Версия: 01.01.2023

ПРАВИЛА

КЛАССИФИКАЦИИ И ПОСТРОЙКИ МОРСКИХ ПЛАВУЧИХ НЕФТЕГАЗОВЫХ КОМПЛЕКСОВ

ЧАСТЬ III УСТРОЙСТВА, ОБОРУДОВАНИЕ И СНАБЖЕНИЕ

НД № 2-020201-024

Санкт-Петербург 2023

ПРАВИЛА КЛАССИФИКАЦИИ И ПОСТРОЙКИ МОРСКИХ ПЛАВУЧИХ НЕФТЕГАЗОДОВЫХ КОМПЛЕКСОВ

Правила классификации и постройки морских плавучих нефтегазовых комплексов (ПНК) Российского морского регистра судоходства (РС, Регистр) утверждены в соответствии с действующим положением и вступают в силу 1 января 2023 года.

Правила состоят из следующих частей:

часть І «Классификация»;

часть II «Корпус»;

часть III «Устройства, оборудование и снабжение»;

часть IV «Остойчивость»;

часть V «Деление на отсеки»;

часть VI «Защита от пожаров и взрывов»;

часть VII «Механические установки»;

часть VIII «Системы и трубопроводы»;

часть IX «Механизмы»;

часть X «Котлы, теплообменные аппараты и сосуды под давлением»;

часть XI «Электрическое оборудование»;

часть XII «Холодильные установки»;

часть XIII «Материалы»;

часть XIV «Сварка»;

часть XV «Автоматизация»;

часть XVI «Общие требования и принципы обеспечения безопасности».

Правила дополняют Правила классификации и постройки морских судов и Правила классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ.

:

ПЕРЕЧЕНЬ ИЗМЕНЕНИЙ

(изменения сугубо редакционного характера в Перечень не включаются)

Для данной версии нет изменений для включения в Перечень.

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

- 1.1.1 На ПНК распространяются применимые требования части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов¹ и части III «Устройства, оборудование и снабжение ПБУ/МСП» Правил классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ², если в настоящей части Правил классификации и постройки морских плавучих нефтегазовых комплексов³ не оговорено иное.
- Требования настоящей части не распространяются на следующие устройства, оборудование и снабжение:

промышленное оборудование, используемое для бурения или связанных с ним операций:

оборудование для добычи продукции;

оборудование для подготовки продукции;

оборудование для переработки продукции.

¹ В дальнейшем — Правила классификации.

В дальнейшем – Правила ПБУ/МСП.
В дальнейшем — Правила ПНК.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 Определения и пояснения, за исключением приведенных ниже, указаны в Общих положениях о классификационной и иной деятельности, части I «Классификация» и части III «Устройства, оборудование и снабжение» Правил классификации, в части I «Классификация» и части III «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП, а также в части I «Классификация» и части II «Корпус» Правил ПНК.

Длинный бридель – бридель, который во всем диапазоне расчетных нагрузок имеет примыкающий к якорю участок, лежащий на грунте.

Короткий бридель – бридель, который при расчетных нагрузках может отрываться от грунта по всей своей длине.

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

- 1.3.1 Общие положения по техническому наблюдению за устройствами, оборудованием и снабжением изложены в Общих положениях о классификационной и иной деятельности и в части І «Классификация» Правил классификации, части І «Классификация» и части ІІ «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП и части І «Классификация» Правил ПНК.
- **1.3.2** Техническому наблюдению подлежат изделия, входящие в состав устройств, оборудования и снабжения ПНК и соответствующие перечню изделий, указанному в 1.3 части III «Устройства, оборудование и снабжение» Правил классификации, в той степени, в какой это применимо к конкретному типу ПНК.
- **1.3.3** Детали устройств, указанные в 1.3 части III «Устройства, оборудование и снабжение» Правил классификации, подлежат контролю со стороны Регистра в отношении выполнения требований части XIII «Материалы» и части XIV «Сварка» Правил классификации, а также части XIII «Материалы» и части XIV «Сварка» Правил ПНК.
- **1.3.4** В процессе постройки/переоборудования ПНК устройства, оборудование и снабжение, приведенные в <u>табл. 1.3.4</u>, подлежат техническому наблюдению Регистра согласно требованиям соответствующих разделов и глав Правил классификации, Правил ПБУ/МСП, а также Правил ПНК.

Таблица 1.3.4

Наименование	FPSO, FPO, FSO	SPM
Рулевое устройство	(+)	_
Якорное устройство	+	+
Система удержания	+	+
Швартовное устройство	+	+
Буксирное устройство	+	+
Отбойное устройство	+	+
Посадочное устройство	+	+
Сигнальные мачты	+	+
Грузоподъемные устройства	+	+
Устройство и закрытие отверстий в корпусе, надстройках и рубках	+	+
Устройство и оборудование помещений	+	+
Аварийное снабжение	+	+
Перегрузочный комплекс	+	+
Примечание. в скобках для самоходных ПНК.		•

1.4 ОБЩИЕ ТРЕБОВАНИЯ

1.4.1 Установка механизмов непосредственно на палубах ПНК, являющихся верхом грузовых емкостей и топливных цистерн, должна выполняться в соответствии с 1.4.1 части III «Устройства, оборудование и снабжение» Правил классификации.

1.5 МАТЕРИАЛЫ И СВАРКА

- **1.5.1** Стальные конструкции должны отвечать требованиям части II «Корпус» и части XIII «Материалы».
- **1.5.2** Сварка элементов конструкции устройств, оборудования и снабжения должна быть выполнена в соответствии с требованиями части II «Корпус» и части XIV «Сварка».

1.6 РАСЧЕТНЫЕ КОЭФФИЦИЕНТЫ УСКОРЕНИЙ ВСЛЕДСТВИЕ ВОЛНЕНИЯ

- **1.6.1** Для ПНК, имеющих судовые обводы или обводы понтона, эксплуатируемых в неограниченных районах плавания и районах ограниченного плавания **R1**, для расчета нагрузок в устройствах и оборудовании следует применять расчетные безразмерные коэффициенты ускорения, приведенные в 1.7 части III «Устройства, оборудование и снабжение» Правил классификации.
- **1.6.2** Для ПНК несудовой формы и судовой формы других районов плавания допускается применять иные коэффициенты ускорений, которые необходимо подтвердить соответствующими расчетами, признанными Регистром.

2 РУЛЕВОЕ УСТРОЙСТВО

2.1 Рулевое устройство и средства активного управления должны соответствовать требованиям разд. 2 части III «Устройства, оборудование и снабжение» Правил классификации.

3 ЯКОРНОЕ УСТРОЙСТВО

3.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **3.1.1** Якорное устройство на самоходных ПНК должно соответствовать требованиям разд. 3 части III «Устройства, оборудование и снабжение» Правил классификации применительно к транспортным судам.
- **3.1.2** Якорное устройство на обитаемом FSPM должно соответствовать требованиям разд. 3 части III «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП.
- **3.1.3** Якорное устройство на SSPM или необитаемом FSPM может быть временным.
- С учетом наличия персонала, механизма и источника энергии временное якорное устройство должно обеспечивать:

стоянку ПНК при его достройке на плаву (загрузка твердым балластом, испытание систем);

удержание ПНК (в дополнение к работе буксира) при его отстое во время перегона в случае возникновения условий, превышающих допустимые;

позиционирование и удержание ПНК во время установки на грунт.

3.1.4 Цепные ящики и цепные трубы должны быть расположены вне опасной зоны. Если такое расположение практически невозможно, то эти конструкции должны быть защищены от проникновения газа.

3.2 ВРЕМЕННОЕ ЯКОРНОЕ УСТРОЙСТВО

3.2.1 Общие требования.

- **3.2.1.1** Якорное устройство можно устанавливать не только на корпусе ПНК, но и на временных навесных (выносных) площадках, а отдельные элементы якорного устройства (клюзы, киповые планки, соединительные скобы и т.п.) располагать таким образом, чтобы их можно было использовать для других устройств (буксирного, швартовного и т.п.) с учетом возможности их дальнейшего применения при последующем перегоне ПНК к новому месту эксплуатации или для утилизации.
- **3.2.1.2** Разработка и использование временного якорного устройства допускаются при предоставлении:

данных о грунте, сейсмичности и гидрометеорологических условиях в конкретном районе;

необходимых данных и расчетов, характеризующих условия работы всех элементов якорного устройства;

чертежей с указанием расположения временного якорного устройства, включая якоря, якорные линии, состоящие из цепей, стальных, синтетических или комбинированных тросов, механизмы и любые другие элементы;

расчетов якорных устройств при выполнении конкретных операций.

3.2.2 Принципы расчета временного якорного устройства.

3.2.2.1 Якорное снабжение ПНК должно определяться специальным расчетом, исходя из внешних условий и соответствующих нагрузок при проведении конкретных операций с учетом дополнительного удержания и позиционирования ПНК вспомогательными судами буксирного ордера.

Якорное снабжение может выбираться согласно 3.1.5 и 3.1.6 части III «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП по характеристике N_e , определяемой по формуле

$$N_e = K_1 K_2 \Delta^{2/3} + K_3 A, (3.2.2.1)$$

где K_1, K_2, K_3 – коэффициенты, учитывающие форму корпуса, волновое воздействие и ветровые условия якорной стоянки соответственно;

 Δ — объемное водоизмещение ПНК при проведении операции, м³;

 Суммарная площадь парусности проекции конструкций, возвышающихся над ватерлинией, на плоскость, перпендикулярную горизонтальной проекции якорной линии, м².

Коэффициент K_1 рекомендуется принимать из соотношения R/R', где R' и R сопротивления погруженной части обычного судна и ПНК при равных водоизмещениях и скорости буксировки соответственно.

Коэффициенты K_2 и K_3 должны приниматься в соответствии с табл. 3.2.2 части III «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП.

Регистр может принять иные значения коэффициентов, если будет доказано, что они соответствуют реальным условиям строительства, эксплуатации и ремонта.

- **3.2.2.2** Элементы якорного устройства должны проектироваться с учетом 4.3.3 части III «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП.
- **3.2.2.3** Коэффициенты запаса прочности в каждом отдельном элементе якорного устройства рекомендуется принимать аналогично якорным устройствам в соответствии с 3.1.5 и 3.3.4 части ІІІ «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП.

Расчетные усилия в отдельных элементах якорного устройства определяются исходя из величины разрывного усилия якорных линий в соответствии с требованиями 3.6 части III «Устройства, оборудование и снабжение» и 6.3 части IX «Механизмы» Правил классификации.

3.2.3 Состав временного якорного устройства.

3.2.3.1 Рекомендуется снабжать ПНК не менее чем двумя якорями.

В состав временного якорного устройства должны входить, как правило: становые якоря;

якорные линии;

устройства для крепления и отдачи коренных концов якорных цепей (жвако-галсы и т.п.); механизмы для отдачи и подъема становых якорей и позиционирования ПНК при отданных якорях (при использовании якорного устройства для позиционирования ПНК);

стопоры, обеспечивающие стоянку ПНК на якорях;

цепные ящики или площадки для хранения якорных канатов и цепей и другое специальное оборудование, необходимое для выполнения конкретной морской операции.

Количество отдельных элементов якорного устройства определяется на основании расчетов.

- **3.2.3.2** В качестве становых якорей допускаются якоря следующих типов Холла, Грузона и адмиралтейские.
- **3.2.3.3** В качестве якорных линий рекомендуется использование цепей различной категории прочности. При наличии обоснования, учитывая небольшую продолжительность операций, вместо цепей могут использоваться стальные и синтетические канаты необходимой прочности.
- 3.2.3.4 Характеристики якорных линий должны определяться на основании специальных расчетов, исходя из обеспечения требуемой держащей силы и нагрузок на якоря в конкретных условиях при расчетных внешних воздействиях. Якорные линии и их комплектация должны соответствовать требованиям разд. 7 части XIII «Материалы» Правил классификации. При использовании комбинированных якорных линий, включающих цепные и тросовые участки, комплектация должна обеспечивать постоянное натяжение тросовых вставок (за счет веса цепных участков), исключающее образование колышек на тросовых вставках.
- **3.2.3.5** Для каждой становой якорной цепи или троса должен быть предусмотрен стопор, предназначенный для стоянки ПНК на якоре. При фиксированной длине якорных линий и отсутствии необходимости якорного позиционирования вместо стопора может использоваться устройство для крепления и отдачи коренного конца якорной цепи.

При необходимости якорного позиционирования ПНК в процессе его установки в дополнение к стопорам должны устанавливаться устройства для крепления и отдачи коренных концов якорных цепей или тросов.

3.2.3.6 Проводка якорных линий должна обеспечивать их бесперебойное движение при отдаче и подъеме якорей в соответствии с требованиями 3.6.3 части III «Устройства, оборудование и снабжение» Правил классификации.

Цепные ящики должны соответствовать требованиям 3.6.4 части III «Устройства, оборудование и снабжение» Правил классификации.

Площадки для укладки цепей или канатов должны иметь размеры и расположение, обеспечивающие свободную укладку заданной длины якорных цепей грузовыми средствами ПНК, свободное прохождение цепей через клюзы и беспрепятственное вытравливание их при отдаче якорей.

3.2.3.7 Допускаются перевозка, отдача и подъем якорей и якорных цепей или канатов на вспомогательных судах буксирного ордена, имеющих соответствующее оборудование.

3.2.3.8 Якорные механизмы должны быть установлены для отдачи и подъема становых якорей, а также якорного позиционирования в процессе установки ПНК. в случае отсутствия необходимости якорного позиционирования ПНК, а также осуществления перевозки, отдачи и подъема якорей на вспомогательных судах буксирного ордена якорные механизмы на ПНК могут не устанавливаться.

Мощность якорных механизмов должна определяться исходя из фактических массогабаритных характеристик якорного снабжения, требований к позиционированию ПНК, условий проведения операций и т.п.

При оборудовании ПНК якорными механизмами или при использовании лебедок, имеющихся на ПНК, для операций с якорями и якорными цепями они должны удовлетворять требованиям, указанным в Правилах классификации и Правилах ПБУ/МСП. При использовании для операций с якорями механизмов вспомогательных судов буксирного ордена необходима проверка их соответствия Правилам ПБУ/МСП с учетом характеристик якорного устройства ПНК. Конструкция якорных механизмов должна соответствовать требованиям 6.3 части IX «Механизмы» Правил классификации.

3.2.3.9 При значительной продолжительности морской буксировки на ПНК рекомендуется предусматривать один запасной комплект якорного снабжения (якорь, якорная линия и соединительные элементы). Под значительной продолжительностью морской буксировки понимается рейс более недели.

4 СИСТЕМЫ УДЕРЖАНИЯ

4.1 ОБЩИЕ ТРЕБОВАНИЯ

- **4.1.1** Требования данного раздела распространяются на системы, предназначенные для удержания ПНК в определенном месте с ограничением смещений в заданных пределах и обеспечением нормальных условий для выполнения технологических процессов на точке.
 - **4.1.2** Требования распространяются на следующие системы:
 - .1 якорные системы, включающие якоря и гибкие якорные линии;
 - .2 якорные системы, включающие якоря и натяжные якорные линии;
 - .3 динамические системы позиционирования;
- **.4** комбинированные системы, включающие якорные системы и подруливающие устройства.
- **4.1.3** Система удержания, включая лебедки и цепные стопоры, должна быть расположена на открытой палубе во взрывоопасных зонах, если не обеспечены специальные меры предосторожности во избежание риска воспламенения во время обычной эксплуатации и аварийного разъединения.

4.2 СИСТЕМА ЯКОРНОГО ПОЗИЦИОНИРОВАНИЯ

4.2.1 Система якорного позиционирования ПНК должна обеспечивать их удержание:

в эксплуатационных условиях при расчетных внешних нагрузках, с ошвартованным транспортным судном (TC) (в том числе с одной оборванной якорной линией при уменьшенных коэффициентах безопасности в соответствии с требованиями 4.3.10 и 4.3.11 части III «Устройства, оборудование и снабжение» Правил ПБУ/МСП);

в экстремальных условиях без ошвартованного судна, при шторме, который может быть 1 раз в 100 лет (в том числе с одной оборванной якорной линией при уменьшенных коэффициентах безопасности).

- **4.2.2** Система якорного позиционирования должна обеспечить ограничение горизонтальных перемещений ПНК в расчетных условиях.
- **4.2.3** Раскладка якорных линий для удержания ПНК не должна приводить к ограничениям по маневрированию и осадке ТС.
- **4.2.4** Системы якорного позиционирования делятся по способу удержания на два типа:

I тип: на позиционирующих якорных линиях, обеспечивающих удержание над заданной точкой дна моря под воздействием горизонтальных нагрузок;

II тип: на натяжных якорных линиях, обеспечивающих как удержание над заданной точкой дна моря, так и минимизацию изменения расстояния от днища сооружения до дна моря под воздействием горизонтальных и вертикальных нагрузок при максимальном понижении уровня моря (от волнения, отлива и естественного понижения уровня).

- **4.2.5** Для удержания рассматриваемых ПНК рекомендуется использовать многоякорные (распределенные) и одноякорные системы I типа.
- **4.2.6** Система якорного позиционирования должна проектироваться в соответствии с разд. 4 части III «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП.
- **4.2.7** Определение параметров системы якорного позиционирования рекомендуется выполнять методом последовательных приближений по следующей схеме:

по аналогам, сообразуясь с уровнем внешних нагрузок от действия природных факторов, и с учетом распределения глубин моря в месте размещения системы якорного позиционирования определяются схема раскладки, масса и количество якорей (якорных линий), длина, калибр и категория прочности бриделей;

определяются масса якорей и усилия предварительной обтяжки якорных линий;

выполняются расчеты максимальных усилий в бриделях под действием внешних нагрузок от природных факторов, возможных 1 раз в 100 лет;

определяются коэффициенты безопасности, и выполняется их сравнение с нормируемыми;

по результатам сравнения корректируются параметры системы якорного позиционирования и, в случае необходимости, производится повторный расчет;

расчеты выполняются до тех пор, пока не будет достигнута хорошая сходимость значений действующих и допускаемых усилий.

- **4.2.8** Для проведения расчетов системы якорного позиционирования следует использовать программное обеспечение, имеющее Свидетельство о типовом одобрении Регистра.
- **4.2.9** Регистру должна быть представлена документация в соответствии с требованиями 4.2.2 и 4.2.3 части III «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП.

- **4.2.10** Конструкция системы должна соответствовать требованиям 4.3 части III «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП.
- **4.2.11** Оборудование (лебедки, устройства для натяжения, киповые планки и направляющие устройства) и посты управления системы должны отвечать требованиям 4.4 и 4.8, соответственно, части III «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП.

4.3 ЯКОРЯ

- **4.3.1** Для удержания ПНК в зависимости от грунта могут использоваться свайные, плужные, вакуумные, гравитационные, выстреливаемые и взрывные якоря, а также якоря судового типа.
- **4.3.1.1** Свайные якоря обеспечивают противодействие вертикальной и горизонтальной нагрузкам, их устанавливают с использованием молотов, бурением и вымыванием струей воды под давлением.
- **4.3.1.2** Плужные якоря изготавливаются методом сварки из листовых деталей, они обладают высокой держащей силой в глинистых и илистых грунтах.
- **4.3.1.3** Вакуумные якоря кессоны используют на мягких и средних грунтах, они заглубляются откачкой воды из кессона.
- **4.3.1.4** Гравитационные якоря представляют собой железобетонные/стальные и бетонные массивы, держащая сила которых по всем направлениям примерно равна весу в воде.
- **4.3.1.5** Взрывные якоря используются на мелководье, они внедряются в грунт выстрелом или серией взрывов и разворачиваются натяжением якорной линии в положение наибольшего сопротивления нагрузке.
- **4.3.1.6** Якоря судового типа, заглубляемые при волочении, применяются для нетвердых грунтов.
 - **4.3.2** Якоря подразделяются:

по направлению действия (кругового и направленного);

по принципу действия (гравитационные, свайные и кольцевые);

по материалу (стальные и железобетонные);

по конструкции (монолитные, сборные, понтоны, фермы и составные).

В свою очередь, гравитационные якоря подразделяются:

по форме поперечного сечения (пирамидальные, сегментные, грибовидные, плитовидные и «лягушка» с одним или двумя ножами);

по массе: малые (до 50 т), средние (от 50 до 100 т), большие (от 100 до 300 т) и сверхбольшие (от 300 до 900 т).

4.3.3 Характеристики якорей должны выбираться в зависимости от величины передаваемой на них нагрузки, свойств грунта, коэффициентов запаса устойчивости против сдвига (1,05 — 1,3) и опрокидывания (1,1 — 1,4). При этом учитываются недопустимость смещения якоря в процессе эксплуатации и требования к точности установки (как правило, 5 % глубины моря, если нет дополнительных требований к точности установки).

При выборе типа якоря должны быть учтены также характеристики технических средств, которые могут быть применены при его транспортировке и установке.

- **4.3.4** Масса якоря должна определяться величиной держащей силы с учетом коэффициента надежности, принимаемого по нормативной документации, и зависит от типа и формы якоря, характеристик грунта и действующей нагрузки.
- **4.3.5** Держащая сила якоря должна обеспечивать сопротивление его сдвигам и поворотам под действием внешних сил за счет его конструкции и схемы передачи усилий на якорь от бриделя.
- **4.3.6** Нагрузка, передаваемая на якорь, характеризуется величиной расчетного усилия в бриделе на уровне дна и углом подхода его к поверхности грунта, которые определяются расчетом системы удержания ПНК.

4.4 БРИДЕЛИ

- **4.4.1** Бридели, служащие для передачи нагрузки к якорю, могут состоять из якорной цепи, стального троса, синтетических тросов или их сочетания. Для удержания крупных ПНК, как правило, используются цепные бридели, иногда с вставками из стального троса.
- **4.4.2** Для цепных бриделей могут применяться цепи категорий 1, 2, 3, а также R3, R3S, R4, R4S и R5 согласно разд. 7 части XIII «Материалы» Правил классификации.
- **4.4.3** Калибр бриделя определяется из максимальных расчетных нагрузок на ПНК.
- **4.4.4** В системе якорного позиционирования могут использоваться длинные и короткие бридели.
- **4.4.5** Для железобетонных гравитационных якорей угол между бриделем и горизонтальной плоскостью в точке его крепления к якорю а ≤ 15 − 20°. При этом в расчете необходимо учитывать вертикальную составляющую усилия, передаваемого на якорь, и соответствующее снижение его держащей силы.
- **4.4.6** Для уменьшения угла α и для увеличения демпфирующих свойств бриделя возможно использование подвесных грузов.
- **4.4.7** Жесткость бриделя определяется как отношение приращения горизонтальной силы к вызванному им перемещению верхнего конца бриделя. Жесткость зависит от глубины места, длины бриделя, его начального натяжения и погонного веса.

4.5 РАСЧЕТНЫЕ НАГРУЗКИ

- **4.5.1** Расчетные внешние нагрузки для проектирования системы якорного позиционирования определяются в соответствии с разд. 3 части II «Корпус».
- **4.5.2** Реакция ПНК на внешние воздействия может быть условно разделена на четыре диапазона частот:

квазистатический или нулевой частоты, обусловленный уровнем моря, осредненным ветром и течением;

медленно меняющийся (низкочастотный), вызванный порывами ветра и волновыми силами второго порядка (силами дрейфа) и течения;

среднечастотный, обусловленный волновыми силами первого порядка и дифракцией;

высокочастотный (включая резонансы вертикальной, килевой и бортовой качек), связанный с волновыми эффектами высшего порядка и выражающийся в продольной и поперечной вибрациях линий.

Первые два процесса могут быть условно причислены к статическим, а последние два – к динамическим. При статической постановке задачи принимается, что натяжение линии зависит только от координат концов линии, при динамической – дополнительно от их скоростей и ускорений.

4.5.3 Для ПНК следующие параметры являются критическими:

максимальные и минимальные натяжения линий;

горизонтальные, вертикальные и угловые перемещения ПНК и его ускорения при воздействии ветра, течения и волнения;

перемещения подвижного соединения магистрального трубопровода с ПНК;

параметры, влияющие на усталостную прочность линий (моменты спектров перемещений нулевого, второго и четвертого порядков).

4.5.4 В целях длительного удержания угла изгиба и поворота донного гибкого узла жесткой трубы в пределах $1-2^\circ$ рекомендуется обеспечить в первом приближении горизонтальное среднее перемещение (статика + дрейф), равное 2-4% глубины моря под днищем ПНК (меньшая цифра относится к глубинам 600-1000 м, большая — к глубинам менее 100 м, на глубинах 100-600 м — линейное интерполирование).

В целях исключения выхода на ограничение по углам деформаций скользящих соединений трубы от горизонтальной и вертикальной качек, а также обеспечения амплитуды угловых колебаний донного гибкого соединения в пределах $4,5-6^{\circ}$ рекомендуется в первом приближении обеспечить горизонтальное максимальное перемещение (динамика) под днищем 8-12% глубины моря с теми же соотношениями глубин.

При наличии гибкой трубы допустимые горизонтальные смещения (% от глубины под днищем, при тех же соотношениях глубин):

средние: 3 — 5 и 5 — 10;

максимальные: 10 — 15 и 15 — 30.

- **4.5.5** Помимо факторов и внешних нагрузок, представленных в части II «Корпус», должны учитываться температуры воздуха и воды, обрастание микроорганизмами, а также все виды качки ПНК и комплекса FSPM-ПНК (вертикальная, бортовая, килевая, поперечно-горизонтальная, продольно-горизонтальная, рыскание).
- **4.5.6** Для комплекса FSPM-ПНК должны дополнительно рассматриваться различные состояния загрузки ПНК (разное количество продукции и жидкого балласта) и рассчитываться предельные условия швартовки и отгрузки, т.е. стоянки ТС на точке.

4.5.7 Учитывая особую чувствительность системы якорного позиционирования к резонансным колебаниям на частотах внешних природных воздействий, особое внимание должно уделяться оценке резонансных колебаний при определении расчетных нагрузок, в частности:

поперечно-горизонтальных колебаний и рыскания пришвартованного ТС; продольно-горизонтальной качки ТС;

килевой качки корпуса и комплекса FSPM-ПНК, которая может вызвать образование «змеек» в цепях с провесом;

вертикальной качки FSPM с пришвартованным TC (или без него), вызывающей изменение натяжения якорной линии;

рыскания FSPM с пришвартованным TC (или без него), включая мгновенные нагрузки на туго натянутую якорную линию.

Кроме того, должны быть учтены вторичные факторы, которые могут вызвать резонанс:

удар о встречную волну при расчете волновых нагрузок в прибрежной полосе в зоне всплеска (FSPM полностью находится в зоне всплеска);

изменение направления скоростей частиц воды при совместном действии течения и волнения:

динамические возбуждения, возникающие из-за вихреобразований при высоких скоростях течения.

4.5.8 В связи со сложностью разработки теоретических методов таких расчетов рекомендуется наряду с расчетными способами определять качку и нагрузку путем модельных испытаний. При этом должно быть учтено следующее:

уменьшение влияния демпфирования в натурных условиях по сравнению с модельным экспериментом;

влияние обрастания на волновое сопротивления и силы инерции; влияние резонанса на провис якорных цепей.

- **4.5.9** Конструкция системы якорного позиционирования должна быть такой, чтобы неожиданный выход из строя какой-либо из якорных линий не приводил к последовательному выходу из строя остальных линий и системы удержания в целом.
- **4.5.10** Элементы системы якорного позиционирования должны проектироваться с учетом соответствующих коэффициентов безопасности и с использованием методик, позволяющих выявить экстремальные условия нагрузки для каждого элемента.

Коэффициенты безопасности должны приниматься в соответствии с режимами и состояниями, указанными в 1.2.2 и 1.2.3 части IV «Остойчивость» Правил ПБУ/МСП.

В первом приближении можно воспользоваться коэффициентами, приведенными в табл. 4.3.10 и 4.3.11 части III «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП, которые могут быть уменьшены с учетом условий эксплуатации, назначения ПНК и типа якорной линии.

При этом коэффициенты безопасности для бриделей должны приниматься в зависимости от статической разрывной прочности. Коэффициенты безопасности для якорей должны приниматься в зависимости от их держащей способности.

4.5.11 Максимальное натяжение T_{max} при значении коэффициента безопасности SF определяется по формуле

$$SF = PB/T_{max},$$
 (4.5.11-1)

где РВ – минимальный расчетный предел прочности якорной линии.

Максимальные перемещения ПНК должны удовлетворять условию

$$x_{ult}/x \ge k,\tag{4.5.11-2}$$

где

- x_{ult} предельные значения перемещений ПНК, устанавливаемые требованиями проекта и инструкциями по эксплуатации оборудования;
 - максимальные расчетные перемещения для рассматриваемого расчетного режима эксплуатации;
 - k коэффициент безопасности, значения которого допускается принимать при квазистатическом методе расчета равным 1,15 и при динамическом методе расчета равным 1,05.
- **4.5.12** Определенный расчетами уровень усталостной долговечности элементов якорных линий должен быть не менее трехкратного расчетного срока службы системы якорного позиционирования.
- **4.5.13** Расчет суммарных усилий от ветра, течения и волнения должен производиться при различных углах между ними и с учетом динамики действия волн. Расчеты углов поворота корпусов и горизонтальных перемещений при качке ПНК и ТС, а также отклонения горизонтальной силы, действующей на бридель, должны производиться по признанной Регистром методике и сертифицированной им программе.
- **4.5.14** Кроме вышеуказанных нагрузок необходимо учитывать начальное натяжение якорных линий.
- **4.5.15** С учетом воздействия на бридель максимальных суммарных нагрузок от начального натяжения, ветра, волнения и течения должен быть выбран калибр якорной цепи, запас прочности которой следует принимать не менее 1,5.
- **4.5.16** Прочность элементов крепления системы якорного позиционирования (цепные клюзы и стопоры) комплекса должна на 30 % превышать прочность самого слабого звена в составе якорной линии.
- **4.5.17** При глубинах менее 70 м расчет высокочастотных колебаний ПНК должен учитывать жесткость системы якорного позиционирования, при глубинах более 450 м должен быть выполнен динамический расчет поведения системы якорного позиционирования. в особых случаях выполнение такого расчета может потребоваться и для меньших глубин воды.

Характеристика жесткости системы якорного позиционирования должна быть определена по методике, одобренной Регистром, а программа вычислений должна быть одобрена Регистром.

4.6 СИСТЕМА ДИНАМИЧЕСКОГО ПОЗИЦИОНИРОВАНИЯ

4.6.1 Система динамического позиционирования должна соответствовать требованиям 4.9 части III «Устройства, оборудование и снабжение ПБУ/МСП» Правил ПБУ/МСП.

4.7 ШВАРТОВНЫЙ ВЕРТЛЮГ

- **4.7.1** Швартовный вертлюг должен обеспечить свободный поворот ПНК относительно вертикальной оси и отслеживать перемещение ошвартованного ТС.
- **4.7.2** Конструкция швартовного вертлюга должна выдерживать воздействие следующих нагрузок:

швартовной линии;

собственного веса;

динамических нагрузок, возникающих в результате качки ПНК, воздействий ветра и течения.

- **4.7.3** Подшипники швартовного вертлюга/турели должны иметь достаточную жесткость для исключения недопустимых отклонений.
- **4.7.4** При проектировании подшипников должны учитываться следующие факторы:

пластическая деформация элементов качения и дорожек качения (несущая способность);

усталость в критических местных сечениях внешнего и внутреннего колец; усталость болтов;

несущая способность подшипника в целом, определяемая несущей способностью болтов и поперечных сечений колец, с учетом жесткости конструкций, поддерживающих кольца (неподвижное и вращающееся).

4.7.5 Несущая способность подшипника должна определяться с учетом равновесия сил, действующих на элементы качения, и следующих нагрузок, действующих на элементы кольца:

усилий от болтов, включая возможные усилия среза;

возможного давления в месте соединения рассматриваемого элемента и конструкции, поддерживающей кольцо;

усилий в поперечном сечении кольца (т.е. на концевых поверхностях рассматриваемого элемента).

- **4.7.6** Коэффициент запаса прочности для колец подшипника должен быть не менее:
 - 1,7 по максимальной несущей способности кольца и болтов:
 - 1,5 по усталостной прочности (90 % вероятности) при коэффициенте нагрузки 0,7.
- **4.7.7** Усилие затяжки болтов должно составлять 65 80 % от их предела текучести.
- **4.7.8** Для болтов, используемых в условиях сильного растяжения, должно учитываться растрескивание вследствие коррозии под напряжением.
- **4.7.9** Прижимные болты должны быть насколько возможно равномерно распределены по окружности.

4.8 ТУРЕЛЬ

- **4.8.1** Турель должна обеспечить свободный поворот ПНК относительно вертикальной оси, закрепление ряда якорных линий и надежное соединение неподвижной и подвижной частей грузового трубопровода (см. 4.7.1).
- **4.8.2** Дополнительно к нагрузкам, приведенным в <u>4.7.5</u>, должны учитываться силы, возникающие в результате неблагоприятных условий эксплуатации якорных линий. Следует обращать особое внимание на расчетные допуски и напряжения при передаче критической нагрузки.

Конструкция опоры направляющих блоков должна выдерживать нагрузку, равную минимальной прочности при разрыве якорных линий. Номинальное эквивалентное напряжение в опорной конструкции не должно превышать 0,8 предела текучести материала.

Должны быть представлены расчеты прочности и расчеты методом конечных элементов (МКЭ), выполненные для неблагоприятной нагрузки на якорные линии.

4.8.3 Ответственные механизмы турели должны рассматриваться в качестве основных. Компоненты и системы должны быть выбраны с запасом для того, чтобы неисправность отдельного компонента не стала причиной потери работоспособности турели.

Механизм турели в случае обесточивания должен получать питание от аварийного источника в течение 18 ч.

Система аварийного отключения должна срабатывать автоматически при обнаружении пожара и наличии предельно допустимой концентрации паров продукции до 50 % допустимого уровня в районе турели.

4.8.4 Для контроля и управления механизмами турели или всплывающего буя для *STL* необходимо представить документацию, приведенную в табл. 4.8.4.

Табпина 484

	iau	лица 4 .0.
Наименование	Механизмы турели	Механизм ы STL
Описание функций	+	+
Блок-схемы системы (Т)	_	+
Схема системы	_	+
Расположение источника питания (Т)	+	+
Чертеж расположения (Т)	+	+
Список приборов и оборудования (Т)	+	+
Таблицы данных об окружающей среде	+	+
Программа испытаний применяемого производителем программного обеспечения (T)	+	+
Руководство по эксплуатации ¹	_	+
Принципиальные схемы входных и выходных цепей	_	+
¹ Копия должна быть представлена только для информации.		
Примечание. Т – также требуется для типовых одобренных схем.		

5 ШВАРТОВНОЕ УСТРОЙСТВО

5.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **5.1.1** Швартовное устройство на самоходных ПНК должно соответствовать требованиям разд. 4 части III «Устройства, оборудование и снабжение» Правил классификации.
 - 5.1.2 Должны быть обеспечены следующие виды швартовки ТС:

кормовая с гибкими швартовными тросами;

бортовая с гибкими швартовными тросами.

- **5.1.3** На каждом ПНК должно иметься швартовное устройство, обеспечивающее подтягивание ТС и его удержание на определенном расстоянии.
- **5.1.4** При определении характеристик швартовного устройства рекомендуется учитывать следующие условия:

комплексное решение вопросов швартовки и грузовых операций (подход, удержание ТС у ПНК, ограничение перемещений при выполнении грузовых операций);

постоянный контроль швартовных и грузовых операций с учетом динамических воздействий внешних сил;

простоту, технологичность и ремонтопригодность конструкции, наличие «слабого звена»;

размеры и расположение швартовного устройства, обеспечивающие передачу воспринимаемых нагрузок на конструкцию корпуса ПНК;

взаимное расположение устройств на ПНК, способствующее более эффективному обеспечению безопасности системы «ПНК – TC», в том числе — снижению риска травматизма обслуживающего персонала.

- **5.1.5** Состав и расположение швартовного устройства, действующие нагрузки должны определяться исходя из характеристик ТС, внешних нагрузок, ограничений условий эксплуатации, конструктивных особенностей ПНК и взаимодействующих судов.
- **5.1.6** Швартовное устройство должно обеспечивать удержание пришвартованного судна при воздействии следующих факторов:

ветра;

течения;

приливов и отливов;

волн;

льда;

изменений осадки;

сгонов и нагонов.

- **5.1.7** Силы, возникающие в результате изменения осадки, приливно-отливных колебаний и в ходе проведения грузовых операций, должны компенсироваться надлежащим обслуживанием швартовов, в частности, за счет установки соответствующих лебедок.
- **5.1.8** Воздействие волн и льда рекомендуется принимать по результатам модельных испытаний, натурных измерений или компьютерных расчетов.

5.2 ИСХОДНЫЕ ПРЕДПОСЫЛКИ РАСЧЕТОВ

5.2.1 Расчеты прочности швартовного устройства и подкрепляющих его конструкций корпуса должны производиться по методике, согласованной с Регистром.

6 БУКСИРНОЕ УСТРОЙСТВО

- **6.1** Буксирное устройство на самоходных ПНК должно соответствовать требованиям разд. 5 части III «Устройства, оборудование и снабжение» Правил классификации.
- **6.2** ПНК должны быть оборудованы устройством для аварийной буксировки в соответствии с 5.7 части III «Устройства, оборудование и снабжение» Правил классификации.

7 ОТБОЙНОЕ УСТРОЙСТВО

- **7.1** Отбойное устройство должно выдерживать скользящие удары ТС в грузу или в балласте и обеспечивать отсутствие образования искр при контакте.
- **7.2** Размеры и расположение отбойного устройства рекомендуется выбирать таким образом, чтобы оно обеспечивало защиту от TC разных типов с учетом высоты прилива.
- **7.3** На ПНК, если предполагается швартовка вспомогательных судов, должны быть предусмотрены кранцы, предохраняющие корпус ПНК от повреждений.
- **7.4** Характеристики, конструкция и расположение отбойного устройства и кранцев должны соответствовать требованиям 4.1.3.2 части XV «Оценка безопасности ПБУ/МСП» Правил ПБУ/МСП.
- **7.5** В качестве отбойных устройств рекомендуется использовать конструкции из резиновых амортизаторов повышенной энергоемкости различного типа, например, цилиндрических амортизаторов торцевого сжатия или амортизаторов специального профиля (V-образных, M-образных).
- **7.6** Узлы крепления отбойных устройств должны включать предохранительный элемент («слабое звено»), исключающий повреждения этих устройств при случайных перегрузках.
- **7.7** Прочность отбойного устройства должна определяться в соответствии с указаниями, изложенными в <u>5.2</u>.
- **7.8** Параметры отбойных устройств следует принимать с учетом следующих принципов:

энергоемкости, силы реакции и деформации отбойного устройства, учитывающих ударную энергию, определенную в соответствии с 3.17.1 части II «Корпус»;

необходимости индивидуального проектирования для конкретных условий;

применения медленно восстанавливаемых конструкций, обладающих высокой энергоемкостью при небольшой силе реакции и низком давлении на борт швартующегося судна, а также способности к рассеиванию (диссипации) энергии удара судна с передачей нагрузок на конструкции корпуса ПНК;

низкого коэффициента трения и устойчивости к срезывающим нагрузкам; простоты, технологичности и ремонтопригодности;

оборудования системой контроля условий швартовки судна и средствами, предотвращающими повреждения его корпуса при случайных перегрузках.

8 ПОСАДОЧНОЕ УСТРОЙСТВО

- **8.1** Каждый ПНК должен быть оборудован посадочным устройством, обеспечивающим доступ на ПНК и его покидание в любое время с учетом соответствующих ограничений (высота волны, скорость ветра и т.д.).
- **8.2** Для ПНК дополнительно должны быть разработаны методы и технические средства для экстренной эвакуации в аварийных ситуациях.
- **8.3** Должны быть обеспечены два способа доставки/эвакуации персонала: судами и вертолетом.
- **8.4** Рекомендуется основным вариантом доступа на приподнятые над водой ПНК считать грузовой кран с клетью для транспортировки людей, на низко расположенные FSPM вертикальный трап.
- **8.5** Пересадка людей должна быть обеспечена, по крайней мере, при следующих условиях:

скорости ветра 8 — 12,5 м/с;

высоты волн 3%-ной обеспеченности 0,75 — 1,25 м (3 балла);

скорости течения до 1 уз.

- 8.6 Посадочное устройство должно располагаться с двух бортов ПНК.
- **8.7** Посадочное устройство не должно мешать безопасному подходу судов водоизмещением менее 2500 т при скорости до 1 уз и выдерживать соответствующие нагрузки от навала судна без повреждения отдельных элементов и конструкции в целом.
- **8.8** Следует исключить воздействие льда на посадочное устройство в нерабочем положении.

9 СИГНАЛЬНЫЕ МАЧТЫ

9.1 Конструкция сигнальных мачт, предназначенных для несения сигнальных средств и антенн, должна соответствовать разд. 6 части III «Устройства, оборудование и снабжение» Правил классификации.

10 ГРУЗОПОДЪЕМНЫЕ УСТРОЙСТВА

10.1 Грузоподъемные устройства ПНК должны соответствовать требованиям Правил по грузоподъемным устройствам морских судов.

11 УСТРОЙСТВО И ЗАКРЫТИЕ ОТВЕРСТИЙ В КОРПУСЕ, НАДСТРОЙКАХ И РУБКАХ

- **11.1** Требования распространяются на устройство и закрытие отверстий, расположенных выше предельной линии погружения ПНК. Предельная линия погружения является линией пересечения поверхности палубы переборок (или ее продолжения) с наружной поверхностью бортовой обшивки у борта.
- 11.2 Устройство и закрытие отверстий в корпусе, надстройках и рубках ПНК, которому назначен минимальный надводный борт, должны удовлетворять требованиям Регистра для судов неограниченного района плавания, приведенным в разд. 7 части III «Устройства, оборудование и снабжение» Правил классификации и разд. 8 части III «Устройства, оборудование и снабжение» Правил ПБУ/МСП, в той мере, в которой они применимы для рассматриваемого ПНК.
- **11.3** Высота комингсов отверстий для дверей, сходных, световых и вентиляционных люков, а также вентиляционных труб и средства их закрытия должны определяться с учетом требований к остойчивости ПНК как в неповрежденном, так и в поврежденном состоянии.

Крышки сходных люков должны быть водонепроницаемыми и иметь быстродействующие устройства для задраивания и открывания, а также систему индикации их положения.

- **11.4** Для доступа в цистерны и коффердамы должны быть установлены непроницаемые горловины размером в свету не менее 500 × 600 мм.
- **11.5** В посту управления швартовными и грузовыми операциями иллюминаторы должны иметь электрообогрев и стеклоочистители. Иллюминаторы в этом посту должны быть оборудованы системой обмыва стекол и светофильтрами.
- **11.6** Устройства и закрытия отверстий в переборках деления ПНК на отсеки должны удовлетворять требованиям 7.12 части III «Устройства, оборудование и снабжение» Правил классификации.

Двери в этих переборках должны иметь дистанционное управление из центрального поста на палубе, находящегося над аварийной ватерлинией после затопления.

В надстройках должны быть установлены водогазонепроницаемые стальные двери, во внутренних помещениях – двери, удовлетворяющие требованиям 2.1.3.1 части VI «Противопожарная защита» Правил классификации.

Выбивные филенки дверей, используемых как аварийный выход, должны иметь размер не менее 400 × 500 мм.

12 УСТРОЙСТВО И ОБОРУДОВАНИЕ ПОМЕЩЕНИЙ

- **12.1** Устройство и оборудование помещений должны соответствовать требованиям разд. 8 части III «Устройства, оборудование и снабжение» Правил классификации для грузовых судов.
- **12.2** Ширина наклонных трапов должна быть не менее 600 мм (между тетивами), угол наклона не более 55° (в грузовых танках 60°), в исключительных случаях допускается 65°. Ширина вертикальных трапов должна быть не менее 300 мм, а ширина скоб-трапов не менее 250 мм.
- **12.3** Средства доступа в грузовые танки должны соответствовать требованиям 7.14.2 части III «Устройства, оборудование и снабжение» Правил классификации.
- **12.4** Леерное ограждение открытых палуб и рабочих площадок должно иметь высоту 1100 мм и 4 ряда, во внутренних помещениях высоту 1000 мм и 3 ряда.
 - 12.5 Палубные механизмы и приборы должны иметь чехлы.
- **12.6** Запасные части и приспособления должны быть приняты в объеме, определенном поставщиками в технических условиях (ТУ) на поставку механизмов, аппаратов и другого оборудования, а по устройствам и системам в объеме, определенном Регистром и действующими нормативными документами.
- ЗИП должны быть размещены в кладовых, шкафах, ящиках и на полках, а также на берегу.
- **12.7** Требования к посту управления швартовными и грузовыми операциями и центральному посту управления (ЦПУ) регламентированы в части VII «Механические установки» и части XV «Автоматизация».

13 АВАРИЙНОЕ СНАБЖЕНИЕ

- **13.1** Необходимость и комплектность аварийного снабжения ПНК определяются судовладельцем самостоятельно с учетом района эксплуатации ПНК, его размерений, а также требований национальных стандартов.
- **13.2** Аварийное и противопожарное имущество и инвентарь должны храниться в специально оборудованных помещениях со свободным доступом.

Российский морской регистр судоходства

Правила классификации и постройки морских плавучих нефтегазовых комплексов Часть III Устройства, оборудование и снабжение

ФАУ «Российский морской регистр судоходства» 191186, Санкт-Петербург, Дворцовая наб., 8 www.rs-class.org/ru/