частот 2 — 400 к Γ ц;

напряженность электрического поля составляет не более 15 В/м в диапазоне частот 5 Γ ц — 2 к Γ ц и не более 10 В/м в диапазоне частот 2 — 400 к Γ ц;

напряженность электростатического поля составляет не более $5\pm0.5~{\rm kB/m}.$

Эти дистанции должны быть приведены в технической документации на оборудование.

Измерения должны осуществляться приборами с допустимой основной относительной погрешностью не более $\pm~20~\%$.

10. Определение уровня рентгеновского излучения.

Измерения уровня рентгеновского излучения проводятся для оборудования, которое может создавать рентгеновское излучение при своей работе (электронно-лучевые трубки, элементы приемопередатчиков и т. п.).

Оборудование не должно создавать излучение, превышающее мощность дозы 5 мкДж/кгч (0,5 мбэр/ч) на расстоянии 50 мм от поверхности оборудования.

Измерения рентгеновского излучения проводятся соответствующим дозиметрическим прибором при всех типовых режимах работы оборудования. Органы управления оборудования, влияющие на уровень рентгеновского излучения, должны быть установлены в положения, обеспечивающие максимальное излучение. Проводится обследование всей поверхности источника рентгеновского излучения для выявления максимальной интенсивности излучения. Детектор прибора следует перемещать на расстоянии 50 мм от оборудования со скоростью, позволяющей регистрировать установившиеся показания прибора. Для контроля результатов проводятся также измерения мощности естественного радиационного фона в месте размещения контролируемого оборудования при отключенном источнике излучения. Измерения должны проводиться приборами с допустимой основной относительной погрешностью не более \pm 20 %.

11. Измерение уровня акустического шума.

При испытаниях измеряется уровень звукового давления, создаваемого оборудованием во время работы.

Уровень акустического шума, создаваемого оборудованием во время работы (при выключенной звуковой сигнализации), не должен превышать 60 дБ (А) на расстоянии 1 м от любой части оборудования. Уровень акустического шума, создаваемого звуковой сигнализацией на расстоянии 1 м от источника излучения, должен быть в пределах от 75 до 85 дБ.

Измерения проводятся в лаборатории с помощью измерителя уровня звукового давления с функцией частотного анализатора, соответствующего требованиям МЭК 60651 и МЭК 60804, 1-го класса точности, с кривой частотной характеристики, взвешенной по типу «А».

ПРИЛОЖЕНИЕ 2

ДОПОЛНИТЕЛЬНАЯ ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ ПО НАВИГАЦИОННОМУ ОБОРУДОВАНИЮ МОРСКИХ СУДОВ

Рекомендации по эксплуатационным требованиям к гирокомпасам (резолюция A.424(XI)).

Рекомендация по эксплуатационным требованиям к радиолокационному оборудованию (резолюция MSC.64(67), приложение 4).

Эксплуатационные требования к средствам автоматической радиолокационной прокладки (резолюция A.823(19)).

Рекомендация по эксплуатационным требованиям к электронным картографическим навигационным информационным системам (ЭКНИС) (резолюция A.817(19) с поправками в резолюции MSC.86(70)).

Рекомендация по требованиям к точности судовождения (резолюция А.529(13)).

Рекомендация по эксплуатационным требованиям к судовым приемникам систем «Лоран-С» и «Чайка» (резолюция А.818(19)).

Рекомендация по эксплуатационным требованиям к судовому приемному оборудованию ГНСС (GPS) (резолюция MSC.112(73)).

Рекомендация по эксплуатационным требованиям к судовому приемному оборудованию системы ГЛОНАСС (резолюция MSC.113(73)).

Рекомендация по эксплуатационным требованиям к судовому оборудованию для приема информации от морских радиомаяков, передающих дифференциальные поправки для глобальных навигационных спутниковых систем DGPS и ДГЛОНАСС (резолюция MSC.114(73)).

Рекомендация по эксплуатационным требованиям к объединенному приемному оборудованию GPS/ГЛОНАСС (резолюция MSC.115(73)).

Рекомендация по эксплуатационным требованиям к системам управления курсом (резолюция MSC.64(67), приложение 3 и резолюция MSC.74(69), приложение 2).

Рекомендация по эксплуатационным требованиям к универсальной судовой системе автоматического опознавания (автоматической идентификационной системе (АИС) (резолюция MSC.74(69), приложение 3).

Рекомендация по эксплуатационным требованиям к эхолотам (резолюция A.224(VII) с поправками в резолюции MSC.74(69), приложение 4).

Рекомендация по эксплуатационным требованиям к устройствам для измерения и индикации скорости и пройденного расстояния (резолюция A.824(19) с поправками в резолюции MSC.96(72)).

Эксплуатационные требования к указателям угловой скорости поворота (резолюция A.526(13)).

Рекомендация по унификации эксплуатационных требований к навигационному оборудованию (резолюция A.575(14)).

Рекомендация по методам измерения уровней шума в местах несения вахты (резолюция A.343(IX)).

В отношении унификации символов САРП см. циркуляр MSC/Circ.563 и публикацию МЭК 872.

Рекомендация по эксплуатационным требованиям к РЛ отражателям (резолюция A.384(X)).

Рекомендация по эксплуатационным требованиям к магнитным компасам (резолюция A.382(X)).

Рекомендация по эксплуатационным требованиям к сигнальным лампам для подачи светосигналов днем (резолюция MSC.95(72)).

Рекомендация по эксплуатационным требованиям к морским устройствам передачи курса (резолюция MSC.116(73)).

Рекомендации по эксплуатационным требованиям к судовым приборам регистрации данных рейса (резолюция A.861(20)).

Рекомендации по эксплуатационным требованиям к звукоприемным устройствам (резолюция MSC.86(70), приложение 1).

Рекомендации по эксплуатационным требованиям к морским устройствам передачи магнитного курса (резолюция MSC.86(70), приложение 2).

Рекомендации по эксплуатационным требованиям к интегрированным навигационным системам (резолюция MSC.86(70), приложение 3).

17 ОБОРУДОВАНИЕ ПО ПРЕДОТВРАЩЕНИЮ ЗАГРЯЗНЕНИЯ С СУДОВ

17.1 ОБЩИЕ ПОЛОЖЕНИЯ

- 17.1.1 Положения настоящего раздела применяются при техническом наблюдении за оборудованием по предотвращению загрязнения с судов (ПЗС), подлежащим техническому наблюдению Регистра согласно Номенклатуре РС.
- **17.1.2** Раздел устанавливает порядок проведения технического наблюдения Регистра за изготовлением перечисленного в Номенклатуре РС оборудования по ПЗС.
- 17.1.3 Общие положения по организации технического наблюдения изложены в части I «Общие положения по техническому наблюдению», требования к технической документации в части II «Техническая документация.
- **17.1.4** В настоящем разделе дается следующее определение наружному осмотру оборудования по ПЗС:

наружный осмотр — осмотр детали, материала, комплектующих изделий, проверка сопроводительных документов, выданных в соответствии с принятой формой технического наблюдения при изготовлении, и другой документации, определяющей соответствие объектов технического наблюдения одобренной технической документации, например, результаты обмера, наличие клейм (если они предусмотрены), результаты дефектоскопии (если она предусмотрена).

По результатам наружного осмотра определяется возможность продолжения процесса изготовления (обработки), монтажа, гидравлического испытания и т. п.

- 17.1.5 Все материалы и комплектующие изделия, предназначенные для оборудования по ПЗС, должны иметь документы, подтверждающие соответствие материала и способа изготовления указанному в одобренной технической документации. Эти документы должны быть оформлены в соответствии с формой технического наблюдения, предусмотренной Номенклатурой РС.
- 17.1.6 Проведение необходимых испытаний и их объем, порядок освидетельствования оборудования по ПЗС и комплектующих изделий, устанавливаются в соответствии с перечнем объектов технического наблюдения и действующими нормативными документами, согласованными с Регистром.
- **17.1.7** Инспектор при необходимости может проводить периодические проверки и освидетельствования, не предусмотренные перечнем, но

вытекающие из договора о техническом наблюдении и/или СПИ, например:

- **.1** проверку эффективности операций контроля;
- .2 проверку соблюдения технологического процесса;
- .3 проверку не включенных в перечень узлов и деталей, качество изготовления которых влияет на работоспособность оборудования в целом, а проверка их на окончательной стадии изготовления невозможна;
- .4 освидетельствование и испытания для выдачи Свидетельства о типовом одобрении (испытании) изделия или Свидетельства на технологический процесс;
- .5 освидетельствование с целью признания изготовителя, испытательной лаборатории, испытательной станции.

Во всех случаях при обнаружении недопустимого дефекта или нарушения на любом этапе предъявления объекта технического наблюдения инспектор при необходимости может потребовать повторной проверки любой из предшествующих операций в объеме, достаточном для выявления причин и предупреждения появления дефекта.

- 17.1.8 Методы контроля, инструмент и приспособления для проверки при изготовлении и монтаже оборудования по ПЗС определяются предприятием (изготовителем) по согласованию с Регистром и указываются в документации на технологический процесс.
- **17.1.9** Нормы допусков и монтаж, не отраженные в одобренной документации на изготовление, должны быть указаны в документации на технологический процесс, одобренной Регистром.
- 17.1.10 При проведении гидравлических испытаний следует руководствоваться требованиями 1.3 части IX «Механизмы» Правил классификации и постройки морских судов.

Условия проведения должны отвечать действующим стандартам и следующим требованиям:

- .1 температура окружающего воздуха должна быть не ниже 5 °C;
- .2 разность температур окружающего воздуха и среды, используемой для гидравлического испытания, должна быть не более 10 °C, при этом для исключения отпотевания следует использовать среду с температурой, превышающей температуру окружающего воздуха;

- .3 запрещается производить любые работы на деталях, подвергаемых гидравлическому испыта-
- 17.1.11 электрическое оборудование, системы автоматического или дистанционного управления и измерения, а также устройства АПС, защиты, индикации оборудования ПЗС должны быть испытаны по прямому назначению.

До и после испытаний необходимо провести замеры сопротивления изоляции электрического оборудования и устройств автоматики.

- **17.1.12** Техническое наблюдение за изготовлением оборудования по ПЗС при установившемся производстве осуществляется в соответствии с 1.7 и 17.3.
- **17.1.13** Техническое наблюдение за изготовлением опытных и головных образцов оборудования по ПЗС осуществляется в соответствии с 1.5, 1.6 и 17.3.

17.2 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

17.2.1 Изготовление оборудования по ПЗС, деталей и узлов, а также выполнение технологических операций осуществляется под техническим наблюдением Регистра по одобренной им технической документации и в соответствии с 1.4.

17.3 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ ОБОРУДОВАНИЯ ПО ПРЕДОТВРАЩЕНИЮ ЗАГРЯЗНЕНИЯ ПРИ УСТАНОВИВШЕМСЯ ПРОИЗВОДСТВЕ

17.3.1 Общие положения.

- 17.3.1.1 Техническое наблюдение за изготовлением оборудования по ПЗС осуществляется в соответствии с требованиями настоящей главы и в объеме, приведенном в табл. 17.3.1.1.
- **17.3.1.2** Детали изделий до сборки выборочно проверяются на соответствие чертежным размерам и применяемому материалу. Сопровождающие документы также подлежат проверке.
- **17.3.1.3** Сварные швы корпусов оборудования по ПЗС должны быть двусторонними или односторонними с полным проваром.
- 17.3.1.4 Соединяемые детали изделий для получения требуемого сопряжения не должны выправляться за счет чрезмерного натяга болтами, прихватами и подгоняться в холодном состоянии с помощью ударов.

При необходимости по согласованию с инспектором Регистра подгонку можно сделать нагревом.

- 17.3.1.5 Элементы систем, входящих в состав оборудования по ПЗС, должны быть подвергнуты гидравлическим испытаниям в соответствии с требованиями 21.1 и 21.2 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.
- 17.3.1.6 Оборудование по ПЗС должно иметь табличку, на которой должны быть указаны назначение оборудования, название предприятия (изготовителя), тип и модель, серийный номер и год изготовления. Табличка должна надежно крепиться к оборудованию.
- 17.3.1.7 При замене комплектующих изделий или внесении конструктивных изменений в оборудование по ПЗС, одобренное Регистром, должны быть проведены испытания в соответствии с 1.7.6 и 1.7.7.
- 17.3.1.8 Оборудование по ПЗС подвергается испытаниям на стенде предприятия (изготовителя) по программе, разработанной в соответствии с методиками испытаний (см. приложение 1) и одобренной Регистром.

По положительным результатам типовых испытаний на изделия, указанные в 1.1 — 1.4 и 2.1, 3.1, 5.2 табл. 17.3.1.1, оформляются Свидетельства о типовом одобрении (испытании) в соответствии с приложением 2:

- .1 на сепараторы на 15 млн⁻¹ по форме 2.4.17.1²;
- .2 на сигнализаторы на 15 млн⁻¹ по форме 2.4.11.1²;
- .3 на приборы автоматического замера нефтесодержания балластных и промывочных вод в сбросе по форме $2.4.16.1^2$;
- .4 на приборы определения границы раздела «нефть — вода» в отстойных танках — по форме 2.4.19¹;
- .5 на установки для обработки сточных вод по формам $2.4.13^1$ и $2.4.13.1^2$;
 - **.6** на инсинераторы по форме $2.4.12^2$.

Инструкция о порядке оформления и выдачи Свидетельств о типовом одобрении (испытании) приведена в приложении 3.

На дизельные двигатели, указанные в 5.1 таблицы, оформляются Свидетельства по предотвращению загрязнения атмосферы дизелем по форме 2.4.40 с Дополнениями формы 2.4.41.

- 17.3.1.9 На изделия и оборудование по ПЗС, указанные в 1.5, 2.2, 2.3, 3.2, 4.1 4.3 и 5.3 табл. 17.3.1.1, при выполнении требований 17.3.1.8 оформляются Свидетельства о типовом одобрении по форме 6.8.3 в соответствии с разд. 7 части I «Общие положения по техническому наблюдению».
- 17.3.1.10 На серийные изделия оборудования по ПЗС, указанного в табл. 17.3.1.1, оформляются свидетельства Регистра установленной формы. При выдаче Свидетельств для изделий, указанных в 1.1 1.4, 2.1, 3.1 и 5.2 табл. 17.3.1.1, делается запись

¹ Свидетельство о типовом испытании.

² Свидетельство о типовом одобрении.

Таблица 17.3.1.1

№ п/п	Объекты технического наблюдения	Осмотр материала, заготовки узлов и деталей	Проверка сопроводи- тельных документов	Наружный и внутренний осмотры	Проверка сварочных работ	Проверка изготовления деталей и узлов	Гидравлические испытания	Проверка в действии
1	Оборудование по предотвращению загрязнения нефтью:							
	.1 сепараторы на 15 млн ⁻¹	+	+	+	+	+	+	+
	.2 приборы автоматического замера нефтесодержания в сбросе балластных и	+	+	+	+	+	+	+
	промывочных вод							
	.3 сигнализаторы на 15 млн ⁻¹	+	+	+	+	+	+	+
	.4 приборы для определения границы раздела «нефть — вода» в отстойных танках	+	+	+	+	+	+	+
	.5 машинки для мойки танков сырой нефтью	+	+	+	+	+	+	+
2	Оборудование по предотвращению загрязнения сточными водами:							
	.1 установки для обработки сточных вод	+	+	+	+	+	+	+
	.2 установки для измельчения и обеззараживания сточных вод	+	+	+	+	+	+	+
	.3 насосы для сточных вод	+	+	+	+	+	+	+
3	Оборудование по предотвращению загрязнения мусором:						١,	
	.1 установки для сжигания мусора (инсинераторы)	+	+	+	+	+	+ 1	+
	.2 устройства для обработки мусора	+	+	+	+	+	+ 1	+
4	Оборудование по предотвращению загрязнения вредными жидкими							
	веществами, перевозимыми наливом:			l .		l .	l .	1.1
	.1 вентиляторы	+	+	+	+	+	+	+
	.2 моечные машинки	+	+	+	+	+	+	+
	.3 насосы для сбора вредных веществ	+	+	+	+	+	+	+
5	Оборудование по предотвращению загрязнения атмосферы:							
	.1 дизельные двигатели, соответствующие Правилу 13 Приложения VI к	+	+	+	+	+	+	+
	Конвенции МАРПОЛ 73/78 и требованиям Технического кодекса по контролю							
	выбросов окислов азота от судовых дизельных двигателей							
	.2 системы очистки выхлопных газов дизельных двигателей в соответствии с	+	+	+	+	+	+	+
	требованиями Приложения VI к Конвенции МАРПОЛ 73/78							
	.3 оборудование для отбора образцов топлива	+	+	+	+	+	+	+

¹ При необходимости.

Примечание. Оборудование по ПЗС должно подвергаться специальным и стендовым испытаниям в соответствии с 1.7.3, а также по требованию подразделения Регистра, осуществляющего техническое наблюдение при изготовлении.

о наличии Свидетельства о типовом одобрении (испытании) с указанием номера и даты выдачи.

17.3.1.11 Объем приемосдаточных испытаний серийных изделий определяется при одобрении программы по результатам испытаний первого серийного изделия.

17.3.2 Сепараторы на 15 млн⁻¹.

17.3.2.1 Оборудование и устройства проверяются на доступность узлов и деталей, подлежащих периодическому контролю и обслуживанию и ремонту, а также подвергаются функциональным испытаниям на стенде по разработанной изготовителем и одобренной Регистром программе с учетом особенностей и функций сепаратора на 15 млн⁻¹ конкретной конструкции. Каждый сепаратор на 15 млн⁻¹ должен доставляться с заполненным свидетельством предприятия (изготовителя), включающим протокол сдаточных испытаний.

17.3.2.2 Качество монтажа трубопроводов и арматуры, а также кабеля контролируется наружным осмотром. Плотность соединений трубопро-

водов и арматуры проверяется при гидравлических испытаниях изделий.

17.3.2.3 Если в состав оборудования входит сепаратор центробежного типа, он должен отвечать требованиям разд. 5.

17.3.3 Сигнализаторы на 15 млн⁻¹.

17.3.3.1 Сигнализаторы на 15 млн⁻¹ проверяются на доступность узлов и деталей, подлежащих периодическому контролю и обслуживанию, а также подвергаются функциональным испытаниям на стенде по разработанной предприятием (изготовителем) и одобренной Регистром программе с учетом особенностей и функций прибора конкретной конструкции. Каждый прибор должен доставляться с заполненным свидетельством предприятия (изготовителя), включающим протокол сдаточных испытаний.

17.3.4 Приборы автоматического замера нефтесодержания в сбросе балластных и промывочных вод.

17.3.4.1 Каждый прибор автоматического замера нефтесодержания в сбросе балластных и промывочных

вод и каждая секция управления системы автоматического замера, регистрации и управления сбросом нефти подвергаются функциональным испытаниям на стенде по разработанной предприятием (изготовителем) и одобренной Регистром программе с учетом особенностей и функций прибора конкретной конструкции. Каждый прибор должен доставляться с заполненным свидетельством предприятия (изготовителя), включающим протокол сдаточных испытаний.

- **17.3.4.2** Программа функциональных испытаний прибора должна включать:
- .1 проверку расхода, перепада давления или другого равноценного параметра, в зависимости от того, что применяется;
 - .2 проверку всех внешних соединений;
- .3 проверку всех устройств сигнализации, встроенных в прибор;
- .4 проверку правильности показаний для нескольких значений концентраций при работе на нефти, для которой предназначен прибор (способ проверки может быть любой, одобренный Регистром).
- 17.3.4.3 Программа функциональных испытаний секции управления сбросом нефти должна включать:
 - .1 проверку всех сигналов;
- .2 проверку правильности работы устройства для обработки сигналов и записывающей аппаратуры при изменении имитированных входных сигналов о содержании нефти, расходе и скорости;
- **.3** проверку при изменении входных сигналов, когда:

мгновенная интенсивность сброса нефти превысит 30 литров на морскую милю;

общее количество сброшенной в море нефти превысит 1/30000 общего количества данного вида груза;

- .4 проверку подачи сигнала о прекращении сброса за борт, когда возникают условия, при которых срабатывает сигнализация;
- .5 проверку получения сигнала, когда каждый входной сигнал превышает возможности системы.
- 17.3.5 Приборы для определения границы раздела «нефть вода» в отстойных танках.
- **17.3.5.1** Приборы подвергаются функциональным испытаниям аналогично указанным в 17.3.4.1.
- 17.3.6 Машинки для мойки танков сырой нефтью.
- **17.3.6.1** Машинки проверяются на доступность узлов и деталей, подлежащих периодическому контролю, обслуживанию и ремонту.
- **17.3.6.2** Качество сборки контролируется наружным осмотром. Плотность соединений проверяется при гидравлических испытаниях изделий.
- 17.3.6.3 Непрерывность электрической цепи гидромонитора от ствола до присоединительного фланца проверяется с помощью тестера или другим методом, одобренным Регистром, на предприятии (изготовителе).

- 17.3.7 Вентиляторы для системы удаления остатков вредных жидких веществ методом вентилирования должны быть освидетельствованы в соответствии с разд. 5 и 10.
- **17.3.8** Моечные машинки системы предварительной мойки танков для перевозки вредных веществ наливом должны быть освидетельствованы в соответствии с 17.3.6.
- **17.3.9** Насосы для выгрузки вредных веществ, перевозимых наливом, должны быть освидетельствованы в соответствии с разд. 5 и 10.

17.3.10 Установки для обработки, измельчения и обеззараживания сточных вод.

- 17.3.10.1 Установки проверяются на доступность узлов и деталей, подлежащих периодическому осмотру и обслуживанию, а также подвергаются функциональным испытаниям аналогично указанным в 17.3.2.1.
- **17.3.10.2** Качество монтажа трубопроводов и арматуры, а также прокладки кабеля контролируется наружным осмотром. Плотность соединений трубопроводов и арматуры проверяется при гидравлических испытаниях изделий.
- **17.3.10.3** Предохранительные устройства должны быть отрегулированы на давление, не превышающее 1,1 рабочего.

17.3.11 Насосы для сточных вод.

17.3.11.1 Насосы для сточных вод должны отвечать требованиям разд. 5 и 10.

17.3.12 Установки для сжигания мусора (инсинераторы).

- **17.3.12.1** Установки проверяются на доступность узлов и деталей, подлежащих периодическому осмотру и обслуживанию.
- 17.3.12.2 Качество монтажа трубопроводов и арматуры, а также прокладки кабеля контролируется наружным осмотром. Плотность соединений трубопроводов и арматуры проверяется при гидравлических испытаниях изделий.
- **17.3.12.3** Перед началом монтажа футеровки должны быть осмотрены стенки, которые не должны иметь бухтин, прогибов и неровностей, превышающих 10 мм на 1 м.
- 17.3.12.4 После монтажа проверяется наружным осмотром качество выполненной футеровки, при этом поверхность кирпичной кладки должна быть гладкой; в виде исключения допускаются отдельные уступы по стыкам не более 2 3 мм и общая неровность не более 10 мм на 1 м. Подвижность футеровки или отдельных ее частей не допускается.

Отклонение диаметра фурменного отверстия от заданных размеров не должно превышать ± 5 мм, а несовпадение осей фурменного отверстия и форсунки — 2 мм.

17.3.12.5 После окончательной сборки должно быть проведено испытание кожуха инсинератора на

плотность воздухом (если это предусмотрено технической документацией). При этом давление и допустимые протечки воздуха не должны превышать указанных в одобренной технической документации.

17.3.12.6 Каждая установка для сжигания мусора подвергается функциональным испытаниям аналогично указанным в 17.3.2.1.

17.3.13 Устройства для обработки мусора.

17.3.13.1 Устройства для обработки мусора должны отвечать требованиям 17.3.12.1, 17.3.12.2 и 17.3.12.6.

17.3.14 Дизельные двигатели мощностью 130 кВт и более.

17.3.14.1 Дизельные двигатели подвергаются испытаниям на стенде предприятия (изготовителя) в соответствии с требованиями Технического кодекса по контролю выбросов окислов от судовых дизельных двигателей. После монтажа на судне дизельные двигатели проверяются методом сверки параметров или другими методами, предусмотренными Техническим кодексом.

17.3.15 Системы очистки выхлопных газов дизельных двигателей в соответствии с требованиями Приложения VI к Конвенции МАРПОЛ 73/78.

17.3.15.1 Типовые испытания образцов систем должны быть проведены в соответствии с требованиями главы 5 Технического кодекса по контролю выбросов окислов от судовых дизельных двигателей. В судовых условиях проверка работы системы производится в соответствии с требованиями Руководства по эксплуатации такой системы.

17.3.16 Оборудование по отбору образцов топлива.

17.3.16.1 Функциональные испытания пробоотборников производятся на предприятии (изготовителе) до выдачи СТО.

17.3.17 Документы Регистра.

17.3.17.1 По результатам технического наблюдения за оборудованием ПЗС оформляются документы Регистра в соответствии с 1.7.8.

17.3.17.2 На каждое изделие, указанное в 1.1 — 1.4, 2.1 и 3.1 табл. 17.3.1.1, выдаются утвержденные ГУР Свидетельства о типовом одобрении (испытании) по формам, указанным в 17.3.1.8.

ПРИЛОЖЕНИЕ 1

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ИСПЫТАНИЯМ ОБОРУДОВАНИЯ ПО ПРЕДОТВРАЩЕНИЮ ЗАГРЯЗНЕНИЯ С СУДОВ

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ИСПЫТАНИЯМ И ЭКСПЛУАТАЦИОННЫМ ХАРАКТЕРИСТИКАМ ДЛЯ ТИПОВОГО ОДОБРЕНИЯ СЕПАРАТОРОВ ЛЬЯЛЬНЫХ ВОД НА 15 МЛН⁻¹

Технические требования к испытаниям и эксплуатационным характеристикам для типового одобрения сепараторов льяльных вод на 15 млн⁻¹ изложены в резолюции МЕРС.107(49) «Пересмотренное руководство и технические требования по оборудованию для предотвращения загрязнения из льял машинных помещений судов».

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ИСПЫТАНИЯМ И ЭКСПЛУАТАЦИОННЫМ ХАРАКТЕРИСТИКАМ ДЛЯ ТИПОВОГО ОДОБРЕНИЯ СИГНАЛИЗАТОРОВ НА 15 МЛН⁻¹

Технические требования к испытаниям и эксплуатационным характеристикам для типового одобрения сигнализаторов на 15 млн⁻¹ изложены в резолюции МЕРС.107(49) «Пересмотренное руководство и технические требования по оборудованию для предотвращения загрязнения из льял машинных помещений судов».

3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ТИПОВОМУ ОДОБРЕНИЮ ПРИБОРА ДЛЯ ИЗМЕРЕНИЯ СОДЕРЖАНИЯ НЕФТИ И СЕКЦИИ УПРАВЛЕНИЯ СИСТЕМЫ АВТОМАТИЧЕСКОГО ЗАМЕРА, РЕГИСТРАЦИИ И УПРАВЛЕНИЯ СБРОСОМ НЕФТИ

Технические требования к типовому одобрению прибора для измерения содержания нефти и секции управления системы автоматического замера, регистрации и управления сбросом нефти изложены в резолюции МЕРС.108(49) «Пересмотренное руководство и технические требования по системам автоматического замера, регистрации и управления сбросом нефти для нефтяных танкеров».

4. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ИСПЫТАНИЯМ ДЛЯ ТИПОВОГО ОДОБРЕНИЯ ПРИБОРОВ ДЛЯ ОПРЕДЕЛЕНИЯ ГРАНИЦЫ РАЗДЕЛА СРЕД «НЕФТЬ-ВОДА» В ОТСТОЙНЫХ ТАНКАХ

Технические требования к испытаниям для типового одобрения приборов для определения границы раздела сред «нефть-вода» в отстойных танках изложены в резолюции МЕРС.5(XIII) «Технические требования для индикаторов поверхности раздела «нефть-вода».

5. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К КОНСТРУКЦИИ, ЭКСПЛУАТАЦИИ И ПРОВЕРКЕ МАШИНОК ДЛЯ МОЙКИ ТАНКОВ СЫРОЙ НЕФТЬЮ

Технические требования по проверке работы машинок для мойки танков сырой нефтью изложены в резолюции А.446(XI) «Пересмотренные технические требования к конструкции, эксплуатации и проверке систем мойки сырой нефтью» с поправками в резолюциях ИМО А.497(XII) и А.897(21).

6. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ИСПЫТАНИЯМ ДЛЯ ТИПОВОГО ОДОБРЕНИЯ УСТАНОВОК ДЛЯ ОБРАБОТКИ СТОЧНЫХ ВОД

Технические требования к испытаниям для типового одобрения установок для обработки сточных вод изложены в резолюции МЕРС.2(VI) «Рекомендации по международным нормам очистки сточных вод и руководство по эксплуатационным испытаниям установок для очистки сточных вод».

К испытаниям с целью типового одобрения установок для обработки сточных вод для новых судов, киль которых заложен 1 января 2010 года или после этой даты, и для существующих судов, договорная дата поставки новых установок на которые — 1 января 2010 года или позже, должны применяться технические требования резолюции МЕРС.159(55) «Пересмотренное руководство по соблюдению норм очистки сточных вод и выполнению испытаний установок для очистки сточных вод».

7. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ИСПЫТАНИЯМ ДЛЯ ТИПОВОГО ОДОБРЕНИЯ ИНСИНЕРАТОРОВ

Технические требования к испытаниям для типового одобрения инсинераторов изложены в резолюции MEPC.76(40) «Стандартные технические требования к судовым инсинераторам».

8. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ИСПЫТАНИЯМ СУДОВЫХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ В СООТВЕТСТВИИ С ТЕХНИЧЕСКИМ КОДЕКСОМ ПО ${ m NO_X}$

Технические требования к испытаниям судовых двигателей внутреннего сгорания, подпадающих под правило 13 Приложения VI к МАРПОЛ 73/78, с выдачей соответствующих свидетельств изложены в Техническом кодексе по NO_x .

ПРИЛОЖЕНИЕ 2

СВИДЕТЕЛЬСТВО О ТИПОВОМ ОДОБРЕНИИ (ИСПЫТАНИИ) ОБОРУДОВАНИЯ ПО ПРЕДОТВРАЩЕНИЮ ЗАГРЯЗНЕНИЯ

- 1. Свидетельство о типовом одобрении (испытании) оборудования по предотвращению загрязнения документ Регистра, удостоверяющий, что данное оборудование по ПЗС отвечает требованиям международных документов, указанных в приложении 1.
- **2.** Свидетельство о типовом одобрении (испытании) не заменяет свидетельство Регистра, выдаваемое на готовую продукцию.
- **3.** Свидетельство о типовом одобрении (испытании) обязательно для следующих объектов технического наблюдения:
- .1 Свидетельство о типовом испытании: для приборов для определения границы раздела «нефть-вода» в отстойных танках (по форме 2.4.19); для установок для обработки сточных вод (по
- для установок для обработки сточных вод (по форме 2.4.13);

 .2 Свидетельство о типовом одобрении:
 для сепараторов на 15 млн⁻¹ (по форме 2.4.17.1);
- для приборов для определения содержания нефти в балластных и промывочных водах (по форме 2.4.16.1); для инсинераторов (по форме 2.4.12);

для сигнализаторов на 15 млн^{-1} (по форме 2.4.11.1);

- для установок для обработки сточных вод (по форме 2.4.13.1).
- **4.** Для получения Свидетельства о типовом одобрении (испытании) объект технического наблюдения подлежит освидетельствованию и испытанию инспектором Регистра.
- 5. Объем испытаний объектов технического наблюдения для выдачи Свидетельства о типовом одобрении (испытании) устанавливается на основе требований международных документов, указанных в приложении 1 и дополнительных требований настоящего раздела.

Испытания проводятся по программе, составленной разработчиком объекта технического наблюдения и одобренной Регистром.

6. Свидетельство о типовом одобрении (испытании) выдается, если:

- .1 имеется полный комплект технической документации на изготовление оборудования по ПЗС, одобренной Регистром;
- .2 испытательные лаборатории, проводящие анализ проб нефтесодержащих вод, отвечают требованиям приложений 1-3;
- .3 результаты испытаний, выполненных по одобренной программе, отвечают требованиям Регистра.
- 7. Свидетельство о типовом одобрении (испытании) выдается ГУР или по его поручению подразделением, осуществляющим техническое наблюдение за изготовлением оборудования по ПЗС.

Свидетельство о типовом одобрении (испытании), оформленное подразделением, осуществляющим техническое наблюдение за изготовлением оборудования по ПЗС, вместе с приложенными документами, оговоренными Инструкцией о порядке оформления и выдачи свидетельств о типовом одобрении (испытании) (см. приложение 3), представляется в ГУР на утверждение.

- **8.** Свидетельство о типовом одобрении (испытании) выдается на объект технического наблюдения без ограничения срока его действия.
- **9.** Свидетельство о типовом одобрении (испытании) утрачивает силу в следующих случаях:
 - .1 при нарушении условий его выдачи;
- **.2** при внесении без согласования с Регистром в одобренную техническую документацию изменений по вопросам, входящим в компетенцию Регистра;
- .3 при выявлении недопустимых дефектов или при нарушении степени и стабильности очистной способности оборудования.
- **10.** Перечень объектов технического наблюдения, получивших Свидетельство о типовом одобрении (испытании), публикуется Регистром.
- 11. За выдачу Свидетельства о типовом одобрении (испытании) Регистр взимает плату в соответствии с действующими нормативами времени на выполнение основных услуг Регистра.

ПРИЛОЖЕНИЕ 3

ИНСТРУКЦИЯ О ПОРЯДКЕ ОФОРМЛЕНИЯ И ВЫДАЧИ СВИДЕТЕЛЬСТВ О ТИПОВОМ ОДОБРЕНИИ (ИСПЫТАНИИ) ОБОРУДОВАНИЯ ПО ПРЕДОТВРАЩЕНИЮ ЗАГРЯЗНЕНИЯ

- **1.** Свидетельство о типовом одобрении (испытании) выдается в соответствии с 17.3.17.2 настоящего раздела.
- **2.** Выдача Свидетельств о типовом одобрении (испытании) производится Регистром по результатам испытаний в следующем порядке:
- .1 ГУР или, по его поручению, подразделение, ведущее техническое наблюдение за изготовлением серийных изделий оборудования по ПЗС, оформляет и выдает Свидетельства о типовом одобрении (испытании) на объекты технического наблюдения, указанные в 1.1 1.4, 2.1 и 3.1 табл. 17.3.1.1 настоящего раздела.

Дополнения к Свидетельствам о типовом одобрении (испытании) должны быть подписаны инспектором, присутствовавшим на испытаниях оборудования по ПЗС, и заверены его личной печатью;

.2 оформленные Свидетельства о типовом одобрении (испытании) вместе с Актом освидетельствования (форма 6.3.18), на основании которого они оформляются, направляются в ГУР на утверждение.

К Свидетельству о типовом одобрении (испытании) сепаратора на 15 млн⁻¹ (форма 2.4.17.1) прилагаются схемы:

испытательного стенда; устройства для отбора проб;

.3 Свидетельство о типовом одобрении (испытании) оформляется в трех экземплярах:

один после утверждения ГУР выдается предприятию (изготовителю) оборудования по ПЗС;

второй хранится в отделе обработки информации и внедрения информационных технологий ГУР;

третий хранится в подразделении, осуществляющем техническое наблюдение за изготовлением серийных изделий оборудования по ПЗС;

- **.4** присвоение номеров Свидетельствам производится подразделением, принимавшем участие в испытаниях оборудования по ПЗС;
- .5 Свидетельства оформляются на русском и английском языках (формы 2.4.11.1, 2.4.12, 2.4.13, 2.4.13.1, 2.4.16.1, 2.4.17.1, 2.4.19). При этом инспектор, присутствовавший на испытаниях, подписывает дополнения к Свидетельствам и заверяет их своей печатью;
- .6 Свидетельства подписываются руководством ГУР и заверяются круглой печатью с якорем;
- .7 учет всех выданных Регистром Свидетельств проводится отделом обработки информации и внедрения информационных технологий ГУР.

АЛФАВИТНО-ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

\mathbf{A}	промежуточный (IV) 6.1.3 упорный (IV) 6.1.3
	упорный (IV) 6.1.3 Валопроводы (IV) 6.1.3
Агрегат главный турбозубчатый (IV) 5.1.4	Ваттметры (IV) 10.7.9.1
АИС (IV) 16.4.14	Величины:
Аккумуляторы (IV) 10.1.2, 10.4.6.3, 10.7.4	неэлектрические (IV) 10.4.6.8.1
Акты о признании испытательной лаборатории (IV) 10.2.1.5	уставок расцепителей (IV) 10.7.6.4.8
Амортизаторы (IV) 10.5.3.1.2	Ветропрочность оборудования (IV) прил. 1 к разд. 15
Амперметры (IV) 10.7.9.1	прил. 1 к разд. 16
Амплитуда (IV) 10.5.2.11, 10.5.3.2.2	Взрывозащищенность (IV) 10.2.1, 12.4.5, 15.3.1
Анализ (III) 2.1.1.3	Вибропрочность оборудования (IV) 10.5.2.1
Аппаратура:	Виброустойчивость оборудования: (IV) 10.5.2.1
автоматической идентификационной системы	12.3.4, 12.4.2, прил. к разд. 12, прил. 1 к разд. 15
(IV) 16.4.14	прил. 1 к разд. 16
телефонная (IV) 10.7.14.4	Виды испытаний: (IV) 13.3
Аппараты: (IV) 10.4.6.4	на соответствие судовым условиям (IV) 12.3.1
пускорегулирующие (IV) 10.7.12.5	оборудования автоматизации (IV) 12.3.1
— для светильников с газоразрядными лампами (IV)	общие (IV) 10.1.2
10.7.12.2	прочие (IV) 10.3.2
рубящего типа (IV) 10.7.5.6	специальные (IV) 10.1.2, 12.3.1
теплообменные (IV) 9.6.7, 10.7.16.2	функциональные (IV) 12.3.1
электрические (IV) 10.1.2	Вилки штепсельные (IV) 10.7.13.2
АРБ (IV) 15.5.13	Винты гребные:
Арматура:	регулируемого шага (IV) 7.1.4
осветительная (IV) 10.4.6.4	фиксированного шага (IV) 7.1.4
установочная (IV) 10.4.6.4	Включения оборудования на работу периодические
Аттестация (III) 4.3.1	(IV) 10.5.4.4.1
	Влагоустойчивость: (IV) 10.5.2.3, 12.4.2
	оборудования (IV) прил. 1 к разд. 15, прил. 1 к
Б	разд. 16
	Водность раствора (IV) 10.5.4.6.3
Баки трансформаторов с негорючим жидким	Возбудители электрических машин (IV) 10.4.6.1.1
диэлектриком (IV) 10.7.2.5	Воздухоохладитель водяной (IV) 10.7.1.2
Баллер (IV) 3.4.2.2	Возобновление Свидетельства о признании изгото-
Батареи:	вителя (III) 2.1.5
аккумуляторные (IV) 10.4.2.4, 10.4.6.3.1,	Вольтметры (IV) 10.7.9.1
10.7.4.1	Время:
без доливных горловин (IV) 10.7.4.9	горения дуги (IV) 10.7.6.4.12
стартерные (IV) 10.7.4.6	разряда конденсаторов (IV) 10.7.12.7
Биение коллектора (IV) 10.7.1.2	срабатывания собственное (IV) 10.7.6.4.8
Блоки бесперебойного питания (IV) 10.7.17.5	ВРШ (IV) 7.1.4
Блокировки (IV) 10.4.1.2	Вставки предохранителей плавкие (IV) 10.7.5.6.5
Блюмы (III) 2.1.1.1	ВФШ (IV) 7.1.4
Броня (IV) 10.4.3.4, 10.7.15.4	Выброс дуги (IV) прил. 6 к разд. 10
	Выдержка изделий в воде (IV) 10.4.6.6.1
	Вызов цифровой избирательный (IV) 15.5.8
В	Выключатели:
	генераторные (IV) 10.7.5.6.1
Вал:	маневровые (IV) прил. 4 к разд. 10
дейдвудный (IV) 6.1.3	распределительные (IV) прил. 4 к разд. 10
	секционные (IV) 10.7.5.6.1

Γ	Длительность: действия ударного ускорения (IV) 10.5.3.5.2
T 6 V (T) 2 7 5	режима короткого замыкания (IV) 10.5.5.2.4.1
Гак буксирный (IV) 3.7.5	ударного импульса (IV) 10.5.2.4
Генераторы:	Днище (IV) 9.6.2
аварийные (IV) 10.7.1.5	Документация: (III) 2.2.1.2.2
переменного тока (IV) 10.7.1.5	техническая (IV) 1.4
синхронные (IV) 10.4.6.1.1	— одобренная (IV) 15.4.2
Герметичность:	Документы предприятия (изготовителя) (III) 3.1.2.1.3
батареи (IV) 10.7.4.9 моноблоков кислотных аккумуляторов (IV)	Допуск: (III) 4.3.1
моноолоков кислотных аккумуляторов (1V) 10.7.4.2	сварщиков (III) 4.1.1
Гироазимуты (IV) 16.4.10	Доступ к опасным частям (IV) прил. 1 к разд. 16
ГЛОНАСС (IV) 16.4.2.10	Дуга (IV) прил. 6 к разд. 10
Гнезда предохранительные с ножевыми контактами	
(IV) прил. 4 к разд. 10	
ГНСС (IV) 16.4.2.10	${f E}$
Границы выброса пламени (IV) 10.7.6.4.6	_
Грибки плесневые (IV) 10.5.4.7.2	Емкость: (IV) 10.7.4.3, 10.7.7.5
ΓΤ3A (IV) 5.1.4	номинальная (IV) 10.7.4.3, 10.7.4.5
ГТД (IV) 5.1.4	остаточная (IV) 10.7.4.10
ГТУ (IV) 5.1.4	
ГУП (IV) 5.1.4	
	Ж
Д	Жила: (IV) прил. 10 к разд. 10
A	изолированная (IV) 10.4.3.4.3, 10.4.6.6.1,
Давление:	10.4.6.6.2
избыточное (IV) 10.7.2.5	экранированная (IV) 10.4.6.6.1
повышенное (IV) 10.7.4.9.2	
пониженное (IV) 10.7.4.9.2	
Датчики: (IV) 12.3, 12.4.1.2, 12.4.2	3
тахометров (IV) 10.4.6.5.2	J
Двигатель:	Заготовки для проката (III) 2.1.1.1
внутреннего сгорания (IV) 1.9, 5.1.4	Заедания (IV) 10.5.3.7.7
— вспомогательный (IV) 5.2	Заземление (IV) 10.4.1.2, 10.7.5.2.1
— — главный (IV) 5.2	Зазор воздушный (IV) 10.7.1.2
газотурбинный (IV) 5.1.4	Заклинивания (IV) 10.5.3.7.7
приводной поршневой (IV) прил. 3 к разд. 10	Закрытия отверстий в корпусе, надстройках и рубках
рулевых машин (IV) 10.7.1.8.3	(IV) 3.9
синхронный (IV) 10.4.6.1.1	Зарядка (IV) 10.4.2.4
электрический многоскоростной (IV) 10.4.6.1.2.4	Защита:
якорных и швартовных механизмов (IV) 10.7.1.8.3	конструктивная (IV) 4.2
10.7.1.8.3 Движители крыльчатые (IV) 7.1.4	— противопожарная (IV) 4.1.2
ДВС (IV) 5.1.4	от вредного проникновения пыли (IV) прил. 9 в
две (IV) 3.1.4 Детали ВРШ (IV) 7.1.4	разд. 10
Детекторы квазипиковые (IV) 10.6.3.1	от доступа к опасным частям оборудования и от
Дефекты (IV) 10.2.4	проникновения посторонних твердых предме-
Деформация: (IV) 10.5.4.8.3, 10.7.5.4.3	тов (IV) прил. 1 к разд. 15, прил. 1 к разд. 16
балок ярма (IV) 10.7.2.4.10	от перегрузки (IV) 10.7.3.3, 10.7.10.13
Диапазон частот (IV) 10.5.3.2.2	от проникновения воды (IV) 10.5.5.2, прил. 1 к
Динамометр (IV) 10.5.3.4.2	разд. 15, прил. 1 к разд. 16
Дисперсность тумана (IV) 10.5.4.6.3.3	— твердых тел (IV) 10.5.5.1Защищенность:
Диэлектрик (IV) 10.7.7.4	корпуса (IV) 12.4.2.7

оборудования (IV) 10.5.2.5, прил. к разд. 12, прил. 1 к разд. 15, прил. 1 к разд. 16 Заявка на признание предприятия (III) 2.1.2 Змеевик (IV) 9.6.4 Значение: амплитудное предельного тока короткого замыкания (IV) 10.7.5.4.1 действующее (IV) 10.4.6.4.1 сопротивления изоляции допустимое (IV) прил. 1 к разд. 10 температуры стандартное (IV) прил. к разд. 12	полиэтиленовая (IV) 10.4.6.6.1, 10.7.15.4 резиновая (IV) 10.4.6.6.1 Импульс ударный (IV) 10.5.2.4 Инструкции (стандарт, рекомендации): по подготовке поверхности к нанесению покрытий (III) 3.1.2.2.2 Интенсивность излучения (IV) 10.5.4.8.2 Исполнение изделий: брызгозащищенное (IV) прил. 9 к разд. 10 водозащищенное (IV) прил. 9 к разд. 10 каплезащищенное (IV) прил. 9 к разд. 10
Зона ионизированная (IV) 10.7.6.4.5	климатическое (IV) 10.5.4.1.3, прил. 13 к разд. 10 конструктивное (IV) 10.4.1.2 погружное (IV) прил. 9 к разд. 10
И	Испытания: (IV) 11.1.6, 15.4.8
Извещатели: ручного действия (IV) 10.7.14.3	аккумуляторных батарей (IV) 10.7.4 аккумуляторов (IV) 10.7.4 аппаратов и устройств внутренней связи и
сигнализации обнаружения пожара (IV) 10.7.14.3.2 Изделие:	сигнализации (IV) 10.7.14
без подвижных частей (IV) 10.5.3.7.1	буксирных гаков (IV) прил. 4 к разд. 3 в бухтах (IV) 10.7.15.6
в герметическом исполнении (IV) 10.5.4.4.1, 10.5.4.5.1	в действии схемы заряда аккумуляторной
герметизированное компаундом (IV) 10.5.4.4.3 в рабочем состоянии (IV) 10.5.3.6.1 кабельное (IV) 10.1.2, 10.4.6.6, 10.7.15.11	батареи (IV) 10.7.11.3. 10.7.11.5 — схемы стартерного пуска (IV) 10.7.11.3, 10.7.11.4
комплектующее (IV) 10.2.1.2, 10.4.1.2, 10.7.10.1 крупногабаритное и тяжелое (IV) 10.5.1.2 отключенное от сети (IV) 10.5.3.5.1	вибрационные (IV) прил. к разд. 12 виброустойчивости оборудования на одной частоте (IV) прил. 1 к разд. 15, прил. 1 к разд. 16
при установившемся производстве (IV) 10.1.2, 12.3.1	в нагретом состоянии (IV) 10.4.4.2 в практически холодном состоянии (IV)
с коммутирующими контактными устройствами (IV) 10.5.3.4.2	10.4.3.2, 10.4.4.2 головных образцов (IV) 13.3.3, 16.1.4
с нижним вводом кабеля (IV) 10.7.5.3 серийное (IV) 1.7	действия электрического подогрева машины (IV) 10.7.1.11.4
систем пожаротушения (IV) 4.1.2 электроустановочное (IV) 10.1.2	дверей (IV) прил. 5 к разд. 3 длительные (IV) 10.5.3.3.2
Изменение:	защищенности оборудования (IV) прил. 1 к разд. 15, прил. 1 к разд. 16
симметричной нагрузки внезапное (IV) 10.7.1.5.2 цвета изоляции (IV) 10.7.2.4.10	защитного исполнения (IV) прил. 9 к разд. 10 — оболочек (IV) 10.5.5, 10.7.12.6.6
частоты вращения (IV) 10.6.2.2 Измерения: (IV) 15.4.8	изделия на короткое замыкание (IV) 10.4.3.2.5
вносимого затухания (IV) 10.7.17.5	иллюминаторов (IV) прил. 5 к разд. 3
сопротивления изоляции (IV) 10.3.3, 10.4.3, прил. к разд. 12	кабельных изделий (IV) 10.7.15 климатические (IV) 10.5.1.1, 10.5.4,
тангенса угла потерь (IV) 10.7.7.1.6	12.3.12, прил. 1 к разд. 15, прил. 1 к разд. 16 коммутационной способности контроллеров,
электрического напряжения между концами вала (IV) 10.7.1.11.5	пускорегулировочных реостатов (IV) 10.7.6.4.12
Измеритель скорости поворота (IV) 16.4.13	комплексные (IV) 10.7.10.5
Износ частей механический (IV) прил. 4 к разд. 10	конденсаторных установок (IV) 10.7.7
Изоляция:	конденсаторов (IV) 10.7.7
жил (IV) прил. 10 к разд. 10	конструкции щита на механическую прочности
лобовых частей (IV) 10.7.1.10.5	(IV) 10.7.5.6.3 контрольные (IV) 13.3.2
межвитковая (IV) 10.4.5, 10.7.3.2	кратковременные (IV) 10.5.3.2.2
минеральная (IV) прил. 10 к разд. 10 поливинилхлоридная (IV) 10.4.6.6.1, 10.7.15.4	крышек люков (IV) 3.9.2.2

```
люков сходных и световых (IV) прил. 5 к разд. 3
механические (IV) 10.5.1.1, 10.5.3, 12.3.12,
прил. 1 к разд. 15, прил. 1 к разд. 16
на ветропрочность (IV) прил. 1 к разд. 15,
прил. 1 к разд. 16
на вибропрочность (IV) 10.3.2, 10.5.3.3
на виброустойчивость (IV) 10.3.2, 10.5.3.4,
прил. 1 к разд. 15, прил. 1 к разд. 16
на включение и отключение (IV) прил. 4 к разд. 10
на влагоустойчивость (IV) 10.3.2, 10.5.4.4, прил.
к разд. 12, прил. 1 к разд. 15, прил. 1 к разд. 16
— в длительном режиме (IV) 10.5.4.4.6
— в непрерывном режиме (IV) 10.5.4.4.2,
10.5.4.4.5
— в циклическом режиме (IV) 10.5.4.4.2,
10.5.4.4.4
на воздействие инея и росы (IV) 10.5.4.5

    — смены температур (IV) 10.3.2, 10.5.4.3

— — солнечной радиации (IV) 10.3.2, 10.5.4.8,
10.7.15.12
— соляного тумана (IV) 10.3.2, 10.5.4.6,
10.7.15.10
на воспламеняемость электрических изоля-
ционных материалов (IV) прил. 15 к разд. 10
на грибоустойчивость (плеснеустойчивость)
(IV) 10.3.2, 10.5.4.7, прил. к разд. 12, прил. 1 к
разд. 15, прил. 1 к разд. 16
на допустимый уровень напряжений индуст-
риальных радиопомех (IV) 10.7.11.3
на коррозионную стойкость (IV) прил. к
разд. 12, прил. 1 к разд. 15, прил. 1 к разд. 16
наибольшей отключающей способности предо-
хранителей (IV) 10.7.6.4
на максимальный ток неплавления (IV) 10.7.6.7
на минимальный ток плавления (IV) 10.7.6.7
на нагревание (IV) 10.4.5.2, 10.6.1, 10.7.8.3
— — тахогенераторов (IV) 10.7.14.2
на обнаружение резонансных частот (IV) 10.3.2,
10.5.3.2
на отклонение питания от номинальных значе-
ний (IV) прил. к разд. 12
на перегрузку (IV) 10.6.2, 10.7.3.3, 10.7.8.3
на пламеустойчивость (нераспространение
горения) (IV) 10.7.15.14
на плотность (IV) 10.7.2.5
на предельную коммутационную способность
(IV) 10.4.4.2, 10.7.6.4
на прочность (IV) 10.7.2.5
на разряд (IV) 10.7.7.1, 10.7.7.5
на резонанс (IV) прил. 1 к разд. 15, прил. 1 к
разд. 16
на соответствие условиям работы на судне
(условиям эксплуатации) (IV) 10.5, 12.4.1.1, 12.4.3
на стойкость к коммутационным перенапря-
жениям (IV) 10.7.3.6
```

```
— — многократному перегибу, изгибу, осевому

кручению, изгибу с осевым кручением, растя-
жению и раздавливанию кабелей (IV) 10.7.15.13

    — — ударному току короткого замыкания (IV)

10.7.1.10
на стоянку под током (IV) 10.7.1.8, 10.7.10.12
на теплоустойчивость (IV) 10.3.2, 10.5.4.1, прил.
к разд. 12, прил. 1 к разд. 15, прил. 1 к разд. 16
на термическую прочность (IV) 10.7.5.4,
10.7.6.5
— стабильность (IV) 10.7.7.1
— — стойкость (IV) 10.7.12.6

— стойкость мастики кислотных аккуму-

ляторов (IV) 10.7.4.2.5
на ударную прочность (IV) 10.3.2, 10.5.3.5,
прил. 1 к разд. 15, прил. 1 к разд. 16
— — устойчивость (IV) 10.3.2, 10.5.3.6, прил. к
разд. 12
на уровень напряжения кондуктивных помех
(IV) прил. 1 к разд. 15, прил. 1 к разд. 16

— напряженности поля излучаемых помех

(IV) прил. 1 к разд. 15, прил. 1 к разд. 16

— помех, создаваемых другому оборудо-

ванию (IV) прил. 1 к разд. 15, прил. 1 к разд. 16
на устойчивость к воздействию масла (нефти)
(IV) прил. 1 к разд. 15
— — к воздействию инея и росы (влаги) (IV)
10.3.2, прил. к разд. 12, прил. 1 к разд. 15,
прил. 1 к разд. 16
— — к длительным наклонам (IV) 10.3.2,
10.5.3.7, прил. к разд. 12, прил. 1 к разд. 15,
прил. 1 к разд. 16
— — к качке (IV) 10.3.2, 10.5.3.7, прил. к разд.
12, прил. 1 к разд. 15, прил. 1 к разд. 16

    — к смене температур (IV) прил. 1 к разд. 15

    — к солнечной радиации (IV) прил. 1 к

    — к электромагнитным помехам (IV) 10.3.2,

10.6.4, 10.7.9.1
на холодоустойчивость (IV) 10.3.2, 10.5.4.2,
прил. к разд. 12, прил. 1 к разд. 15, прил. 1 к
разд. 16
на электродинамическую прочность (IV) 10.7.5.4

    и/или термическую прочность при токе

короткого замыкания (IV) 10.7.2.4, 10.7.8.4
на электромагнитную совместимость (IV) прил.
1 к разд. 15, прил. 1 к разд. 16
однополюсных аппаратов (IV) 10.7.6.4.9
отдельных видов оборудования (IV) 10.7
первоначальные (III) 1.2.2
поблочно (IV) 10.5.3.1.5
повторные (IV) 10.2.6
приборов контроля управления судном (IV)
при повышенной частоте вращения (IV) 10.7.1.9
```

, , , , , , , , , , , , , , , , , , ,	(TTT) 10 7 1 0
работы привода под нагрузкой (IV) 10.7.10.11	испытательная (IV) 10.5.1.2
распределительных устройств (IV) 10.7.5	огневая (IV) 9.6.5
светильников и пускорегулирующих аппаратов	тепла (IV) 10.5.4.1.1
газоразрядных ламп (IV) 10.7.12	Категории размещения климатические (IV) прил. 14 в
сдаточные (III) 1.2.2	разд. 10
специальные (IV) 12.3.12, 12.4.5	Катушка электромагнита (IV) 10.7.6.3.3
с погружением в воду (IV) 10.4.6.6.1	КВД (IV) 5.1.4
статических преобразователей (IV) 10.7.3	Клапаны предохранительные (IV) 10.7.4.9.3
стендовые (IV) 15.9.2, прил. 1 к разд. 15	Класс изоляции (IV) прил. 2 к разд. 10
степени защиты оборудования (IV) прил. к разд. 12	Класс/группа основного металла (III) 4.5.1
стойкости к растяжению и раздавливанию (IV)	Клеймение спасательных средств (IV) 13.6
10.7.15.13	Клеймо Регистра (III) 1.2.2
трансформаторов (IV) 10.7.2	КНД (IV) 5.1.4
тросов (IV) прил. 6 к разд. 3	Количество циклов качания частоты (IV) 10.5.3.3.6
физико-механических и других свойств	Коллектор (IV) 9.6.3
изоляции и оболочки (IV) 10.7.15.1	Колонки движительные (IV) 7.1.4
фильтров защиты от радиопомех (IV) 10.7.17	Кольца контактные (IV) 10.7.1.2
функциональные (IV) 10.3.2, 10.4.2, 12.3.10,	Комиссия аттестационная (III) 4.2.4, 4.3.1
12.4.1, 12.4.3	Компасы:
ходовые (IV) 10.7.10.4	гиромагнитные (IV) 16.4.10
швартовные (IV) 10.7.10.4	гироскопические (IV) 16.4.4
шинопроводов (IV) 10.7.8	магнитные (IV) 16.4.3
эксплуатационные (IV) 1.8	электромагнитные (IV) 16.4.10
электрические (IV) 10.6	Компаунды герметизированные 10.5.4.4.3
электрических аппаратов (коммутационных,	Компенсаторы синхронные (IV) 10.4.6.1.1
защиты, управления) (IV) 10.7.6	Комплектность (IV) 10.4.2.2
электрических машин (IV) 10.7.1	Компрессор: (IV) 11.1.6, 11.3
электрической прочности изоляции (IV) 10.3.2,	низкого давления (IV) 5.1.4
10.4.4, прил. к разд. 12	высокого давления (IV) 5.1.4
электроакустические (IV) 10.7.14.4	Конденсаторы (IV) 10.1.2
электродвигателей на кратковременную	Контакторы (IV) 10.7.5.6
перегрузку по вращающему моменту (IV)	Контроллеры (IV) 10.7.6.2
10.7.1.6	Контроль производства (IV) 13.5
электроизмерительных приборов (IV) 10.7.9	Контур коммутируемый разрядный параллельной
электрооборудования ДВС со стартерным	обмотки (IV) 10.7.10.8
пуском (IV) 10.7.11	Коробление (IV) 10.5.4.8.3
электроприводов (IV) 10.7.10	Корпус металлический (IV) 10.4.4.3
электроприводов (IV) 10.7.10 электроустановочных изделий (IV) 10.7.13	Коррозия (IV) 10.5.2.6, 10.5.4.4.9
якорей (IV) прил. 2 к разд. 3	Котлы (IV) 10.7.16.2
якорных скоб (IV) прил. 3 к разд. 3	Коэффициент мощности (cos ф) (IV) 10.4.3.3.
источники:	10.4.6.9, 10.7.1.4
вибрации (IV) 10.5.3.4.3	10.4.0.9, 10.7.1.4 Критерий:
инфракрасного и ультрафиолетового излучения	оценки результатов практических испытаний
инфракрасного и ультрафиолетового излучения (IV) 10.5.4.8.2	* *
(1v) 10.3.4.8.2	(III) 4.4.5 работоспособности A (IV) прил. 1 к разд. 15,
	· / · · · · ·
	прил. 1 к разд. 16
К	работоспособности В (IV) прил. 1 к разд. 15,
	прил. 1 к разд. 16
Кабели с наружными металлическими оплетками,	работоспособности С (IV) прил. 1 к разд. 15,
оболочками, броней (IV) 10.7.15.10	прил. 1 к разд. 16
Камбузы (IV) 10.5.4.1.3	функционирования A (IV) прил. к разд. 12
Камера: (IV) 9.6.3	функционирования В (IV) прил. к разд. 12
грибообразования (IV) 10.5.4.7.3.3	функционирования С (IV) прил. к разд. 12
- · · · · · ·	Культуры типичные (IV) 10.5.4.7.2

Л	Н
Лаборатория:	Наблюдение техническое: (IV) 1.3
испытательная (III) 2.1.1.4.7	за головным образцом (IV) 13.2
микробиологическая (IV) 10.5.4.7.5	за изготовлением изделий (IV)
Лаги:	на предприятии (изготовителе) (IV) 13.4
абсолютные (IV) 16.4.5	при изготовлении материалов (III) 2.4
относительные (IV) 16.4.5	Набросы нагрузки (IV) 10.7.3.5
Лампы:	Нагревание изоляции (IV) 10.4.4.4
газоразрядные (IV) 10.1.2	Нагрузка номинальная (IV) 10.5.4.3.2
сигнальные (IV) 10.7.5.2	Надписи (IV) 10.4.1.2
Лица компетентные (IV) 10.5.4.7.5, 10.7.17.3	Направления перпендикулярные (IV) 10.5.3.1.3
	Напряжение:
	измерительное (IV) 10.4.3.3
M	испытательное (IV) 10.4.4.5
171	— синусоидальное (IV) 10.4.6.6.2
Маркировка: (IV) 10.4.1.2, 15.4.6	на вентилях пиковое (IV) 10.7.3.6
спасательных средств (IV) 13.6	питания и частоты номинальное (IV) 10.4.2.4
Материал: (IV) 10.4.1.2	практически синусоидальной формы (IV)
изоляционный (IV) прил. 15 к разд. 10	10.4.4.1
— нетрудновоспламеняющийся (IV) прил. 15 к	холостого хода (IV) 10.4.6.1.2
разд. 10	Нарушение работоспособности (IV) 10.2.5
— трудновоспламеняющийся (IV) прил. 15 к	Насадка поворотная (IV) 3.4.2.1
разд. 10	Насосы:
Мачты сигнальные (IV) 3.8	для сточных вод (IV) 17.3.8
Машинки для мойки танков (IV) 17.3.6	холодильного агента (IV) 11.1.6
Машины:	холодоносителя (IV) 11.1.6
крупногабаритные (IV) 10.7.1.3	Нейтраль (IV) 10.7.6.4.4
рулевые (IV) 10.7.1.8	Ножи разъединителей (IV) 10.7.5.5
с регулируемой частотой вращения (IV) 10.7.1.9	Номенклатура РС (IV) 15.1.1
электрические (IV) 10.1.2, 10.4.5.1, 10.4.6.1	Нормы испытаний:
Мегомметр (IV) 10.4.3.3, 10.7.9.1	навигационного оборудования (IV) прил. 1 к
Медь отожженная электролитическая (IV) прил. 10 к	разд. 16
разд. 10	оборудования автоматизации (IV) прил. к разд. 12
Место расположения на судне (IV) 10.5.4.1.3	
Методика испытаний (IV) 10.2.2	
Методы:	0
испытаний (IV) 12.4.2, прил. к разд. 12, прил. 1	
к разд. 16	Обечайки (IV) 9.6.2
непосредственной нагрузки (IV) 10.7.2.3	Обкладки (IV) 10.4.6.4.3
оценки результатов практических испытаний	Область одобрения (III) 4.3.1
(III) 4.4.4	Облицовка гребного вала (IV) 6.1.3
Механизмы:	Обмотка: (IV) 10.4.3.4
вспомогательные (IV) 5.8	возбуждения (IV) 10.4.6.1.1
изменения шага (IV) 7.3.2	вторичная (IV) 10.4.6.1.1, 10.7.2.2
исполнительные (IV) 12.4.1.2	пропитанная (IV) 10.5.4.4.3
палубные (IV) 5.10	электромагнитных расцепляющих механизмов
Монтаж (IV) 10.4.1.2	(IV) 10.4.6.4.1
Мостик ходовой (IV) прил. к разд. 12	Оболочки: (IV) 10.7.15.4, прил. 10 к разд. 10
Мощность лампы (IV) 10.7.12.4	аппарата (IV) 10.7.6.4.5
Муфты:	для систем (IV) 12.3.1
разобщительные (IV) 5.7	металлическая (IV) 10.4.3.4
соединительные (IV) 6.1.3	оборудования (IV) 10.5.2.5
электромагнитные (IV) 10.4.5.1, 10.4.6.1	поливинилхлоридная (IV) 10.4.6.6.1

резиновая (IV) 10.4.6.6.1

штатная (IV) 10.5.4.4.1 Оборудование: (IV) разд. 3 автоматизации (IV) 10.5.4.1.4, разд. 12 неразъемное (IV) 10.5.3.1.5 помещений (IV) 3.10 размещаемое в машинных и других закрытых помещениях судна (IV) 10.6.3.3 — на открытой палубе и ходовом мостике (IV) 10.6.3.2 средств командной трансляции (IV) 15.5.7 якорное (IV) 3.5.3 Образец: (III) 1.2.2, 4.3.1 головной (IV) 1.6, 10.1.2, 12.3.1, 12.3.7, 12.3.9, 15.7 — (опытный) (IV) 12.3.14 — (прототип) (III) 1.2.2 опытный (IV) 1.5, 12.3.1, 12.3.7, 15.7 серийный (IV) 1.5, 12.3.1, 12.3.7, 15.7	Отклеивание (IV) 10.5.4.8.3 Отклонение: напряжения длительное (одновременное) (IV) 10.4.2.4 — кратковременное (одновременное) (IV) 10.4.2.4 — предельное (IV) 10.5.4.1.5, 10.5.4.2.3 параметров при механических и климатических испытаниях допустимое (IV) прил. 12 к разд. 10 частоты предельное (IV) 10.5.4.1.5, 10.5.4.2.3 Отливки: из легких и цветных сплавов (III) 2.1.1.1 из чугуна (III) 2.1.1.1 Стальные (III) 2.1.1.1 Отсутствие помех для работы магнитного компаса (IV) 12.4.5 Оценка результатов (IV) 10.5.3.6.3 Очередность испытаний (IV) 10.5.3.3.8
Объем: испытания оборудования автоматизации (IV) 12.3.1, 12.4.2 освидетельствования (III) 2.1.1.4.2, 2.1.4.5, 2.1.4.7, 2.1.5.3, 3.1.1.3 — оборудования автоматизации (IV) 12.3 — спасательных жилетов (IV) 13.4.2-4 — кругов, огней и автоматически действующих дымовых шашек (IV) 13.4.2-3 — плотов (IV) 13.4.2-2 — шлюпок и дежурных шлюпок (IV) 13.4.2-1 — спусковых устройств (IV) 13.4.2-5 Ограничения: (IV) 10.5.3.7.6 импульсных помех (IV) 10.7.17.5 Одобрение первоначальное (III) 2.1.1.4.2, 2.2.1.3.4 Оконцевание кабелей и проводов (IV) 10.4.1.2 Оплетки металлические (IV) 10.7.15.4 Определение прочности при разрыве и удлинении изоляции и оболочки (IV) 10.7.15.1 Опробование аппаратов и их приводов (IV) 10.7.5.6 Организация компетентная (IV) 12.4.5 Органы: компетентные (IV) 10.2.1, 12.3.2 управления (IV) 10.7.5.2 Освидетельствование: (III) 2.1.1.3, 2.1.1.4 головного образца (IV) 16.1.4 изделий при установившемся производстве на предприятии (изготовителе) (IV) 10.8 первоначальное (III) 2.1.1.3, 2.1.1.4.2, 2.1.1.4.11 Осмотр: (IV) 10.4.1 изделия (IV) 10.2.5 наружный (IV) 17.1.4	Палуба открытая (IV) 10.5.4.1.3, 10.5.4.3.1, прил. в разд. 12 Партия (III) 1.2.2 ПБУ (IV) 12.3.1 ПВ/КВ-радиоустановки (IV) 15.5.10 ПВ-радиоустановки ГМССБ (IV) 15.5.9 Переброс дуги (IV) 10.7.6.5, прил. 6 к разд. 10 Перегрев подвижных частей (IV) 10.5.3.7.7 Перегрузка: по вращающему моменту (IV) 10.6.2.2 по току (IV) 10.6.2.1 — кратковременная (IV) 10.7.1.4 Передачи (IV) 5.7 Перемычки (IV) 10.7.5.4 Перечень технических данных по каждому из компонентов покрытия (III) 3.1.2.2.1 Плавание вне тропической зоны (IV) 10.5.4.1.3 Пластины коллекторные (IV) прил. 10 к разд. 10 Пластины коллекторные (IV) 10.4.6.1.2 Платформа испытательного стенда (IV) 10.5.3.1.1 Плесневые грибки (IV) 10.5.4.7.3 Плеснеустойчивость (IV) 10.5.2.8, 12.4.2, прил. к разд. 12, прил. 1 к разд. 15, прил. 1 к разд. 16 Плотность: теплового потока (IV) 10.5.4.8.2 электролита (IV) 10.7.4.2 Площадь сечения кабелей (IV) 10.7.5.3
Осциллограмма (IV) 10.7.3.6, 10.7.6.8 Ответчик радиолокационный (IV) 15.5.6, 15.5.14 Отказ в работе (IV) 10.5.4.2.4	Пневмоэлементы (IV) 12.3.3

Повреждение:	Порядок:
деталей (IV) 10.2.5	освидетельствования оборудования автомати-
изоляции (IV) 10.4.4.4	зации (IV) 12.3
Подогреватели:	Последовательность проведения испытаний и
масла (IV) 10.4.6.7.1	проверок (IV) 10.3
топлива (IV) 10.4.6.7.1	Посты управления (IV) 10.5.4.2.2
Подтверждение Свидетельства о признании изгото-	Потеки (IV) 10.7.4.8
вителя (III) 2.1.4	Потери пружинных свойств (IV) 10.7.12.5
Подшипник:	Правила:
главный упорный (IV) 5.1.4	по оборудованию морских судов (IV) 15.3.3,
опорный (IV) 6.5	15.4.6
упорный (IV) 6.5	PC (IV) 16.3.3.1
Поиск резонансных частот (IV) 10.5.3.2.3	Превышения температуры допустимые (IV) прил. 2
Поковки стальные (III) 2.1.1.1	к разд. 10
Покрытие:	Предохранители: (IV) 10.4.6.4.2
антикоррозионное (IV) 10.4.1.2	с плавкими вставками (IV) 10.7.6.7
защитное (IV) прил. 10 к разд. 10	Предприятие (изготовитель) (III) 2.1.1
Поливинилхлорид: (IV) прил. 10 к разд. 10	Преобразователи статические (IV) 10.1.2
обычный (IV) прил. 10 к разд. 10	Приборы:
теплостойкий (IV) прил. 10 к разд. 10	для определения границы раздела «нефть-вода»
Полихлорпропилен (IV) прил. 10 к разд. 10	в отстойных танках (IV) прил. 2 к разд. 17
Полиэтилен сетчатой структуры (IV) прил. 10 к разд.	измерения электрических величин аналоговые и
10	цифровые (IV) 10.4.6.8.1
Положения:	измерителей вторичные (IV) 10.4.6.5.2
изделия (IV) 10.5.3.5.1	измерительные (IV) 10.4.6.8, 10.7.5.2
испытательные (IV) 10.5.3.3.6	— с классом точности (IV) 10.2.1
общие (IV) 13.1	контроля и управления судном (IV) 10.1.2,
пространственные (III) 4.5.1	10.4.6.5, 10.7.14.3
эксплуатационные (IV) 10.6.1.5	нагревательные (IV) 10.1.2, 10.4.6.7, 10.7.16
— нормальные (IV) 10.5.3.1.3	отопительные (IV) 10.1.2, 10.4.6.7, 10.7.16
Полоса пропускания измерителя радиопомех (IV)	устройства внутренней электрической связи
10.6.3.1	и сигнализации (IV) 10.1.2
Полупродукт (III) 1.2.2	электроизмерительные (IV) 10.1.2
Полуфабрикат: (III) 1.2.2	электронагревательные (IV) 10.7.16.2
из цветных и легких сплавов (III) 2.1.1.1	Приваривание контактов (IV) 10.7.5.5
Полюса (IV) 10.4.6.1.2, 10.7.1.2	Приводы (машины):
Помехи:	рулевые (IV) 5.10.2
излучаемые (IV) прил. к разд. 12, прил. 1 к разд.	электрические (IV) 10.1.2
15, прил. 1 к разд. 16	Приемник службы HABTEKC (IV) 15.5.12
кондуктивные (IV) прил. к разд. 12, прил. 1 к	Приемоиндикаторы систем радионавигации (IV)
разд. 15, прил. 1 к разд. 16	16.4.2
Помехоустойчивость (IV) 12.4.5	Признание:
Помещения:	предприятий (изготовителей) (III) 2.1.1
грузовые (IV) 10.5.4.2.2	Проба (III) 1.2.2, 4.3.1
жилые (IV) 10.5.4.2.2	Пробки (IV) 10.7.4.4
машинные (IV) 10.5.4.1.3, 10.5.4.2.2, прил. к	Пробой (IV) 10.4.4.4, 10.7.7.6
разд. 12	Проведение наружного и внутреннего осмотров (IV)
насосные (IV) 10.5.4.2.2	10.8.2
особо сырые (IV) 10.5.4.4.7	Проверки: (IV) 10.4.1, 15.4.8
производственные (IV) 10.5.4.2.2	величин срабатывания и возврата аппаратов
служебные (IV) 10.5.4.2.2	(IV) 10.7.6.3
— неотапливаемые (IV) 10.5.4.2.2	герметичности моноблоков кислотных аккуму-
специальной категории (IV) 10.5.4.2.2	ляторов (IV) 10.7.4.2
специальные электрические (IV) 10.5.4.1.3	громкости звуковых сигналов (IV) 10.7.14.4
	действия блокировок (IV) 10.7.1.11, 10.7.5.6
	— зашиты (IV) 10.7.7.1

```
— контура гашения энергии поля (IV) 10.7.10.8
                                                      Прокатка (III) 2.2.1.2.1.7
    документации на комплектующие изделия и
                                                      Процессы сварки (III) 4.3.2.2
    материалы (IV) 10.8.2
                                                      Прочность:
    дополнительной погрешности (IV) 10.7.9.1
                                                           изоляции электрическая (IV) 12.4.1.1
    коммутации коллекторных машин (IV) 10.7.1.7
                                                           коммутационная (под нагрузкой) контактов (IV)
    коммутационной прочности, нормальной и
                                                           прил. 5 к разд. 10
    кратковременной коммутационной способности
                                                           — — — вспомогательных (IV) прил. 5 к
    аппаратов (IV) прил. 5 к разд. 10
                                                           разд. 10
    комплектности изделия и запасных частей (IV)
                                                           соединения (IV) 10.4.1.2
                                                           трансформатора термическая (IV) 10.7.2.4
     10.8.2
    конструкции и физических свойств кабелей (IV)
                                                      Пульты: (IV) 12.3.1
    прил. 10 к разд. 10
                                                           управления судном (IV) 16.4.9
    механической прочности электрических
    аппаратов и электромагнитных тормозов (IV)
    прил. 4 к разд. 10
                                                                               P
    на герметичность (IV) 10.7.7.1
    нагревания электрооборудования от ДВС (IV)
                                                      Работоспособность (IV) 10.4.2.4
     10.7.11.3
                                                      Равновесие:
    на саморазряд (IV) 10.7.4.2, 10.7.4.10
                                                           изделия тепловое (IV) 10.5.2.14
    на функционирование (IV) 10.8.2, прил. к разд. 12
                                                           тепловое (IV) 10.5.4.1.2
    основной погрешности (IV) 10.7.9.1
                                                      Радиация солнечная (IV) 10.5.4.8.1
    падения напряжения (IV) 10.7.5.6.6
                                                      Радиобуй спутниковый аварийный:
    пределов изменения уставки напряжения синх-
                                                           системы ИНМАРСАТ (IV) 15.5.14
    ронных генераторов (IV) 10.7.1.11
                                                           системы КОСПАС-САРСАТ (IV) 15.5.13
    продолжительности работы конденсаторов (IV)
                                                      Разбег ротора осевой (IV) 10.7.1.2
     10.7.7.1
                                                      Разрушение конденсатора (IV) 10.7.7.6
    работоспособности оборудования автома-
                                                      Разряд:
    тизации (IV) 12.4.1.2
                                                           воздушный (IV) прил. 1 к разд. 15, прил. 1 к
    работы двигательного привода автоматического
                                                           разд. 16
    выключателя (IV) 10.7.6.6
                                                           контактный (IV) прил. 1 к разд. 15, прил. 1 разд.
     — привода на функционирование без нагрузки
                                                           16
    (IV) 10.7.10.10
                                                      Район плавания: (IV) 10.5.4.4.5
    различимости надписей и знаков (IV) 10.7.14.4
                                                           неограниченный (IV) 10.5.4.1.3
    разрывной способности автоматических
                                                      Распыление циклическое (IV) 10.5.4.6.3
    выключателей (IV) прил. 6 к разд. 10
                                                      Расслоение (IV) 10.5.4.8.3
    резерва возбуждения (IV) 10.7.1.11
                                                      Рассмотрение и одобрение:
    технической документации на изделие (IV)
                                                           программ (IV) 16.1.4
     10.8.2
                                                           Регистром специальное (IV) 10.4.4.1, 10.4.4.5
    уровня напряжения и напряженности электро-
                                                           технической документации (IV) 16.1.4
    магнитного поля радиопомех (IV) 10.3.2,
                                                      Расстояние изоляционное (IV) 10.7.5.2.9, прил. 8 к
     10.7.9.1
                                                      разд. 10
    устойчивости к помехам (IV) 10.7.17.5
                                                      Растворы солей водные (IV) 10.5.2.6
    функционирования (IV) 10.7.5.6
                                                      Растрескивание: (IV) 10.5.4.8.3
    — оборудования автоматизации (IV) 12.4.1.2
                                                           изоляции (IV) 10.7.12.5
    эффективности подавления радиопомех (IV)
                                                      Расцепитель (реле): (IV) 10.7.6.6, прил. 6 к разд. 10
     10.7.17.3
                                                           тепловой (IV) прил. 6 к разд. 10
Провода одножильные (IV) 10.4.6.6.2
                                                      Регистратор данных рейса (IV) 16.4.15
Программа:
                                                      Регуляторы: (IV) 12.3.5
    испытаний (IV) 1.4.6, 10.2.1, 15.2.1, 15.4.8
                                                           непрямого действия (IV) 12.3.1
     — контрольных (III) 2.1.1.4.10
                                                           релерегуляторы (регуляторы напряжения) (IV)
Производство: (III) 2.1.1.1, 2.1.1.4
                                                           10.7.11.5
    установившееся (IV) 1.7, 10.1.2, 10.8.1, 16.3.1.2
                                                           уставок (IV) 10.5.3.4.2
Прокат:
                                                           частоты вращения (IV) 5.2.1
    стали для котлов и сосудов под давлением (III)
                                                      Режим:
    2.1.1.1
                                                           кратковременный (ускоренный) (IV) 10.5.4.4.6
    судостроительной стали (III) 2.1.1.1
                                                           номинальный (IV) 10.4.2.3
```

повторно-кратковременный (IV) прил. 4 к разд. 10 стартерный (IV) 10.7.4.6 форсирования возбуждения (IV) 10.4.6.1.2 Резерв возбуждения (IV) 10.7.1.4 Резина: кремнийорганическая (IV) прил. 10 к разд. 10 силиконовая (IV) прил. 10 к разд. 10 этиленпропиленовая (IV) прил. 10 к разд. 10	приема внешних звуковых сигналов (IV) 16.4.16 регулирования напряжения (IV) 10.7.1.5 судового единого времени (IV) 6.4.11 управления вспомогательными механизмами (IV) 12.3.1 — главными механизмами (IV) 12.3.1 — котельными установками (IV) 12.3.1 — курсом судна/системы управления траекторией судна (IV) 16.4.7
Резонанс (IV) 10.5.2.11, 15.4.8	— электроэнергетическими установками (IV)
Реостаты (IV) 10.7.6.2, 10.7.6.4	12.3.1
Решетки трубные (IV) 9.6.2	электронная картографическая навигационно-
Ротор (IV) 10.7.1.2	информационная (IV) 16.4.12
	Слябы (III) 2.1.1.1
	Снабжение: (IV) разд. 3
C	противопожарное (IV) 4.1.2, 4.5 Соединения:
CAPT (W) ACAA	гибкие (IV) 8.1.3.1, 8.5
САРП (IV) 16.4.1	механические (IV) 8.5
CAC (IV) 16.4.1	штепсельные (IV) 10.7.13.3
Сбросы нагрузки (IV) 10.7.3.5 Сваривание контактов (IV) 10.7.6.5	Сопротивление:
Сварка (III) 2.2.1.2.1.10, рад. 4	изоляции (IV) прил. 1 к разд. 10, 12.4.1.1
Сварщик (III) 4.3.1	обмоток омическое (IV) 10.7.1.2
Светильники: (IV) 10.1.2, 10.5.4.1.1, 10.7.12	Состояние:
с газоразрядными лампами (IV) 10.7.12	аппаратов коммутационное (IV) 10.7.5.2
с лампами накаливания (IV) 10.7.12	изделия нерабочее (IV) 10.5.4.1.6
Свидетельство:	— отключенное (IV) 10.5.3.3.1
о допуске сварщика (III) 4.1.2, 4.3.1	— практически холодное (IV) 10.5.2.10, 10.5.4.1.2— рабочее под электрической нагрузкой (IV)
о признании (III) 2.1, (IV) 12.4.4, 12.4.7	— разочее под электрической нагрузкой (1v) 10.5.3.4.1
— — изготовителя (III) 2.1	— при номинальной нагрузке (IV) 10.5.4.1.2
о соответствии (III) 1.2.2	— при нормальных климатических условиях
о типовом одобрении (испытании) (III) 3.1.1.2.5, (IV) 12.3.1, 12.3.14, 12.4.8, 16.3.3.1	(IV) 10.5.3.7.1
по формам 6.5.30, 6.5.31 (IV) 15.1.3	Сосуды под давлением (IV) 9.6.7, 10.7.16.2
Связи (IV) 9.6.5	СП (III) 1.2.2
Сертификат:	СПИ (III) 1.2.2
предприятия (сертификат качества) (III) 1.2.2	СПЛ (III) 1.2.2
Сигнализаторы (IV) 12.3.1, 12.3.5	Сползание витков (IV) 10.7.2.4
Симметрия осевая (IV) 10.7.1.2	Спора (IV) 10.5.4.7.2
Системы:	Способность:
аварийно-предупредительной сигнализации	коммутационная маневровых выключателей (IV) прил. 5 к разд. 10
(IV) 12.3.1	наибольшая включающая (IV) 10.7.6.4
автоматизации интегрированная (IV) 12.3.1	— коммутационная (IV) 10.7.6.4
 — палубных механизмов (IV) 12.3.1 автоматизированного управления динами- 	— отключающая (IV) 10.7.6.4
ческим позиционированием (IV) 12.3.1	номинальная включающая (IV) прил. 6 к разд. 10
газоотводная (IV) 8.4	 — автоматического выключателя (IV) прил. 6
дистанционного автоматизированного управ-	к разд. 10
ления (IV) 12.3.1	— разрывная тока короткого замыкания (IV)
— управления судовыми системами (IV) 12.3.1	прил. 6 к разд. 10
координат WGS-84 (IV) 16.4.2.16	разрывная автоматических выключателей (IV)
интегрированная навигационная (IV) 16.4.8	прил. 6 к разд. 10
непосредственного водяного охлаждения (IV)	Способы сварки (III) 4.3.2.1
10.7.1.2	Срабатывание ложное (IV) 10.7.14.3 Среда:
покрытий (III) 3.1.2.1	Срода.

защитного газа (III) 4.5.2

питательная (IV) 10.5.4.7.3 Чапек – Докса (IV) 10.5.4.7.3	Теплоустойчивость оборудования (IV) 10.5.2.15, 12.4.2, прил. к разд. 12, прил. 1 к разд. 15, прил. 1 к
Тапек – докса (IV) 10.3.4.7.3 Средства:	разд. 16
защиты от импульсных помех (IV) 10.7.17.5	Термостойкость мастики кислотных аккумуляторов
измерения (IV) 10.4.6.8.1	(IV) 10.7.4.2
радиолокационной прокладки (IV) 16.4.1	T3X (IV) 5.1.4
Сталь:	Тип:
активная (IV) 10.7.1.10	присадочного металла (III) табл. прил. 4 к разд.4
для цепей (III) 2.1.1.1	проб (III) прил. 1 к разд. 4, табл. прил. 4 к разд. 4
Станция:	электродного покрытия (III) табл. прил. 4 к разд. 4
радиолокационная (IV) 16.4.1	Ток:
радиотелефонная (IV) 15.5.8	возбуждения номинальный (IV) 10.4.6.1.2
сигнализации обнаружения пожара (IV)	короткого замыкания предельный (IV) 10.7.6.5
10.7.14.3	— расчетный (IV) 10.4.4.2
Старение тепловое (IV) 10.7.15.1	— ударный (IV) 10.7.2.4, 10.7.5.4, 10.7.6.5
Статор (IV) 10.7.1.2	— — установившийся (IV) 10.7.2.4
Стенды испытательные (IV) 10.5.1.2	Толщины изоляции (IV) прил. 10 к разд. 10
Степени:	Торможение противовключением (IV) 10.4.6.1.1
защиты электрического оборудования (IV)	Точка искусственная нейтральная (IV) 10.7.6.4
прил. 9 к разд. 10	Трансформаторы: (IV) 10.1.2, 10.4.5.1, 10.4.6.2
жесткости (IV) 10.5.4.1.1	защитные (IV) 10.7.17.5
защищенности оборудования от проникновения	с негорючим жидким диэлектриком (IV)
воды (IV) прил. 1 к разд. 16	10.7.2.3
искрения коллекторов электрических машин	Требования к предприятиям (IV) 13.5
(IV) прил. 7 к разд. 10	Трещины (IV) 10.7.4.8
— машины (IV) 10.7.1.7	Тросы: (III) 2.1.1.1
неравномерности хода электрических агрегатов	стальные (IV) 3.12
(IV) прил. 3 к разд. 10	Трубопроводы:
CTO (III) 1.2.2, (IV) 15.1.3, 16.3.3.1	гидравлические (IV) 12.3.6
Стойкость коррозионная (IV) 10.5.2.6, 12.4.2, прил. к	пневматические (IV) 12.3.6
разд. 12, прил. 1 к разд. 15, прил. 1 к разд. 16	топливные высокого давления (IV) 5.2.1
Сторона:	Трубы:
вторая (III) 1.2.2	жаровые (IV) 9.6.5
третья (III) 1.2.2	котельные (IV) 9.6.4
Суда с динамическими принципами поддержания	Трудновоспламеняемость (IV) прил. 10 к разд. 10
(IV) 10.5.4.6.4	Тряска ударная (IV) 10.5.3.6.1
Суспензия водная (IV) 10.5.4.7.2, 10.5.4.7.3	Тубы стальные (III) 2.1.1.1
СЭП (IV) 16.4.1	Турбина:
	высокого давления (IV) 5.1.4
	заднего хода (IV) 5.1.4
T	паровая (IV) 5.4
Тарировка испытательного пламени (IV) прил. 10 к	
разд. 10	\mathbf{y}
Тахометры (IV) 10.4.6.5.2	·
TB (IV) 5.1.4	УБПЧ (IV) 15.5.10
Телеграфы машинные (IV) 10.7.14.3	Ударопрочность оборудования (IV) 10.5.2.16, прил. 1
Температура:	к разд. 15, прил. 1 к разд. 16
допустимая (IV) прил. 2 к разд. 10	Удароустойчивость: (IV) 12.4.2
— нагревания изоляционных материалов (IV)	оборудования (IV) 10.5.2.17, прил. к разд. 12
прил. 2 к разд. 10	Указатели коммутационного состояния аппаратов
изделия практически установившаяся (IV)	(IV) 10.7.5.2
10.5.2.9	УКВ-аппаратура:
рабочая установившаяся (IV) 10.4.2.5	двусторонней радиотелефонной связи (IV)
Тензометрирование напряжений (IV) 10.7.1.10	15.4.4. 15.5.17

радиолокационных ответчиков и радиобуев (IV) к электростатическим разрядам (IV) прил. к 15.4.4 разд. 12, прил. 1 к разд. 15, прил. 1 к разд. 16 носимая (IV) 15.8.4 оболочки к морской воде и солнечной радиации УКВ-радиобуй аварийный (IV) 15.5.15 (IV) 10.7.15.1 УКВ-радиоустановки (IV) 15.5.8 — к нефтепродуктам (IV) 10.7.15.1 Уплотнения дейдвудных устройств (IV) 6.7 работы при предельно допустимых коэффи-Уровень: циентах нелинейных искажений (IV) 12.4.2 создаваемых радиопомех (IV) 10.6.3, 12.4.2 рабочая (IV) прил. 4 к разд. 10 — электромагнитных помех допустимый (IV) Устройства: (IV) разд. 3 буксирные (IV) 3.7 10.6.3.2 электролита (IV) 10.7.4.2 внутренней электрической связи и сигнали-Ускорение (IV) 10.5.3.5.1 зации (IV) 10.4.6.5 Условия: гидравлические (IV) 12.4.2 испытаний (IV) прил. 1 к разд. 16 дейдвудные (IV) 6.6 климатические нормальные (IV) 10.4.2.3, дистанционной передачи курса (IV) 16.4.3 10.5.2.7, прил. к разд. 12, прил. 1 к разд. 15, зарядные (IV) 10.4.2.4 прил. 1 к разд. 16 командные трансляционные (IV) 15.9.5 — стандартные (IV) 10.5.2.13, 12.4.1.2, прил. к отверстий в корпусе, надстройках и рубках (IV) 3.9 разд. 12, прил. 1 к разд. 15, прил. 1 к разд. 16 пневматические (IV) 12.4.2 стендовые (IV) 10.7.10.4 распределительные (IV) 10.1.2, 10.4.6.4 Установка: рулевые (IV) 3.2.4 газотурбинная (IV) 5.1.4 швартовные (IV) 3.6 конденсаторная (IV) 10.4.6.9, 10.7.7.3 якорные (IV) 3.5 Устойчивость: к воздействию внешних электромагнитных помех (IV) прил. к разд. 12, прил. 1 к разд. 15, Ф прил. 1 к разд. 16 — — инея и росы (IV) 12.4.2 Фиксация открывающихся и выдвижных дверей (IV) — — магнитных и электрических помех: 10.7.5.2 — — морской воды (IV) 10.7.15.9, 10.7.15.12 Фильтры: — — солнечной радиации (IV) 10.7.15.9, 12.4.5 защиты от радиопомех (IV) 10.1.2, 10.7.17 электромагнитная совместимость (IV) 12.4.2 с катушками индуктивности (IV) 10.7.17.2 к излучаемым радиочастотным помехам (IV) сетевые (IV) 10.7.17.5 прил. 1 к разд. 15, прил. 1 к разд. 16 Фонари сигнально-отличительные (IV) 10.7.5.6 к качке и длительным наклонам (IV) 12.4.2, прил. к разд. 12 к колебаниям напряжения и частоты (IV) 12.4.2 X к кондуктивным низкочастотным помехам (IV) прил. к разд. 12, прил. 1 к разд. 15, прил. 1 к Характеристики: разд. 16 ампер-секундные (IV) 10.7.6.8 — — радиочастотным помехам (IV) прил. к время-токовые (IV) 10.7.6.8 разд. 12, прил. 1 к разд. 15, прил. 1 к разд. 16 Холодоустойчивость оборудования (IV) 10.5.2.18, к кратковременным изменениям параметров в 12.4.2, прил. к разд. 12, прил. 1 к разд. 15, прил. 1 к сети питания (IV) прил. 1 к разд. 15, прил. 1 к разд. 16 разд. 16 к микросекундным импульсным помехам от медленных переходных процессов в сетях Ц питания переменного тока (IV) прил. к разд. 12, прил. 1 к разд. 15, прил. 1 к разд. 16 Центр аттестационный (III) 4.2.1, 4.3.1 к наносекундным импульсным помехам от быстрых переходных процессов в цепях Цепь: (III) 2.1.1.1 контрольная (IV) 10.7.15.4 источников питания переменного тока, с релейно-контакторными элементами (IV) сигнальных и управляющих цепях (IV) прил. 1 10.7.5.6 к разд. 15, прил. 1 к разд. 16 якорная (IV) 3.5.2 к неисправностям источника питания (IV) прил.

ЦИВ (IV) 15.5.8

1 к разд. 15, прил. 1 к разд. 16

Цикл:

заряда-разряда (IV) 10.7.4.3 качания частоты (IV) 10.5.2.19 коммутационный (IV) прил. 6 к разд. 10

Ч

Части:

запасные (IV) 10.4.2.2 изделия токоведущие (IV) 10.4.4.3 Частота резонансная (IV) 10.5.2.12 Чашка Петри (IV) 10.5.4.7.3, прил. 1 к разд. 16 Число ударов (IV) 10.5.3.5.1

Ш

Шинопровод (IV) 10.1.2, 10.4.6.4, 10.7.8.2 Шланги судовые (IV) 8.8 Штамм (IV) 10.5.4.7.2 Штепсели-трансформаторы (IV) 10.7.13.4 Шунтирование (IV) 10.7.5.4

Щ

Щетки (IV) 10.7.1.2 Щиты сигнально-отличительных фонарей (IV) 10.7.5.6 Щуп испытательный (IV) прил. 11 к разд. 10 Э

Эквивалент сети (IV) 10.6.3.2
Экзамен:
практический (III) 4.4.1
теоретический (III) 4.4.1
ЭКНИС (IV) 16.4.12
Экран (IV) 10.4.3.4
Электробезопасность (IV) 10.4.1.2
Электрод (IV) 10.4.3.4
Электродвигатели (IV) 10.6.2.2
Электролит (IV) 10.7.4.4
Электронагреватели трубчатые (IV) 10.4.6.7.1
Электрооборудование ДВС (IV) 10.1.2
Электроприводы гребных установок (IV) 10.7.10.2
Элемент:
гидравлический (IV) 12.4.2, прил. к разд. 12
полупроводниковый (IV) 10.4.4.1

гидравлический (IV) 12.4.2, прил. к разд. 12 полупроводниковый (IV) 10.4.4.1 пневматический (IV) 12.4.2, прил. к разд. 12 электронный (IV) 10.5.4.1.4 Эффект гашения (IV) 10.7.10.8 Эхолот (IV) 16.4.6

Я

Якорь: (IV) 3.5.1 электромагнита (IV) 10.7.6.3

Российский морской регистр судоходства

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов Том 2

Часть III

Техническое наблюдение за изготовлением материалов Часть IV

Техническое наблюдение за изготовлением изделий

Редакционная коллегия Российского морского регистра судоходства Ответственный за выпуск Е. Б. Мюллер Главный редактор М. Ф. Ковзова Редактор И. В. Сабинина Компьютерная верстка И. И. Лазарев

> Подписано в печать 30.06.10. Гарнитура Таймс. Усл. печ. л.: 46,7. Уч.-изд. л.: 45,8. Формат $60 \times 84/8$. Заказ 2395/1

РОССИЙСКИЙ МОРСКОЙ РЕГИСТР СУДОХОДСТВА

главное управление

Санкт-Петербург

Циркулярное письмо

No 020-3.2-5064 OT 17.12.20102.

КАСАТЕЛЬНО: Изменения частей I и IV Правил технической судов и изготовлением материалов и издели Revision of Parts I and IV of the Rules for Technof Ships and Manufacture of Materials and Proc No.2-020101-040-E). ОБЪЕКТ НАБЛЮДЕНИЯ: Коды объектов/Codes of items: 0803020	Ввод в действие Срок действия до Отменяет/из циркулярное	01.01.2011 31.12.2012 Срок действия продлен до меняет/дополняет е письмо от	
09120020, 09120030, 09120040, 09180000 Приложения: Текст изменений - 2л.		Количество страниц	3
Зам.генерального директора	подпись Название НД и № Провила технического наболе		ранов В.А. / V.A. Baranov Ф.И.О.
В часть I "Общие положения по те изготовлением изделий" Правил тех и изделий для судов, 2010 (НД No.2-02). The attached amendments have been part IV "Technical Supervision during I Construction of Ships and Manufacture. Данные изменения будут внесены изготовлением материалов и издели The above amendments will be introd. Manufacture of Materials and Products	нического наблюдения за пост 20101-040) вносятся изменения introduced into Part I "General R Manufacture of Products" of the R of Materials and Products for Sh в Правила технического наблю й для судов, 2011. uced into the Rules for Technical S	ройкой судо , приведенн egulations fi Rules for Tec ips, 2010 (N одения за п	ов и изготовлением материалов иые в приложении. or Technical Supervision" and hnical Supervision during D No.2-020101-040-E).
Необходимо выполнить следующее: 1) Ознакомить инспекторский сост подразделений РС с содержанием нас 2) Применять требования, введенны изделий, а также при признании и празменения в СТО, выданные до да возобновлении СТО, а также в други	тоящего циркулярного письма не настоящим циркулярным пи роверке предприятий. ты вступления в силу настоян	исьмом, при	одобрении материалов и
Исполнитель: <i>Гамин 1</i> Ф.И.О.	4.Γ.	020 отд.	+7 (812) 315-32-87 тел.

ПРАВИЛА ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ ЗА ПОСТРОЙКОЙ СУДОВ И ИЗГОТОВЛЕНИЕМ МАТЕРИАЛОВ И ИЗДЕЛИЙ ДЛЯ СУДОВ (2010) (НД №2-020101-040) RULES FOR TECHNICAL SUPERVISION DURING CONSTRUCTION OF SHIPS AND MANUFACTURE OF MATERIALS AND PRODUCTS FOR SHIPS (2010) (ND No.2-020101-040-E)

ЧАСТЬ I. ОБЩИЕ ПОЛОЖЕНИЯ ПО ТЕХНИЧЕСКОМУ НАБЛЮДЕНИЮ PART I. GENERAL REGULATIONS FOR TECHNICAL SUPERVISION

6 ОДОБРЕНИЕ ТИПОВЫХ МАТЕРИАЛОВ, ИЗДЕЛИЙ, ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ 6 APPROVAL OF TYPE MATERIALS, PRODUCTS, PRODUCTION PROCESSES AND SOFTWARE

- **6.4** Второй абзац дополняется текстом: "При этом объем представляемых документов в каждом случае является предметом специального рассмотрения Регистром с учетом типа материала или изделия, которое выполняется с целью подтверждения соответствия требованиям правил РС.".
- **6.4** The second paragraph has been supplemented with the text: "The number of documents to be submitted is in each case subject to special consideration by the Register proceeding from the type of material or product in order to confirm compliance with the requirements of the RS Rules."

ПРИЛОЖЕНИЕ 1. HOMEHKЛАТУРА ОБЪЕКТОВ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ PEГИСТРА APPENDIX I. NOMENCLATURE OF ITEMS OF THE REGISTER TECHNICAL SUPERVISION

Таблица Table

CИСТЕМЫ И ТРУБОПРОВОДЫ SYSTEMS AND PIPING

08030200 и 08030700 текст в колонках 3 - 9 исключается. **08030200 and 08030700** the text in columns 3 - 9 has been deleted.

Вводится новый объект наблюдения:

New item has been introduced:

1	2	3	4	5	6	7	8	9
08031270	расходомеры и счётчики расхода	-	-	сто	-	Р	Р	-
	discharge gages and flowmeters							<u> </u>

MEXAHU3MЫ MACHINERY

Вводятся новые объекты наблюдения:

New items have been introduced:

1	2	3	4	5	6	7	8	9
09120010	машинных помещений, станций пенотушения и объёмного тушения, охлаждаемых помещений	-	-	СТО	-	Р	Р	-
	machinery spaces, foam and smothering fire extinction stations, refrigerated spaces							
09120020	грузовых насосных помещений, трюмов для перевозки опасных грузов и автотранспорта, ангаров для вертолётов	Р	сто	C3	-	Р	Р	-
	cargo pump rooms, holds for carriage of dangerous goods and motor vehicles, helicopters shelds							
09120030	переносные для дегазации закрытых помещений на нефтеналивных судах и химовозах	Р	сто	C3	-	P	Р	-
	portable gas freeing fans for enclosed spaces on oil and chemical tankers							
09120040	взрывоопасных помещений и помещений с избыточным давлением ПБУ, нефтеналивных судов и химовозов	P	СТО	C3	-	Р	Р	-
	dangerous spaces and spaces with overpressure of MODU, oil and chemical tankers							

09180000 исключается (см. новый код 09120040). **09180000** has been deleted (refer to new code 09120040).

КОТЛЫ, ТЕПЛООБМЕННЫЕ АППАРАТЫ И СОСУДЫ ПОД ДАВЛЕНИЕМ **BOILERS, HEAT EXCHANGERS AND PRESSURE VESSELS**

10020400 в колонке 5 текст "СТО" заменяется текстом "СЗ". **10020400** in column 5 the text "СТО" has been replaced with the text "СЗ".

МАТЕРИАЛЫ **MATERIALS**

Вводится новый объект наблюдения:

New item has been introduced:

1	2	3	4	5	6	7	8	9
13362000MK	защитные покрытия грузовых танков нефтеналивных судов, перевозящих сырую нефть (Резолюция MSC.288(87))	Р	СТО	СТО	-	Р	Р	Р
	Protective coatings for cargo oil tanks of crude oil tankers (Resolution MSC.288(87))							

ЧАСТЬ IV. ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ ИЗДЕЛИЙ PART IV. TECHNICAL SUPERVISION DURING MANUFACTURE OF PRODUCTS

1 ОБЩИЕ ПОЛОЖЕНИЯ 1 GENERAL

- **1.4.5.5** текст "см. 8.6" заменяется текстом "см. 8.7", и далее по тексту. **1.4.5.5** the text "to 8.6" has been replaced with the text "to 8.7", the rest remaining as it stands.